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Quantum correlations between distant qubits conveyed by large-S spin chains
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We consider two distant spin- 1
2 particles (or qubits) and a number of interacting objects, all with the same value

S � 1 of their respective spin, distributed on a one-dimensional lattice (or large-S spin chain). The quantum
states of the chain are constructed by linearly combining tensor products of single-spin coherent states, whose
evolution is determined accordingly, i.e., via classical-like equations of motions. We show that the quantum
superposition of the above product states resulting from a local interaction between the first qubit and one spin
of the chain evolves so that the second qubit, after having itself interacted with another spin of the chain, can be
entangled with the first qubit. Obtaining such an outcome does not imply imposing constraints on the length of the
chain or the distance between the qubits, which demonstrates the possibility of generating quantum correlations
at a distance by means of a macroscopic system, as far as local interactions with just a few of its components are
feasible.
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I. INTRODUCTION

Whenever dealing with quantum devices one needs to
accommodate antithetical requirements: On one hand, mi-
croscopic objects must be isolated from their environment
to protect the quantum behavior which is key to the device
functioning. On the other hand, they need communicating
with the external world in order to accomplish some useful
task. This suggests that a hybrid scheme might be necessary
in order to meet both requirements, where by hybrid we mean
a system where the fragile quantum component (one or more
qubits) is accompanied by a robust, almost classical partner,
which mediates the dialog between each qubit and the external
world without significantly exposing it, but still being able of
conveying quantum correlations.

Specifically addressing the case of quantum operations
such as state transfer or entanglement generation, the most
promising proposals are typically based on the use of quantum
channels made of interacting qubits [1–17], whose expected
high performances entail a high sensitivity to decoherence,
raising the necessity of protection from external disturbances.
This level of protection could be alleviated if it were possible
to exploit the more robust dynamical features of a system made
by interacting objects with a large value of their spin angular
momentum, S � 1, possibly arranged on a one-dimensional
(1D) lattice, so as to make up the system that we will hereafter
call “large-S spin chain.” Indeed, a classical analysis based
on the S → ∞ limit has recently shown that such a spin
chain can be made to evolve in a way such that robust
signals (specifically magnetic solitons) are transmitted along
macroscopic distances, giving rise to an overall dynamics that
fulfills single-qubit state manipulation [18,19]. However, in
order to demonstrate that a large-S spin chain can also be used
for generating entanglement between distant qubits, a quantum
treatment of its dynamics must be considered.

The exact quantum description of large-S spin chains of
sizable length is usually unattainable, even numerically, due
to their huge Hilbert space and the specific algebra obeyed
by the spin operators: Therefore, ad hoc methods must be

devised to deal with such a problem. Generalized coherent
states (GCS) [20,21] provide a powerful tool for describing the
dynamics of quantum systems in this context [22–26], as they
keep a clear correspondence between the quantum picture and
the increasingly classical behavior observed when the system
quanticity parameter (e.g., 1/S for spins) tends to zero [27,28].

The aim of this work is to illustrate the possibility of
generating entanglement between two qubits separated by
a macroscopic distance by means of their interaction with
localized components of a large-S spin chain. This is made pos-
sible by treating such a hybrid system within an approximate
description, based on the properties of GCS for the large-S spin
chain, that retains enough of the spin-chain quantum nature
to account for quantum correlations. Specifically, we choose
an isotropic Heisenberg chain, referred to as � henceforth,
composed by elementary objects with spin quantum number
S larger than 1/2 and two external qubits A and B interacting
with two spins SA and SB of the chain, as shown in Fig. 1.
Starting from a factorized state of the chain and the two qubits,
we study whether the entanglement locally created by the
interaction between A and SA can propagate along the chain
up to SB and be finally transferred to B, the net result being
the generation of entanglement between A and B.

The initial state of � is taken as a tensor product of
single-spin coherent states (SCS), which allows us to establish
a one-to-one correspondence between the configurations of
a classical spin chain and the quantum states of �. Indeed,
if � sustains the propagation of Heisenberg solitons [29,30]
(i.e., well-localized, stable, pulse-shaped excitations), their
propagation can trigger the interaction with the two qubits
and convey the quantum correlations between them.

In Sec. II we describe the model for the overall system and
specify the interactions between its components. The system
dynamics is then divided into three different stages, which are
considered in Secs. III, V, and VI. The role of Sec. IV is that
of providing a formal derivation of the GCS for the large-S
Heisenberg chain, while Sec. VII is devoted to the discussion
of our numerical results and the concluding remarks.
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FIG. 1. Schematic representation of the system: The connected
blue spheres represent the spins of a Heisenberg chain, while the
orange ones are the two qubits.

II. MODEL SETUP

The model first ingredient is the channel used to connect
the distant qubits A and B, namely a Heisenberg spin chain
described by the Hamiltonian

H� = −J
∑

n

Ŝn·Ŝn+1 − γH
∑

n

Ŝz
n; (1)

it embodies a nearest-neighbor isotropic ferromagnetic in-
teraction, whose strength is given by the exchange constant
J > 0, and that with an external field H , γ being the
gyromagnetic ratio.

Amongst the possible solutions of the equations of motion
defined by H� in the S → ∞ and continuum limit, for H �= 0
there are the so-called Heisenberg solitons [29]; let us briefly
recall the properties of such solutions that are relevant in
this work. The classical Heisenberg chain consists of (spin)
vectors Sn ≡ S sn whose magnitude S has the dimension of an
action; the unit vectors sn are naturally parametrized by polar
coordinates, sn ≡ (sin θn cos ϕn, sin θn sin ϕn, cos θn), with ϕn

and cos θn canonically conjugated variables, {ϕn, cos θl} =
S−1 δnl . The classical Hamiltonian is the analog of Eq. (1),

Hcl = −JS2
∑

n
sn·sn+1 − γ S H ·

∑
n
sn, (2)

and the corresponding EoM for the unit vectors sn are

∂t sn = JS sn × (sn+1+sn−1 + h), (3)

where JS sets the frequency scale and h ≡ γ H/(JS) is the
dimensionless Zeeman field. As shown by Tjon and Wright
[29] (TW), the Heisenberg chain EoM have, in the continuum
approximation (lattice spacing d → 0), an analytical ‘one-
soliton’ solution of the form:

θβ = 2 sin−1(sinβ sech ξ ),
(4)

ϕβ = ϕ0 + cotβ ξ + tan−1(tanβ tanh ξ ),

where ξ ≡ (x−vt)/λβ and x = nd is the ‘continuum’ coordi-
nate. The soliton amplitude, characterized by the dimension-
less parameter β ∈ (0,π/2) (θ � 2β) is related with the soliton
velocity v by cosβ = v/(2dJS

√
h) and determines the soliton

length λβ = d/(
√

h sin β), time scale τβ = (JS h sin 2β)−1,
and energy εβ = 8JS2

√
h sinβ. Figure 2 reports a typical

TW soliton, and it is useful to note that solitons with
larger amplitude β have larger energy (∼sin β), are narrower
(∼1/ sinβ), and slower (∼cosβ). Although there are no known
analytic soliton solutions of the discrete model, the continuum
approximation holds for configurations that vary slowly on
the scale of the lattice spacing d, so that the solution (4)
approximately applies also to the chain model (2) provided
that λβ � d, i.e.,

√
h sinβ 
 1. This is generally true in real

FIG. 2. TW soliton: 1 − cos θβ (ξ ) for tanβ = 2.

systems, whose typical exchange energies are of the order of
tenths of hundreds of Kelvin degrees: As μB = 0.67 K/Tesla,
only very large fields could break the inequality. Numerical
investigations confirmed that solitonlike excitations can be
injected in discrete spin chains and propagate along them
without substantial distortion [19].

Coming back to our model, let us introduce the qubits and
their interaction with the channel. The Hamiltonian describing
the overall system is taken of the form:

H = HA,SA + H� + HB,SB , (5)

where

HA,SA = gA ŜA· σ̂ A + hAσ̂ z
A, (6)

and similarly for HB,SB , with A ↔ B; σ̂ A and σ̂ B are the Pauli
operators of the qubits, whose interaction with SA and SB is
ruled by the coupling constants gA and gB, while hA and hB are
uniform magnetic fields possibly applied to the qubits only.

We further assume that the qubit-chain couplings gA and
gB depend on time and are switched on and off in subsequent
intervals according to

gA(t) = g ϑ(t−t0) ϑ(t1−t),

gB(t) = g ϑ(t−t2) ϑ(t3−t), (7)

with t0 < t1 < t2 < t3, ϑ(t) the Heaviside function, and g

the interaction strength. By Eqs. (7) the overall evolution is
decomposed into three stages, and g sets the time scale for
the first and third ones. In more detail, assuming an initial
factorized state, the system evolution from t0 to t3 (see Fig. 3
for a graphic representation) is described as follows:

(1) [t0,t1]: gA(t) = g and gB(t) = 0. Starting from the
factorized initial state the evolution of (A,SA) is determined.
This stage is assumed to have a fast dynamics, so that � \ SA is
practically frozen, i.e., the spins {Sn} except SA do not evolve
[31]. This leads to an entangled state of A and SA, while the
rest of the system does not get entangled.

(2) [t1,t2]: gA(t) = gB(t) = 0. The large-S evolution of �

results in an entangled state of A with the entire chain.
(3) [t2,t3]: gB(t) = g and gA(t) = 0. The relevant evolution

only concerns the (B,SB) pair, and � \ SB is frozen. The
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FIG. 3. Schematic representation of the three stages of the system
dynamics (1), (2), and (3) from top to bottom, respectively (see text).

eventual result is an entangled state of the whole system, with
a finite concurrence between A and B.

As for the dynamics of the system for t < t0, the qubits
and the spins in a portion of � having SA and SB well within
its bulk, stay all aligned along the field, i.e., the z direction;
meanwhile, a Heisenberg soliton travels from the left towards
the above chain portion, so as to reach SA at t = t0.

It appears that the model involves several parameters,
i.e., those characterizing the soliton and the interactions of
each qubit: In the actual computation we will use some
representative sets, chosen in agreement with the assumptions,
e.g., different dynamic time scales and suitable properties
(width) of the propagating soliton: Our goal is indeed to
show that the proposed setup allows for the generation of
entanglement between A and B; optimizing this by varying
the parameters is a numerically harder task, which is worth
the effort when dealing with more realistic models, that could
emerge as the most promising for experimental realization.

III. FIRST STAGE: EVOLUTION OF (A,SA)

In the first stage we observe the evolution of the qubit A
interacting with the spin SA, while all the other spins of � are
frozen. The initial state at t = t0 is assumed to be

|�(t0)〉 = |A〉 ⊗
[ ⊗

n

|�n(t0)〉
]

⊗ |B〉, (8)

where |A〉 and |B〉 are the qubit states. The state of �, in
brackets in Eq. (8), is a tensor product of single spin states,
which are chosen as SCS [32]. The SCS form an overcomplete
set on each Hilbert space HSn

, and they are in one-to-one
correspondence with the configurations of a classical spin
(namely a fixed-length vector), which implies that they can be
parametrized by polar angles (see Appendix). The main reason
for the above choice of the chain initial state is that tensor

products of SCS provide the GCS for the large-S Heisenberg
chain, as shown in the next section. In particular, the SCS that
we will use in Eq. (8) are those defined by the polar angles
corresponding to a Heisenberg-soliton shape, as described
by Eq. (4) with x = nd. We further enforce the condition
nAd = vt0, where SnA

= SA, d is the lattice spacing, and v is
the soliton velocity, so that the traveling soliton is centered at
nA for t = t0.

The evolution of the system during the time interval [t0,t1]
is described by

U (1)(t) = UA,SA (t) ⊗ 1�\SA ⊗ UB(t), (9)

where

UA,SA (t) = exp
(−i HA,SA t

)
, (10)

is the propagator for the subsystem (A,SA), with HA,SA as in
Eq. (6), while

UB(t) = exp
(−i hBσ̂ z

B t
)

(11)

accounts for the effect on B of the local field hB.
As far as � \ SA and B are concerned, the action of

U (1)(t−t0) on the state (8) is trivial; however, the subsystem
(A,SA) can evolve into an entangled state, as shown in Fig. 4,
where the Von Neumann entropy EA,SA (|ψA,SA (t)〉) of A is
shown as a function of time [33], for one initial state of
SA and A and given values of the relevant parameters [times
and lengths in figures are in reduced units of (JS)−1 and d,
respectively].

As we aim at generating entanglement between A and B
via �, we will choose t1 so as to maximize the numerically
evaluated entanglement between A and SA at the end of the
first dynamical stage. We thus ensure that the initial separable
state of (A,SA) defined by Eq. (8),∣∣ψA,SA (t0)

〉 = |A〉 ⊗ ∣∣�nA (t0)
〉
, (12)

will evolve [34] into an entangled state∣∣ψA,SA (t)
〉 =

∑
σm

cσm(t)|σ 〉 ⊗ |m〉, (13)

where {|σ 〉} and {|m〉} are orthonormal bases for HA and HSA ,
respectively. By the completeness relation (A7), the state at
time t1 can be written as∣∣ψA,SA (t1)

〉 = (2S+1)
∑

σ

∫
d�

4π
f �

σ |σ 〉 ⊗ |�〉, (14)

with

f �
σ =

∑
m

cσm(t1)〈�|m〉, (15)

and the overlap 〈�|m〉 as in Eq. (A3).
The evolved state of the overall system at the end of the

first stage in the density-operator formalism reads

|�(t1)〉〈�(t1)| = |ψA,SA (t1)〉〈ψA,SA (t1)|

⊗
⎡⎣⊗

n�=nA

|�n(t0)〉〈�n(t0)|
⎤⎦ ⊗ |B(t1)〉〈B(t1)|,

(16)
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FIG. 4. EA,SA (t) for t ∈ [t0,t1], S = 5, gA = 1, hA = 0.25. The
A initial state is |1〉 while the chain is initially in the state corre-
sponding to a propagating Heisenberg soliton (see text) with λβ = 10
and β = π/4 centered in nA (specifically meaning �0

nA
= {θ0

nA
=

π/2,ϕ0
nA

= 0}). The lower panel shows a zoom of the small-time part
of the upper one.

where |B(t1)〉 = UB(t1 − t0)|B〉, and the term in brackets is
the state of � \ SA, that is left unchanged by the first-stage
dynamics.

IV. COHERENT STATES OF THE LARGE-S SPIN CHAIN

This section contains a formal derivation of GCS for the
Heisenberg spin chain with S � 1. It will be shown that in
the large-S limit the GCS become a tensor product of SCS, as
defined in Eq. (A1), thus leading to the approximate evolution
that is described in the next section.

The construction of the GCS [21] for a quantum system of
Hamiltonian H starts from writing

H =
∑

i

bi T̂i + H.c., (17)

so as to identify the Lie algebra spanned by the operators
{T̂i}; the transformation group obtained by exponentiating the

elements of such algebra is the so-called dynamical group
(DG), i.e., the unitary group ruling the dynamics of the system.

Keeping in mind that we aim at considering a large-S spin
chain, we recast H� in a form that fits to the purpose. First,
since the energy has to stay finite, we notice that the exchange
constant and the gyromagnetic ratio must scale with S so as
to guarantee that Jc ≡ JS2 and γc ≡ γ S have fixed, finite,
values. We then define the operators

ân ≡ Ŝx
n + iŜ

y
n√

2 S
, ẑn ≡ Ŝz

n

S
(18)

that satisfy [ân,â
†
n] = S−1ẑn and [ẑn,ân] = S−1ân, in terms of

which it is

H�

Jc
= −

N∑
n=1

(â†
nân+1 + â

†
n+1ân + ẑnẑn+1 + hẑn), (19)

where h = γcH/Jc, and, for the sake of simplicity, periodic
boundary conditions are assumed. Now we must find a set of
operators that contains the 6N operators

{â†
n, ân, ẑn, â

†
nân±1, ẑnẑn+1} (20)

and is closed with respect to commutation; the ‘first gen-
eration’ of commutators, namely those between the above
operators, yields 4N new bilinear operators, namely{

â
†
nẑn±1

S
,
ânẑn±1

S

}
, (21)

as well as 10N new trilinear operators{
ẑnâ

†
r âs

S

}
, (22)

where (n,r,s) is either a permutation of three consecutive
numbers, or (r,s) = (n,n ± 1), or (r,s) = (n ± 1,n).

It is clear that the exact Lie algebra won’t have a finite
number of generators, since subsequent generations of order
k give rise to new independent operators with prefactor S−k ,
such as S−2ânân±1. This is the reason why an exact construc-
tion of the GCS for the Heisenberg chain is not possible.
However, for large S one can disregard higher generations (i.e.,
approximate S−2 � 0) and close the Lie algebra with the above
operators (20)–(22).

Once the Lie algebra that generate the DG is determined,
the GCS are obtained by the action of displacement operators
on an arbitrary reference state; given the physical problem we
are dealing with, this can be chosen as the ground state of the
Hamiltonian (1), i.e.,

|�〉 ≡
⊗

n

|mn=S〉n, (23)

where Ŝz
n |mn〉n = mn |mn〉n, so that ẑn |�〉 = |�〉.

The displacement operators are the elements of the left coset
of the DG with respect to the so-called stability subgroup,
which is the maximal subgroup of the DG that leaves the
reference state unchanged up to a constant phase factor. In our
case the stability subgroup is generated by{

ẑn,ẑnẑn+1,â
†
nân±1,

ẑnâ
†
r âs

S

}
, (24)
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since |�〉 either is an eigenstate of these operators or is annihi-
lated by them. By definition, the left-coset representatives are
given by those elements ũ providing a unique decomposition
of any u ∈ DG in the form

u = ũ u′, (25)

where u′ belongs to the stability subgroup. Within the large-S
approximation, it appears that the general representative of the
left coset of the stability subgroup is given by

ũ = exp

[
N∑

n=1

(
ηn + ζ+

n

ẑn+1

S
+ ζ−

n

ẑn−1

S

)
â†

n − H.c.

]
, (26)

where η ≡ (η1, . . . ,ηN ), ζ± ≡ (ζ±
1 , . . . ,ζ±

N ) are complex vec-
tors. Since the operators in the exponent of the above
expression commute in the large-S approximation, one can
write the displacement operator as a product of exponentials,
and recast Eq. (26) as

ũ =
N⊗

n=1

exp

[(
ηn + ζ+

n

ẑn+1

S
+ ζ−

n

ẑn−1

S

)
â†

n − H.c.

]
. (27)

By applying this operator to the chosen reference state (23)
one obtains

ũ |�〉 =
⊗

n

[eξnâ
†
n−ξ∗

n ân |mn=S〉n], (28)

with ξn = ηn+(ζ+
n +ζ−

n )/S.
Setting ξn = (

√
2S)−1eiϕ(θ/2), a one-to-one correspon-

dence is established between the states that make the tensor
product in Eq. (28) and the SCS defined in Eq. (A1), after
recognition of the parameters θ and ϕ as the polar angles
entering the latter. This correspondence implies that the GCS
for the spin chain in the large-S limit, hereafter indicated by
|��〉, are a tensor product of SCS, each relative to one spin of
the chain, i.e.,

|��〉 ≡ ũ|�〉 =
⊗

n

|�n〉; (29)

this result, together with the observation that the dynamical
properties of one-dimensional magnetic systems with large S

are well represented by classical equations of motion (EoM),
leads to describe the chain evolution as in the next section.

V. SECOND STAGE: EVOLUTION OF THE CHAIN

When the second stage begins, at t = t1, the interaction
gA(t) with A is quenched and the overall propagator for t ∈
[t1,t2] can be split as

U (2)(t) = UA(t) ⊗ U�(t) ⊗ UB(t), (30)

where UA(t) is the operator on A analogous to that in Eq. (11),
while U�(t) is the chain propagator.

After the results of the previous section, we consistently
take that the dynamics of each |�n〉 be given by the solution of
the classical-like EoM for the chain, meaning that any initial
state |�0

�〉 = ⊗
n |�0

n〉 evolves following the dynamics of the
associated classical configuration, {Sn(t) = S sn(t)} as from
Eq. (A4), with sn(t) solving the classical EoM, Eqs. (3), i.e.,{

�0
n

} classical EoM (A2)−−−−−−−−−−→ {
�n

(
t ;

{
�0

n

})}
,⊗

n

∣∣�0
n

〉 large-S−−−−−−−−→
⊗

n

∣∣�n

(
t,

{
�0

n

})〉
. (31)

This prescription provides a dynamics that reproduces the
correct evolution of the spin expectation values in the classical
limit and still maintains the quantum character of �, allowing
the entanglement between A and SA, generated during the first
stage of the scheme, to be transferred via the spins of the chain.
In fact, if one starts from a pure state of � which is factorized
in the SCS basis, the above evolution cannot transfer quantum
correlations, being based on the dynamics of separable SCS.
However, the state of � when the second stage begins is not
pure, due to SA being entangled with A, as implied by Eq. (14).
Explicitly, once applied to the initial state Eq. (16), i.e., to

|ψA,�(t1)〉 = ∣∣ψA,SA (t1)
〉 ⊗
n�=nA

|�n(t0)〉, (32)

with |ψA,SA (t1)〉 as in Eq. (14), the above prescription (31)
leads, during the second stage, to the projector

|�(t)〉〈�(t)| = |ψA,�(t)〉〈ψA,�(t)| ⊗ |B(t)〉〈B(t)|, (33)

with |B(t)〉 = UB(t)|B〉 and

|ψA,�(t)〉 = A
∑

σ

∫
d�f �

σ |σ (t)〉
⊗

n

|�n(t,�)〉, (34)

where |σ (t)〉 = UA(t − t1)|σ 〉, A is a normalization coeffi-
cient, and we have dropped the unimportant dependence of
�n(t) on all the {�0

n ≡ �n(t0)} with n �= nA, retaining only
the meaningful dependence on � ≡ �0

nA
.

In order to identify when it is worth starting the third stage of
the dynamical process, i.e., what is the best choice for t2 as far
as the further entanglement generation between A and B is con-
cerned, we consider what follows. Given the Hamiltonian (5),
the qubit B can become entangled with other components
of the system, including A, exclusively via the interaction
with SB: Entanglement generation between the two qubits can
hence occur only if SB is entangled with (A,� \ SB) at t = t2,
and we expect its effectiveness to be higher if t2 is such to
guarantee a significant entanglement between A and SB at the
beginning of the third stage. Establishing when this is the case
implies determining the time dependence of the Von Neumann
entropy ESn

of any spin Sn of the chain, that quantifies the
entanglement between Sn and (A,� \ Sn). This entropy reads

ESn
= − TrSn

ρSn
log2S+1 ρSn

, (35)

where

ρSn
= Tr(A,�)\Sn

|ψA,�(t)〉〈ψA,�(t)|. (36)

Noticing that

TrSl
|�l(t,�)〉〈�l(t,�

′)| = 〈�l(t,�
′)|�l(t,�)〉, (37)

we find, setting f ��′
σσ ′ ≡ f �

σ f �′∗
σ ′ ,

ρSn
(t) = A2 TrA

∑
σσ ′

∫
d�d�′ f ��′

σσ ′ |σ (t)〉〈σ ′(t)|

×
⎡⎣∏

l �=n

〈�l(t,�
′)|�l(t,�)〉

⎤⎦ ⊗ |�n(t,�)〉〈�n(t,�′)|.

(38)

Let us now concentrate upon the overlaps
〈�l(t,�′)|�l(t,�)〉 entering the above expression: If, for given
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FIG. 5. Configurations �n(t,�) for a starting soliton with λβ =
10, visualized via (1 − cos θn(t,�)) as functions of n and �, after an
integration time t − t1 equal to 400 (800) in the upper (lower) panel.
Colored curves are for �’s that define correspondingly colored points
on the small sphere in the upper-left corner.

l and t , �l(t,�) only weakly depends on the initial value
�, the corresponding overlap is equal to one, the index l

disappears from Eq. (38), and the spin Sl effectively exits the
dynamical scene. If this is the case for all but a small number
of adjacent spins of the chain, the entanglement originally
generated by the interaction of A with SA is not spread along
the whole chain but remains confined to the portion made of
the above adjacent spins, whose configurations substantially
depend on the initial value �.

In fact, this is precisely what happens in our setting when the
initial configuration of the chain corresponds to a Heisenberg
soliton whose width is larger than the chain spacing, as seen
by comparing Figs. 5 and 6: While for λβ = 2.5 (Fig. 6)
different � generate quite diverse configurations �n(t,�), if
λβ = 10 (Fig. 5) the dependence of �n(t,�) on � is weaker
and localized in a limited region of �. In this latter case, the
soliton moves forward with a slightly modified shape and hauls
the deformation of �nA (t0) imposed while it traveled through
site nA. We can hence expect that, during the second stage
of our scheme, the soliton behaves as a carrier that keeps the
entanglement localized while traveling along the chain.

FIG. 6. Same as in Fig. 5, for a starting soliton with λβ = 2.5 and
integration times equal to 200 (upper panel) and 400 (lower panel).

Numerical results do confirm this picture, as seen in Fig. 7,
where snapshots of ESn

are reported as a function of n. In the
first panel of Fig. 7 a bump is clearly visible, centered at about
n = nA + v(t − t1), with v the soliton velocity, which means
that only the spins around the soliton are significantly entan-
gled with the rest of the system. The different curves report the
same quantity for different values of S: The shape is almost un-
changed, but the values monotonically decrease with increas-
ing S, according to the fact that in the limit S → ∞ the entan-
glement disappears as the spins become completely classical.

The most favorable condition to establish entanglement
between A and B is therefore achieved by choosing the time
t2 when the soliton crosses nB: The superposition of the
evolved configurations obtained from different deformations
�, Eq. (34), is indeed expected to concentrate at such time
around nB the entanglement collected at time t1 in nA.

VI. THIRD STAGE: EVOLUTION OF (B,SB)

During the third stage, A is only affected by a uniform
field, � \ SB does not evolve, and B interacts with SB via the
coupling gB(t) = g. Apart from the different initial state, this

054449-6



QUANTUM CORRELATIONS BETWEEN DISTANT QUBITS . . . PHYSICAL REVIEW B 96, 054449 (2017)

FIG. 7. ESn
(t) as a function of n at t − t1 = 800 with a starting

soliton of width λβ = 10 (upper panel) and at t − t1 = 400 with a
starting soliton of width λβ = 2.5 (lower panel). Curves for different
values of S, as indicated.

stage is analogous to the first one with A ↔ B: in fact, the
propagator for t ∈ [t2,t3] is

U (3)(t) = UA(t) ⊗ 1�\SB ⊗ UB,SB (t), (39)

to be compared with Eq. (9). As we are interested in the
entanglement between A and B, we now have to determine
the two-qubit density operator ρAB(t). Performing the partial
trace of the projector (33) upon � \ SB at t = t2 we obtain the
initial state for the third stage, i.e.,

ρA,SB,B(t2) = Tr�\SB |�(t2)〉〈�(t2)|
= ρA,SB (t2) ⊗ |B(t2)〉〈B(t2)|, (40)

with

ρA,SB (t2) = A2
∑
σσ ′

∫
d�d�′ f ��′

σσ ′ |σ (t2)
〉〈σ ′(t2)|

×
⎡⎣ ∏

n�=nB

〈�n(t2,�
′)|�n(t2,�)〉

⎤⎦
⊗ |�B(t2,�)〉〈�B(t2,�

′)|, (41)

where �B ≡ �nB . Notice that, having traced out all the spins
of � but SB, for t > t2 we deal with the Hilbert space of A,B,
and SB only, which has dimension 4(2S+1) no matter the
distance between the qubits, i.e., the length of the portion of
chain between SA and SB. The propagator for (A,SB,B) is
exp{−iHA,SB,B t}, with

HA,SB,B = hAσ̂ z
A + g ŜB· σ̂ B + hBσ̂ z

B, (42)

that can be diagonalized numerically [34]; the generic element
of the density matrix of (A,SB) can be written as

[ρA,SB (t2) ]σσ ′
mm′ = A2e−ihA(t2−t1)(σ−σ ′)

∫
d�d�′ f ��′

σσ ′

×
⎡⎣ ∏

n�=nB

〈�n(t2,�
′)|�n(t2,�)〉

⎤⎦D��′
mm′ (t2),

(43)

with

D��′
mm′ (t2) = 〈m|�B(t2,�)〉〈�B(t2,�

′)|m′〉; (44)

note that the evolving phase of A is irrelevant for the goal (see
below) of calculating the entanglement between A and B.

Given Eqs. (40)–(43), making use of the relations (A3) and
(A5) one can numerically compute ρA,SB,B(t2) and its evolved
state with t any time larger than t2. Although ρA,SB,B(t) is in
general a nonseparable state of B and (A,SB), this does not
necessarily mean that A and B are entangled. In order to settle
this, one has to trace out SB, yielding the two-qubit density
operator

ρA,B(t) = TrSB [ρA,SB,B(t)], (45)

and evaluate the concurrence [35] between A and B, defined,
for any two-qubit density operator ρ, as

C(ρ) ≡ max(0,μ1 − μ2 − μ3 − μ4), (46)

where {μ2
1, μ

2
2, μ

2
3, μ

2
4} are the eigenvalues (in decreasing

order) of the Hermitian operator
√

ρ ρ̃
√

ρ with ρ̃ = (σy ⊗
σy)ρ∗(σy ⊗ σy).

An example of the concurrence C[ρA,B(t)] for t > t2 is
shown in Fig. 8: This is obtained starting from the initial
state (8) with |A〉 = |B〉 = |1〉 (i.e., the eigenstate of σ z with
eigenvalue +1) and {�n(t0)} the configuration corresponding to
a Heisenberg soliton of width λβ = 10, centered at SA at t = t0.
The figure shows finite time intervals during which C(ρA,B)
is significantly different from zero, implying that there exist
values of t3 when to quench the (B,SB) interaction so as to leave
the qubit pair in a stationary and entangled state. Notice that
the periodic exchange of entanglement between SB and B is
a consequence of the dynamics ruled by the Hamiltonian (42).

It is further observed that choosing different values for
the parameters (the spin value S, the couplings gA, gB, the
local fields hA, hB, etc.), or a different initial configuration
{�n(t0)} (i.e., a different soliton) for the initial state of �, does
not qualitatively affect the numerical results for C[ρA,B(t)],
that keeps displaying the oscillatory behavior observed in
Fig. 8 although with different frequency and peaks of different
heights. In fact, these heights are found significantly different
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FIG. 8. Upper panel: C[ρA,B(t − t2)] for g = 1, hA = hB = 0.25,
S = 5, and a starting soliton with λβ = 10. Lower panel: eigenvalues
{μ1,μ2,μ3,μ4} for the same parameters values as above. Cusps in
the upper panel originate from the eigenvalues crossings seen in the
lower panel.

from zero if (i) t2 ∼ t1 + (nB − nA)/v, implying that SB is
amongst the spins which are correlated with both the rest of
the chain and the qubit A, and (ii) the initial state of � is such
that the superposition (34) allows for the entanglement to be
localized on a small number of spins rather than on a large
portion of the chain. For instance, referring to Fig. 7, higher
values of the concurrence are found when the situation shown
in the upper panel occurs, as seen by comparing Figs. 8 and 9.
Overall, choosing t3 such that C[ρA,B(t3)] �= 0, the evolution
of the proposed model takes a separable state of A and B into
an entangled one for the pair, thus behaving as an entangling
device.

VII. CONCLUSIONS

The results presented in the previous sections show that a
large-S spin chain can be employed to generate entanglement
between two distant qubits A and B. The spin chain initially is
in a classical-like state, corresponding to a running Heisenberg

FIG. 9. Same as in Fig. 8 for a starting soliton with λβ = 2.5.

soliton passing by A. In a first stage A interacts with the
chain spin SA, dynamically establishing quantum correlations
which, in a second stage, the moving soliton can efficiently
carry with to the location of the chain spin SB, which in turn
interacts with B in such a way that finally the system of the
two qubits is in an entangled state.

The one-to-one mapping between the classical spin chain
configurations and the tensor product of single-spin coherent
states, allowed us to approximate the quantum evolution of
the chain. However, in order to obtain the final quantum state,
several classical-like evolutions must be superposed, as after
the first stage SA is no more in a definite coherent state: Such a
simultaneous existence of ‘parallel classical histories’ explains
why a classical-like description of the chain dynamics can
account for quantum correlation transfer.

The explicit calculations have been made feasible by
the introduction of simplifying assumptions. The first one
concerns the time dependence of the qubit-chain interactions,
which implies the ability to somehow switch on and off the
interaction in a very short time: Although this is a typical
approximation in theoretical schemes, it is not always clear
how to implement it in diverse realizations, especially for
solid-state devices. The onset of the entangling dynamics
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between A and SA, and later on between B and SB, in the
terms described in Secs. III and VI, can be thought to be
embedded in the original model: In fact, before the soliton
arrival all spins and the qubits are in the up state, so the
interactions act trivially, giving an overall phase factor; only
when the incoming soliton modifies the state of SA, a nontrivial
dynamics of the (A,SA) subsystem is induced; in a similar
way, the relevant dynamics of the subsystem (B,SB) only
starts when the partially deformed soliton reaches SB. This
would effectively be tantamount to switching on the couplings
between the qubits and the chain, although not abruptly as in
Eq. (7), and it is not to be expected to yield dramatic changes
in the qualitative behavior. A suitable mechanism for finally
quenching the interactions can also be imagined, as for instance
that proposed in Ref. [36].

A further simplification was to assume the chain to be
‘frozen’ during the evolutions of the pairs (A,SA) and (B,SB)
(first and third dynamical stage), i.e., that the typical timescale
of the qubit-spin interaction, (gS)−1, be much smaller than that
of the chain dynamics associated to the propagating soliton,
given by τβ = (JS h sin2β)−1 (see Sec. II), namely,

J

g
h sin 2β 
 1. (47)

The above relation can be satisfied both if g � J , i.e., the chain
coupling is much weaker than the qubit-spin coupling, or if
h � μBH/JS 
 1, i.e., the intensity H of the uniform field
applied to the chain is weak compared with the chain coupling.
This second requirement is usually met if the spin chain is
thought to be some solid-state system, as typically exchange
energies are much larger than Zeeman energies. There are
already real systems that could implement the scheme we have
proposed, such as the spin chains constructed in Ref. [37] or
those spin leads used and manipulated in Ref. [38]; other
atomically designed magnets [39,40] could also be suitable
candidates.

In virtue of the described results we conclude that, by
choosing suitable values of the tunable parameters and the
initial state, a large-S spin chain can generate entanglement
between two qubits. The carriers of quantum correlations, i.e.,
solitons, are known to be robust against noise and external
disturbances and make the hybrid scheme we have proposed
a promising alternative to the most commonly studied purely
quantum buses.
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APPENDIX: SPIN COHERENT STATES

The states of a spin-S particle are usually expanded on
the basis of the 2S+1 eigenvectors of the z component of
the spin operator, Ŝz|m〉 = m|m〉, with m = −S, . . . ,S. Given
an arbitrary direction s in 3D space, i.e., a unit vector s ≡
(sin θ cos ϕ, sin θ sin ϕ, cos θ ) defined by its spherical angles
{θ,ϕ} ≡ �, the corresponding spin coherent state |�〉 is
defined as

|�〉 =
(

cos
θ

2

)2S

exp

(
tan

θ

2
eiϕ Ŝ−

)
|S〉, (A1)

|S〉 being the eigenvector of Ŝz with maximal eigenvalue,
m=S. This state can also be written in the usual basis of
eigenstates of Ŝz:

|�〉 =
S∑

m=−S

〈m|�〉|m〉, (A2)

the coefficients in this relation being the overlaps between the
eigenvectors |m〉 and the coherent state |�〉,

〈m|�〉=
(

cos
θ

2

)2S
√

2S!

(S−m)!(S+m)!

(
tan

θ

2

)(S−m)

ei(S−m)ϕ.

(A3)

An important property of spin coherent states is that the
expectation values of the spin-component operators are equal
to the components of a classical vector of modulus S oriented
along s, i.e.,

〈�|Ŝ|�〉 = S(sin θ cos ϕ, sin θ sin ϕ, cos θ ) = S s. (A4)

Spin coherent states form a nonorthogonal and overcomplete
set of states. Indeed,

〈�′|�〉 =
(

cos
θ

2
cos

θ ′

2
+ sin

θ

2
sin

θ ′

2
ei(ϕ−ϕ′)

)2S

, (A5)

which implies

|〈�′|�〉|2 =
(

1 + � · �′

2

)2S

=
(

cos
�̂�′

2

)4S

, (A6)

i.e., the overlap modulus depends on the angle �̂�′ between
the directions identified by � and �′, respectively. The
(over)completeness relation reads

(2S+1)
∫

d�

4π
|�〉〈�| = 1S, (A7)

where d� = d cos θdϕ.
From Eq. (A6) we see that |〈�′|�〉|2 ∝ δ(� − �′) in the

limit S → ∞, and reminding of Eq. (A4) and the description
of the classical Heisenberg chain given in Sec. II, it clearly
appears that the spin coherent states are the tool of choice to
properly address the classical limit of spin systems.
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