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We apply imaginary-time evolution with the operator e−τH to study relaxation dynamics of gapless quantum
antiferromagnets described by the spin-rotation-invariant Heisenberg Hamiltonian H . Using quantum Monte
Carlo simulations to obtain unbiased results, we propagate an initial state with maximal order parameter mz

s

(the staggered magnetization) in the z spin direction and monitor the expectation value 〈ms〉 as a function of
imaginary time τ . Results for different system sizes (lengths) L exhibit an initial essentially size independent
relaxation of 〈ms〉 toward its value in the infinite-size spontaneously symmetry broken state, followed by a
strongly size dependent final decay to zero when the O(3) rotational symmetry of the order parameter is restored.
We develop a generic finite-size scaling theory that shows the relaxation time diverges asymptotically as Lz,
where z is the dynamic exponent of the low-energy excitations. We use the scaling theory to develop a practical
way of extracting the dynamic exponent from the numerical finite-size data, systematically eliminating scaling
corrections. We apply the method to spin-1/2 Heisenberg antiferromagnets on two different lattice geometries:
the standard two-dimensional (2D) square lattice and a site-diluted 2D square lattice at the percolation threshold.
In the 2D case we obtain z = 2.001(5), which is consistent with the known value z = 2, while for the site-diluted
lattice we find z = 3.90(1) or z = 2.056(8)Df , where Df = 91/48 is the fractal dimensionality of the percolating
system. This is an improvement on previous estimates of z ≈ 3.7. The scaling results also show a fundamental
difference between the two cases; for the 2D square lattice, the data can be collapsed onto a common scaling
function even when 〈ms〉 is relatively large, reflecting the Anderson tower of quantum rotor states with a common
dynamic exponent z = 2. For the diluted 2D square lattice, the scaling works well only for small 〈ms〉, indicating
a mixture of different relaxation-time scalings between the low-energy states. Nevertheless, the low-energy
dynamic here also corresponds to a tower of excitations.

DOI: 10.1103/PhysRevB.96.054442

I. INTRODUCTION

Experimental studies of interacting quantum systems are
increasingly focusing on nonequilibrium setups, e.g., driv-
ing cold-atom systems or electronic materials dynamically
through various finite-temperature and quantum phase tran-
sitions [1–8]. Theoretical modeling of systems under these
conditions is even more challenging than the already difficult
problem of computing equilibrium properties of quantum
systems away from perturbative regimes. Exact numerical
calculations are possible for small systems, and there has been
some success in studying issues such as thermalization and
many-body localization [9–15]. Reaching system sizes suffi-
ciently large enough for modeling experiments is still difficult
in most cases, with the exception of some one-dimensional
(1D) systems where the density-matrix renormalization-group
(DMRG) method (or the closely related matrix-product states)
now allows for time-evolution studies on relatively large sys-
tem sizes and long times [16–18]. For higher-dimensional sys-
tems the challenges in real-time calculations are formidable.

Given the difficulties with real-time evolution, alternative
ways to extract nonequilibrium dynamical properties of quan-
tum systems have been explored in the imaginary-time domain,
where quantum Monte Carlo (QMC) methods can be applied.
In equilibrium, there are solid relationships between real- and
imaginary-time correlation functions which can be exploited
in numerical analytic continuation of QMC data [19]. Much
less is known about practical ways to infer real-time properties
from imaginary-time calculations out of equilibrium, although
some progress has been made on this front recently. Examples
include studies of systems driven through a quantum critical

point [20–22] at different velocities or according to nonlinear
protocols, where Kibble-Zurek scaling [23–30] can be used to
extract the dynamic exponent and other important quantities
such as the quantum geometric tensor [20,21,31]. An important
observation here is that real- and imaginary-time evolutions
not only are identical in the adiabatic limit, where both
dynamics keep systems in their instantaneous ground states,
but also include the leading nonadiabatic effects. Another
example is the phenomenon of “initial slip” [32–36], where
a random product state is evolved by a Hamiltonian tuned
to a quantum critical point and the state initially becomes
increasingly ordered, before developing critical fluctuations
and vanishing long-range order. The transient states produced
before one reaches the critical equilibrium state have interest-
ing properties that can be probed in imaginary time [32–34].
Imaginary-time evolution has also been used to investigate the
emergence of topological conservation laws [37].

In this paper we use the imaginary-time approach to
study the relaxation mechanism of the order parameter in
quantum antiferromagnets with O(3) rotationally invariant
order parameters. The system, described by a Hamiltonian
H , is initially prepared in a fully saturated antiferromagnetic
state with the order parameter along the z spin axis. Evolving
this state in imaginary time τ with the operator e−τH , the
rotational symmetry will eventually be restored, marked by the
expectation value of the z component of the order parameter
decaying to zero. We identify short- and long-time behavior
of the dynamics and develop theoretical and practical tools
for analyzing emergent scaling behaviors by defining an
effective dynamic exponent for a given threshold value of
the z component of the order parameter. As we shall show
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in this paper, this effective dynamic exponent converges to
the dynamic exponent of the ground state as the threshold
of the order parameter is lowered to zero. In addition to
delivering the dynamic exponent of the ground state, which
is not very surprising (although useful in its utility as a tool
to extract the exponent in many different models which are
amenable to QMC methods), we show that the asymptotic
long-time, large-system scaling behavior contains valuable
information on the nature of the high-energy states. In a clean
two-dimensional (2D) Heisenberg antiferromagnet we observe
fast convergence of the effective dynamic as the threshold
order parameter is decreased, which we argue is indicative
of the expected “Anderson tower” of quantum rotor states
(states which allow for spontaneous symmetry breaking to
form the zero-mode of the spin-wave excitations) [38]. In
other words, the scaling is characterized by a constant effective
dynamic exponent z = D (D being the dimensionality of the
system) for a large range of values of the order parameter. In
contrast, in a 2D system randomly diluted at its percolation
point, we find that the effective dynamic exponent increases as
the threshold order parameter goes to zero, converging toward
a fixed value only when the order parameter is small. This
demonstrates a hierarchy of excitations which form the tower
governed by a common dynamic (size-scaling) exponent only
at low energies. The ultimate low-energy value of the dynamic
exponent is z = 3.90(1), which improves previous estimates
z ≈ 3.7 obtained using different methods [39–41]. These
results reinforce the notion that the lowest excitations of the
system at the percolation point are not conventional Anderson
quantum rotor states (Goldstone modes [38,42]), although the
system breaks the O(3) spin symmetry spontaneously in the
thermodynamic limit [43,44].

The outline of the rest of the paper is as follows: In Sec. II
we describe the theoretical underpinnings of our approach. In
Secs. III and IV we discuss results for the pure 2D Heisenberg
model and the diluted system, respectively. We summarize our
study and provide some further remarks in Sec. V.

II. RELAXATION AND FINITE-SIZE SCALING

As mentioned in the Introduction, our setup is the following:
We prepare our system initially in a fully saturated antiferro-
magnetic state denoted by |ψ0〉 and evolve in imaginary time
with e−τH , where H is a Heisenberg Hamiltonian describing a
gapless quantum antiferromagnet. Because the ground state
obeys the symmetry of H , we know that this initial state
will not be an eigenstate of H , but it will have some overlap
with the ground state, as they share the same ordering. As
the state evolves in imaginary time, it will eventually decay
to the ground state, restoring the rotational symmetry of our
system. From the theory of spontaneous symmetry breaking
we know that in the limit of system size tending to infinity,
a set of excited states just above the rotationally symmetric
ground state becomes degenerate, allowing the system to
spontaneously align along a particular axis when subjected
to an infinitesimal perturbation [42,45]. In imaginary-time
this phenomenon will manifest itself as a divergence in the
relaxation time to reach the ground state as the system size is
increased. We will use the staggered magnetization mz

s along

the z spin axis,

mz
s =

∑
ix ,iy

(−1)ix+iy Sz
ix ,iy

, (1)

as a measure of the restoration of rotational symmetry as our
state is evolving in imaginary time. The expectation value of
this operator as a function of imaginary time is given by

〈mz
s(τ )〉 = 〈ψ(τ )|mz

s |ψ(τ )〉
〈ψ(τ )|ψ(τ )〉 , (2)

where |ψ(τ )〉 is the imaginary-time evolved state:

|ψ(τ )〉 = exp (−τH )|ψ(0)〉. (3)

Expanding in eigenstates of H , denoting the eigenstates and
eigenenergies by |n〉 and εn, respectively, and defining the gap
� = ε1 − ε0, in the limit τ → ∞, the expectation value in
Eq. (2) will vanish as

〈mz
s(τ )〉 ≈

(
〈0|mz

s |1〉c1

c0
+ c.c.

)
e−�τ + · · · , (4)

where cn = 〈n|ψ0〉. Since the ground state is symmetric
under rotations, we have that 〈0|mz

s |0〉 = 0. Let us define the
relaxation time τr as the time where 〈mz

s(τ )〉 drops below some
threshold mthreshold. Equation (4) suggests that as this threshold
goes to zero, τr ∼ 1/�. Therefore in this limit, by calculating
the scaling τr with system size, we can infer the scaling of the
low-energy gap of H .

One can characterize this scaling of the low-energy gap
by the dynamic exponent � ∼ L−z, which has different
interpretations depending on its value. z = 0 implies that the
system has a finite gap in the thermodynamic limit, while finite
z means the system has gapless excitations, and finally, z = ∞
denotes exponential scaling of the gap. If we consider systems
which have gapless excitations, a finite dynamic exponent
implies the relaxation time should scale as a power law:
τr ∼ Lz. In other words, if one rescales the time axis by
Lz, 〈mz

s(τ )〉 should show scaling collapse at small mthreshold.
For some Hamiltonians there exists a large, but subextensive,
number of low-energy states which have energies (relative to
the ground state) that have the same scaling as the low-energy
gap [38,42]. The existence of these states will have the effect
that there will be a larger window of mthreshold for which this
scaling collapse holds. This is because higher-order terms
in Eq. (4) will have energy exponentials which all scale in
a similar manner with system size. This argument will be
important later when we discuss the differences between the
clean and diluted 2D Heisenberg models in later sections.
We would like to clarify that the dynamic exponent in the
context models which exhibit spontaneous symmetry breaking
of a continuous symmetry is different from the dynamic
exponent of the quasiparticle excitations which arise out of
the symmetry-broken state [e.g., dynamic exponent associated
with quasiparticle dispersion relations of the form E(k) ∼ kz]
and instead is the dynamic exponent of the states which form
the symmetry-broken state.

The preceding arguments, however, become valid asymp-
totically in the limit L → ∞, and so it is necessary to take into
account finite-size corrections if one would like quantitative
estimates for the dynamic exponent. As we will explain in the
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rest of this section, it is possible to control for the effects of
finite-size deviations by calculating the “flow” of the dynamic
exponent from finite-size systems in a manner similar to the
techniques used in finite-size scaling near critical points in
equilibrium [46–49]. Using these methods, one can extrapolate
the finite-size results to the thermodynamic limit.

To estimate the dynamic exponent from finite-size systems
we start by calculating the relaxation times τr and τ ′

r (at some
finite value of mthreshold) for two different system sizes L and L′,
respectively. From this, the dynamic exponent can be estimated
by rescaling the two times by their respective system sizes such
that the rescaled results are equal:

τrL
z(L,L′) = τ ′

rL
′z(L,L′). (5)

From this expression we can define a finite-size exponent for
the pair of system sizes z(L,L′):

z(L,L′) = ln(τr/τ
′
r )

ln(L/L′)
. (6)

As L,L′ → ∞, this finite-size exponent will converge to
what we shall call the effective dynamic exponent (recall that
mthreshold is finite), which we denote as z∞. The manner in
which z(L,L′) converges to infinite size is determined by
corrections to the L−z∞ scaling of �(L). To see this, one
can parametrize the corrections to the low-energy gap with
correction exponents ωi :

�(L) = L−z∞ (1 + c1L
−ω1 + · · · ). (7)

Now modifying Eq. (5) to include corrections, we get

τr�(L) = τ ′
r�(L′). (8)

Using this equation and Eq. (6), we find that z(L,L′) converges
to z∞ as

z(L,L′) = z∞ + c1
L−ω1 − L′−ω1

ln(L′/L)
+ · · · . (9)

The equation above allows one to extract both ωi’s and
ci’s needed to obtain the scaling corrections in �(L). Note
that we have explicitly suppressed the fact that the effective
dynamic exponent and the finite-size corrections are functions
of mthreshold. We will revisit this functional dependence in later
sections, but it is important to recall our previous argument that
in the limit mthreshold → 0, z∞ converges to the true dynamic
exponent of the model.

In the following we test this scaling hypothesis on two
examples. First, we study the Heisenberg antiferromagnetic
on the simple square lattice. The low-energy physics of
this model is very well understood and provides a good
benchmark for our scaling approach [38,45,50,51]. We then
go on to apply this method to the site-diluted Heisenberg
antiferromagnet on a square lattice at the percolation point,
where there have been previous studies but not as clear of a
consensus as to the low-energy physics of the model [39–41].
To compute the imaginary-time evolution, we use a projector
QMC method that in practice shares many similarities with the
common stochastic series expansion (SSE) method. We sample
contributions to 〈ψ0|H 2m|ψ0〉 and define τ = m/N , where N

is the total number of spins on the lattice. This time definition
is equivalent, up to a factor, to the conventional imaginary time
appearing in the Schrödinger evolution operator [52,53].

III. CLEAN HEISENBERG ANTIFERROMAGNET

For the first example we consider the standard 2D anti-
ferromagnetic Heisenberg model, defined by the Hamiltonian

H = J
∑
〈i,j〉

Si · Sj , (10)

where Si is a spin-1/2 operator at lattice site i and the
sum is over nearest neighbors on an L × L square lattice
in D = 2 with periodic boundary conditions. We set J = 1
for the rest of the paper. This model is a part of a broad
class of antiferromagnet models on translationally invariant
bipartite lattices which are known to have quantum-rotor-like
low-energy excitations [38]. These excited states have energy
levels which become degenerate with the ground state in
the limit L → ∞ as a power law: Erotor − EGS ∼ L−z. Here
z = D is the dimension of the lattice, and L is the linear
dimension of the system. One can think of these quantum rotor
states as the quantization of the global angular fluctuations
of the order parameter which in the thermodynamic limit
form a basis in the ground-state manifold used to create
the symmetry-broken ground state which is the vacuum of
the gapless spin-wave excitations [45,50,51,54]. Figure 1(a)
shows 〈mz

s(τ )〉 versus τ for various system sizes. In this figure
we clearly see that, initially, all the system sizes relax at the
same rate but then eventually break off from one another when
the sublattice magnetization reaches 〈mz

s(τ )〉 ≈ 0.3, with the
larger system sizes taking longer to relax to 〈mz

s(τ )〉 → 0.
One may recall that in the ground state of this model the
thermodynamic value of 〈mz

s(T = 0)〉 ≈ 0.307 [55], which
roughly corresponds to the value where the different system
sizes begin to relax at different rates (see the dashed line in
Fig 1).

One can make use of the continuum-field-theory description
of the long-wavelength behavior of this model to understand
the evolution of the order parameter in imaginary time. The
lowest-energy states of the continuum field theory are uniform
in space. Since the initial state is also uniform and the system
is translationally invariant, the evolution will occur within
the subspace of uniform configurations. The dynamics in this
subspace simplify to that of a quantum particle relaxing in
the “Mexican-hat” potential. Here the probability distribution
of the particle in space represents the probability distribution
of the order parameter of the system. Since the initial order
parameter value is 0.5, the initial probability distribution of the
order parameter is localized away from the minimum of the
potential, which for the Heisenberg model on a square lattice is
close to 0.3, as illustrated schematically in Fig. 2, panel (i). As
the system evolves in imaginary time, the energy of the system
decreases, and the order parameter decays until it reaches the
bottom of the potential, which in the thermodynamic limit
corresponds to the symmetry-broken “ground state,” as in
Fig. 2, panel (ii). However, because the system is finite, this is
not a true ground state, so the energy of the system continues
to decay, and the mean magnetization along the z axis relaxes
to zero as the probability distribution spreads out over all
possible solid angles [Fig. 2, panel (iii)]. This second part of
the relaxation is governed by the rotor states as they are the
states which make up the quantization of the angular part of
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(a)

(i)

(ii)

(iii)

(b)

FIG. 1. (a) Evolution of 〈mz
s〉 as a function of imaginary time in

the clean 2D Heisenberg model for different system sizes. (b) The
same data as in (a) but plotted vs τL−z (z = D = 2), showing how
the asymptotic relaxation is governed by the Anderson tower of rotor
states. In both (a) and (b) the dashed line is the magnitude of the
order parameter of the Heisenberg model in the thermodynamic limit
at T = 0. This is the value that the order parameter would relax
to if the system size were infinite, and the system remained in the
symmetry-broken ground state.

the order parameter (and set the effective moment of inertia,
which scales as LD [38,52]). We can confirm this intuition for
the lattice model by observing that in Fig. 1(b), by rescaling
the τ axis with L2 we find that the second section of the
relaxation shows scaling collapse. A consequence of this is
that in the limit L → ∞ the order parameter never relaxes to
zero, implying that the system remains in the symmetry-broken
ground state.

Next, let us discuss how to numerically extract the dynamic
exponent from finite-size data. First, one must numerically
determine the intersection points of 〈mz

s(τ )〉 with the threshold
value mthreshold required to calculate the finite-size exponent
z(L,L′) between two system sizes. Here we choose L and L′ =
2L, defining z(L) ≡ z(L,2L). To extract τr we fill a window
around the threshold with QMC data and then use a polynomial
(or some other appropriate function) to interpolate the data and
numerically find the crossing point of the interpolation and
mthreshold.

(i) (ii) (iii)

FIG. 2. Pictural representations (not based on actual data) of the
probability density of the order parameter in a plane going through the
origin of the O(3) space. Panels (i)–(iii) correspond to the similarly
marked scaling regimes in Fig. 1(a). The radius of the white circle
corresponds to the magnitude of the order parameter in the ground
state, and the arrow marks the average order parameter 〈mz

s〉. In (i) the
system is close to the initial state, where the magnitude of the order
parameter is larger than in the ground state. In (ii) the magnitude
has decayed to its asymptotic value, but the direction of the order
parameter is still close to the initial one. In (iii) the system is close
to the asymptotic finite-size state with a uniformly fluctuating (not
symmetry-broken) order parameter.

Next, we must derive the finite-size corrections to z(L),
which is dependent on the parametrization of the finite-size
corrections in �(L). For this model it is natural to assume that
�(L) should be an analytic function in 1/L because the model
has no critical fluctuations. Keeping terms up to order L−3 in
�(L), we find the finite-size corrections to z(L) are

z(L) = z∞ + c1

2 ln(2)

1

L
− 3

(
c2

1 − 2c2
)

8 ln(2)

1

L2

+ 7
(
c3

1 − 3c2c1 + 3c3
)

24 ln(2)

1

L3
. (11)

The extrapolated dynamic exponents are shown as a function
of mthreshold in Fig. 3 (note that the values in Fig. 3 are
correlated because mthreshold values can be arbitrarily close to
one another). The extrapolated values of z∞ for low mthreshold

are in excellent agreement with the analytic result of z∞ = 2.
For higher values for mthreshold the disagreement is natural

FIG. 3. Extrapolated values of the asymptotic dynamic exponent
z∞ of the clean 2D Heisenberg antiferromagnet as a function of the
threshold value mthreshold used to perform the τ -axis rescaling.
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(a)

z
(L

)

1/L

χ2/6 = 1.15
z∞ = 2.001(5)

(b)

FIG. 4. Scaling collapse of 〈mz
s(τ )〉 in the Heisenberg model on

a square lattice (a) without and (b) with finite-size corrections to
the leading scaling form L−z∞ . The dashed black lines denote the
threshold value along which the curves are collapsed; mthreshold =
0.07. In (a), in the leading power law L−z∞ the exponent is
z∞ = 2.001. In (b) the finite-size correction to �(L) is calculated
from the fit to the size dependence of the exponent shown in the
inset.

because at short times the many-body wave function still has
an overlap with high-energy states. As the system evolves
in imaginary time (as mthreshold decreases), the overlap with
these higher-energy states decays, and so their effects on the
effective dynamic exponent vanish. The parameters ci coming
from the exponent flow give us the same coefficients which
parametrize the finite-size corrections of �(L). Figure 4(a)
focuses on the final relaxation time scale and more clearly
shows the finite-size corrections to L−z. By including the
finite-size corrections calculated from the extrapolation, we
find much better scaling collapse [see Fig. 4(b)].

IV. HEISENBERG ANTIFERROMAGNET ON
FRACTAL CLUSTERS

The second example has the same Heisenberg interactions
with nearest neighbors as the previous section, but the bound-
aries are no longer periodic, and spins on the sites are randomly
removed from the lattice with probability 1 − p. Models like

this one have long been studied to try to understand the
effects of disorder on quantum criticality [44,56–60] as well
as dynamical properties of fractal geometries using spin-wave
theory and other classical models [61]. At the percolation point
this model has been extensively studied before, and it was
found that the low-energy states responsible for spontaneous
symmetry breaking have characteristics very different from
those of the standard quantum rotor picture [39–41,44,62].
At the percolation point the diluted lattice can be split up
into disconnected clusters which have volumes that scale as
Nc ∼ LDf , where Df = 91/48 is the fractal dimension and
L is a linear size of the cluster [63]. It has been conjectured
that the low-energy states of a cluster are dominated by a
generalization of the “dangling-spin” concept: local sublattice
imbalance in a region of a given cluster [39,40] where an
effective moment forms due to the inability of spins to pair
up in a bipartite manner. On a Bethe lattice geometry the
same phenomenon was studied using the DMRG method [41].
In this study it was shown explicitly that there exists a set
of low-lying quasidegenerate (QD) eigenstates which remain
separated from the higher-energy eigenstates by a finite-size
gap �QD, which goes to zero slower than the spacing between
the QD states. It was conjectured that these QD states decouple
from the bulk because they are made up of power-law localized
magnetic moments which interact with each other across the
cluster, as previously deduced based on scaling behaviors
of quantities probing the low-energy excitations indirectly
[39,40]. For this reason, diluted Heisenberg models have a
larger dynamic exponent than predicted by the quantum rotor
picture [39–41,62].

Beyond the interesting physics of this model, the disorder
should prove a more robust test of our scaling hypothesis
and method for extracting the dynamic exponent. The major
difference between this model and the last is the type of
finite-size corrections we see. In the unadulterated 2D case,
the model is very far away from any sort of critical behavior,
and so the corrections are analytic in L−1, but here we cannot
assume this as there are fluctuations driven by the classical
percolation threshold [44]. However, since we are interested
only in extracting the dynamic exponent, it is perfectly
reasonable to parametrize the finite-size corrections to be
analytic in N−1, where N is the number of sites making up a
cluster.

To perform the dilution averaging we employ a procedure
similar to what is outlined in Ref. [44]. Each cluster is
constructed with a fixed number of sites Nc = LDf , where
we round up to an even integer to ensure that the ground state
can have total S = 0. The finite-size scaling of the low-energy
gap is implemented in the following form:

�(N ) = N−z∞/Df (1 + c1N
−1 + c2N

−2 + · · · ). (12)

The finite-size flow of the effective dynamic exponents is
calculated between system sizes of length L and 2L, which
implies N ′ = 2Df N for the cluster sizes. Keeping terms up
to order N−2 in finite-size corrections to �(N ), we obtain
the following expansion for the finite-size effective dynamic
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(a)

z
(N

)/
D

f

1/N

χ2/7 = 2.43
z∞ = 2.056(8)

(b)

FIG. 5. Finite-size scaling analysis of 〈mz
s(τ )〉 in the Heisenberg

model on a percolating cluster (averaged over dilution realizations).
The black dashed line denotes the threshold value along which the
curves are collapsed; mthreshold = 0.02. (a) The data collapse with
the leading behavior N−z∞/Df used for rescaling the x axis, with
z∞/Df = 2.065. (b) The scaling collapse including the finite-size
correction to �(N ) corresponding to the fit of the finite-size flow
shown in the inset.

exponent z(N ):

z(N )

Df

= z∞
Df

+ c1(2Df − 1)

2Df ln(2Df )

1

N

−3(22Df − 1)
(
c2

1 − 2c2
)

22Df ln(2Df )

1

N2
. (13)

The results of a data-collapse analysis both with and without
the scaling corrections are shown in Fig. 5.

For our lowest value of mthreshold = 0.02, z∞/Df =
2.056(8) or z∞ = 3.90(1), slightly larger than what was found
in previous studies [39,40]. Although we may have introduced
some systematic error by assuming the finite-size corrections
decay as 1/N , the inset in Fig. 5(b) shows that for the largest
system size (N = 714), z(N )/Df � 2. Because our system
sizes are comparable to those in previous studies, we know that
this is not an issue of finite-size effects. We also know that in
imaginary-time evolution, the weights coming from an eigen-
state |n〉 relax on a time scale of τn = 1/(εn−ε0), meaning

FIG. 6. Extrapolated values of z∞ averaged over the dilution
realization for the site-diluted Heisenberg antiferromagnet as a
function of the threshold value mthreshold used to perform the τ -axis
rescaling.

that higher-energy states always decay faster than low-energy
states and therefore the effective dynamic exponents must be
monotonically increasing as mthreshold → 0. This is consistent
with results in the previous section and with the threshold
dependence of the extrapolated dynamic exponent shown in
Fig. 6.

V. CONCLUSION

In summary we have shown that the relaxation of the order
parameter in imaginary time can be used to quantitatively
extract low-energy properties of a given model. In particular,
we have developed a scaling method which allows one to
extract the dynamic exponent by performing scaling collapse
of the order parameter along the imaginary-time axis. The
imaginary-time evolution of the order parameter in 2D
Heisenberg antiferromagnets was used as a test case to show
that one can extract the correct dynamic exponent, which in this
case is related to the Anderson tower of quantum rotor states.
We also studied the relaxation of the order parameter of the
corresponding site-diluted Heisenberg antiferromagnet at its
percolation threshold and found that the scaling theory gives
a dynamic exponent even larger than that seen in previous
studies, z = 3.90 versus z ≈ 3.7 from Refs. [39,40]. These
results conform with the notion that there is a set of low-energy
states due to quasilocalized moments: dangling spins and their
generalizations to larger regions of local sublattice imbalance
[39,40].

As there are very clear numerical results that the ground
state of the Heisenberg model on the percolating cluster does,
indeed, have long-range order [44], there is still an open
question of whether there is a quantum rotor tower of states
in these clusters, which presumably should be required for
spontaneous breaking of the spin-rotation symmetry in the
thermodynamic limit [38,42]. If they do exist, they would
have relaxation times that would scale as LDf according to
the quantum rotor picture; however, our method would not
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be able to isolate these states directly as it can extract only
an effective dynamic exponent originating from the mixing of
low- and high-energy states at short times. The fact that we
see a dynamic exponent with significant flow with a threshold
value of the mean order parameter in the system, much larger
than in the unadulterated system, may, in principle, be an
indication of the rotor states. However, the density of the rotor
states should be much lower than the low-energy states arising
from the quasilocalized moments. The drift in the exponent
may therefore instead be related to a slowly changing dynamic
exponent of these quasilocalized states as one goes to higher
energies in their tower. We believe that this is the more likely
scenario, with rotor states existing in the bulk of the cluster
but not contributing significantly to the low-energy dynamics
because of their much higher dynamic exponent and much
lower density of states.

In this work we have studied only the spatially averaged
order parameter, but in the case of the percolating clusters
it could be useful to look at the local order as a function of
imaginary time in a spirit similar to that of Refs. [39,40]. One
would expect that if the localized spins are, indeed, decoupled
from the bulk, this would manifest itself as very different
relaxation times between the localized moments and the bulk.

One would even hope to see that the bulk relaxes to zero on
time scales τ ∼ LDf , while the decoupled moments would
relax on time scales of L3.90.

The QMC methods used here to simulate imaginary time
can be generalized to higher-spin representations which, along
with other methods, would give a more complete picture of
the low-energy excitations of the higher-spin versions of the
Heisenberg antiferromagnets on percolating clusters. Finally,
we have focused extensively on Heisenberg antiferromagnets,
but this method of determining the dynamic exponent can be
applied to any model which can be simulated with QMC, for
example, long-range interacting transverse-field Ising chains,
which have recently been studied in other contexts for these
interesting critical and dynamic properties [64–67].
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