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Long-range interactions in antiferromagnetic quantum spin chains
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We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical
S → ∞ limit to the deep quantum case S = 1/2, including a transverse magnetic field. To this end, we combine
different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization,
and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar
ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and
quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also
close to zero field in the antiferromagnetic phase. In the extreme quantum limit S = 1/2, extensive DMRG
computations show that the main phases remain present with transition lines to saturation significatively shifted
to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with
the phase diagram of the anisotropic XXZ spin chain in a transverse field.
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I. INTRODUCTION

Long-range interactions in quantum systems have recently
attracted much attention. While short-range interactions are
naturally present in quantum gases, longer-range interactions
are much harder to control. To investigate them, ultracold gases
of particles with large magnetic or electric dipole moments,
atoms in Rydberg states, or cavity-mediated interactions have
been studied [1]. These experiments also open the possibility of
simulating dipole-dipole interactions in one-dimensional spin
chains [2]. Since then, theoretical and numerical investigations
of dipolar spin chains have been revitalized [3]. On the other
hand the inclusion of dipolar and more generally long-ranged
interactions in classical and quantum models has proven to
modify in different degrees the outcoming physics [4–6].

Motivated by these studies, we consider the competition
between short-range antiferromagnetic exchange and long-
range dipolar interactions in spin chains in order to explore
the presence of novel phases, either ordered or disordered.
We also include an external magnetic field, transverse to the
dipole-dipole induced anisotropy, which competes with both
antiferromagnetic and dipolar classical ordering.

The present analysis follows different approaches that
allow us to explore from the classical S → ∞ limit to the
deep quantum case S = 1/2, as well as parameter regions
where antiferromagnetic exchange dominates over dipolar
interactions and the other way around. For large S we perform
classical energy analysis, classical Monte Carlo simulations,
and linear spin wave fluctuations. On the other extreme, for
spin S = 1/2 we employ bosonization techniques and density
matrix renormalization group (DMRG) computations.

With these techniques, we first draw a semiclassical phase
diagram showing three distinctive phases: a dipole-induced
ferromagnetic phase, a disordered Luttinger liquid phase, and
an antiferromagnetic Ising Néel phase. The stability of the
boundaries between those phases and their transition to the
magnetically saturated phase is discussed in terms of thermal
and quantum spin wave fluctuations. Beyond fluctuations,
for the S = 1/2 deep quantum case our main results show
a substantial reduction of the magnetic field rendering both
the dipolar and antiferromagnetic ordered phases into the

magnetically saturated phase. The quantum phases found are in
correspondence with those present in an anisotropic S = 1/2
spin chain; in this sense the main effect of dipolar interactions
seems to be encoded in their nearest-neighbor contribution.

The paper is organized as follows. In Sec. II we define the
model and review the classical magnetic phases. In Sec. III
we discuss the effect of thermal and quantum fluctuations by
means of Monte Carlo simulations and spin wave calculations.
Our main results for spin S = 1/2 are presented in Sec. IV
through extensive DMRG data, preceded by a bosonization
analysis. We close this work with concluding remarks in
Sec. V.

II. MODEL AND CLASSICAL DESCRIPTION

We consider a spin chain in the x direction with long-range
dipolar interactions and nearest-neighbor antiferromagnetic
exchange coupling J > 0 (see Fig. 1). The Hamiltonian reads

H = J
∑

i

�Si · �Si+1 + μ2
∑
i<j

( �Si · �Sj

|�ri − �rj |3 − 3
Sx

i Sx
j

|�ri − �rj |3
)

−h
∑

i

Sz
i , (1)

where �Si is a dimensionless spin S operator at site �ri = i ax̆

with a the lattice spacing between consecutive spins and μ the
effective gyromagnetic moment of the spins. Since |�ri − �rj | =
a|i − j | we will use in the following a dipolar coupling D =
μ2

a3 with units of energy. An external magnetic field �h = hz̆

is chosen to be perpendicular to the anisotropy introduced by
dipolar interactions along the spin chain direction.

In this section we review the classical ground configurations
of the Hamiltonian in Eq. (1). Dipolar interactions tend to
align classical spins along the x axis while the transverse
magnetic field induces a tilting towards the z axis. Ferro-
magnetic exchange couplings J < 0 are fully satisfied in such
configurations [3], but the present antiferromagnetic couplings
J > 0 would prefer to set a Néel order in the xy plane. One
can then search for the classical ground state configurations
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FIG. 1. Schematic representation of nearest-neighbor exchange
interactions and long-range dipolar interactions. Transverse magnetic
field is also depicted.

within the manifold parametrized by

�Si = S( sin θ cos φ,(−1)i sin θ sin φ, cos θ ), (2)

where θ is the tilting angle with respect to the magnetic field
and φ describes a staggered deviation from the chain direction
into the xy plane. The energy per site of such configurations
reads

E0

S2
= J

[
cos2 θ + sin2 θ cos(2φ)

]
+ ζ (3)D

(
cos2 θ − 2 sin2 θ cos2 φ − 3

4
sin2 θ sin2 φ

)

− h

S
cos θ, (3)

where ζ (3) = ∑∞
n=1

1
n3 ≈ 1.20206 stems from the numerical

evaluation of the Riemann zeta function.
It is readily found that this classical energy, for J � Jc ≡

5
8ζ (3)D and below a saturation field hDF

sat (D) = 6ζ (3)SD,
exhibits a minimum at φ = 0 (parallel spins in the xz plane)
and tilting angle

θDF(h,D) = arccos

(
h

6ζ (3)SD

)
(4)

defining a “dipolar-ferromagnetic” (DF) phase. This phase has
a Z2 mirror degeneracy under exchange θ → −θ . Instead,
for J � Jc and below a saturation field hAF

sat (J,D) = 4S[J +
7
8ζ (3)D], the minimum appears at φ = ±π/2 and

θAF(h,J,D) = arccos

(
h

4S(J + 7
8ζ (3)D)

)
(5)

defining an antiferromagnetic (AF) phase where spins lie in
staggered tilted directions in the yz plane. This phase has a Z2

discrete translation degeneracy along the chain direction. The
classical phase diagram in the h vs J plane is shown in Fig. 2.

At the specific value J = Jc > 0 the ground state manifold
is infinitely degenerate for any value of the external magnetic
field below saturation, with a free value for the angle φ that can
continuously interpolate between the dipolar-ferromagnetic
and the antiferromagnetic phases. Also notice that at zero field
the classical AF phase possesses an extra U (1) degeneracy
associated with rotations around the chain direction. Such
degeneracies enhance the role of classical and quantum
fluctuations, as we discuss in the next section.

FIG. 2. Classical phases are described in the h vs J plane:
tilted dipolar ferromagnetic (DF), tilted antiferromagnetic (AF), and
magnetic saturation (FM). Shaded regions indicate predominance of
both thermal and spin wave quantum fluctuations. We show below
that the boundaries to saturation are significantly shifted down in the
quantum S = 1/2 limit.

III. CLASSICAL AND QUANTUM FLUCTUATIONS

A. Monte Carlo simulations

We study here the effects of classical thermal fluctuations
on the model presented in Sec. II, in order to check the stability
of the phase boundaries of the zero-temperature classical phase
diagram shown in Fig. 2. To this end we have run Monte Carlo
simulations using the standard Metropolis algorithm combined
with overrelaxation (microcanonical) updates for chains of
L = 300 sites. Finite-size systems with periodic boundary
conditions are considered, so that long-range interactions
are taken up to L/2 neighbors. For each simulation 104

Monte Carlo steps (mcs) were dedicated to thermalization,
lowering the temperature with the annealing technique at a
rate Tn+1 = 0.9 × Tn. Measurements are then taken during the
2 × 104 subsequent mcs. The results presented for each data
point describe the average over 100 independent simulations.

In order to describe the effects of thermal fluctuations in
both DF phase, J < Jc, and AF phase, J > Jc, we define
two different order parameters: a mean magnetization m

defined as

m =
√

m2
x + m2

y + m2
z, (6)

where mα = 1
L

∑
i S

α
i (α = x,y,z), and an antiferromagnetic

magnetization mAF defined as

mAF =
√

m2
x + (mstag

y )2 + m2
z, (7)

where m
stag
y = 1

L

∑
i(−1)iSy

i picks the staggered contribution
of the y components.

We show m and mAF as functions of the external magnetic
field for different values of J and T/D in Fig. 3. The top
panel shows m for two values of J < Jc at T/D = 0.02. The
external magnetic field is normalized by the corresponding
T = 0 saturation value hDF

sat (see Sec. II). There is a clear dip at
h/hDF

sat < 1 for all values of J , due to temperature effects. This
is illustrated in the inset of the top panel, which shows m vs
h/hDF

sat for J/D = 0.5 at different temperatures. Analogously,
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FIG. 3. Order parameters m (top) and mAF (bottom) as functions
of the external magnetic field scaled with the corresponding T = 0
saturation values. Temperature is set at T/D = 0.02 for different
values of J/D for J < Jc (top) and J > Jc (bottom).

the bottom panel shows mAF versus h/hAF
sat for three values of

J > Jc and T/D = 0.02, while the inset shows the effects of
temperature for J/D = 1.

A dip close to saturation is observed, as expected, in both
DF and AF phases which increases with temperature. In the
AF phase, on the other hand, one observes a very pronounced
dip in the staggered magnetization close to zero field due to
the U (1) symmetry of the AF classical solution in absence of
magnetic field.

B. Spin wave spectrum

Linear spin wave (LSW) fluctuations around the classical
S → ∞ solutions can be analyzed in a standard way. One first
introduces local axes such that at each site i a new z′ axis
coincides with the classical solution spin orientation. Within
the LSW approximation, the spin operator components in the
local axes can be represented by bosonic Holstein-Primakoff
local operators ai , a

†
i as

Sz′
i = S − a

†
i ai,

Sx ′
i =

√
S

2
(a†

i + ai),

S
y ′
i = i

√
S

2
(a†

i − ai). (8)

After a Fourier transformation in a periodic chain with L sites,

ai = 1√
L

∑
k

eikxi ak, (9)

where k = p 2π
La

, p = −L/2, . . . ,L/2, and xi = i a, and ig-

noring cubic and higher order terms in ak , a
†
k , one can get the

form

H = S
∑

k

{Ak(a†
kak + a

†
−ka−k) + Bk(a†

ka
†
−k + aka−k)} (10)

with real Ak � |Bk|. Then the Hamiltonian can be diagonalized
by a Bogoliubov transformation

ak = ukαk + vkα
†
−k,

a
†
−k = v∗

kαk + u∗
kα

†
−k, (11)

with |uk|2 − |vk|2 = 1 ensuring that αk , α†
k are bosonic modes.

The Hamiltonian finally reads

H = NE0 + S

2

∑
k

(εk − Ak) + S
∑

k

εkα
†
kαk, (12)

where E0 is the classical energy per site given in Eq. (3) and
εk =

√
A2

k − |Bk|2 are the Bogoliubov mode energies.
At the dipolar-ferromagnetic phase an appropriate global

orthogonal coordinate system is set by rotating the original
axes an angle θDF(h,D) around the y direction. The Hamilto-
nian coefficients ADF

k , BDF
k in Eq. (10) are given by

ADF
k = J [cos(ka) − 1]

+D
(
3 sin2 θDF − 1

)[
ζ (3) + 1

2
F (ka)

]
+ h

2S
cos θDF,

BDF
k = −3

2
D cos2 θDFF (ka), (13)

where F (ka) ≡ Re[Li3(eika)] with Li3(z) the polylogarithm1

series Li3(z) ≡ ∑∞
n=1

1
n3 z

n.
At the antiferromagnetic phase the appropriate axes are

local ones, obtained by rotating the original axes at each site
i with an angle (−1)iθAF(h,J,D) about the x direction. The
Hamiltonian coefficients AAF

k , BAF
k in Eq. (10) are then given

by

AAF
k = J cos2 θAF cos(ka) − J cos(2θAF)

+D

(
1

2
cos2 θAF − 1

)
F (ka) + 1

2
D sin2 θAFG(ka)

−Dζ (3)

(
cos2 θAF − 3

4
sin2 θAF

)
+ h

2S
cos θAF,

BAF
k = J sin2 θAF cos(ka) − D

(
1

2
cos2 θAF + 1

)
F (ka)

− 1

2
D sin2 θAF G(ka), (14)

where G(ka) ≡ 1
4F (2ka) − F (ka).

In either case, the semiclassical ground state is the Bogoli-
ubov vacuum |0〉 annihilated by the operators αk . The ground
state energy is then given by

H = NE0 + S

2

∑
k

(εk − Ak). (15)

Within the LSW framework the sensible order parameter to
compute is the average of the local magnetizations along the

1F (ka) is also known as the Clausen function Cl3(ka).
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FIG. 4. Mean local magnetization vs h for different values of
antiferromagnetic J < Jc, in the LSW approximation.

classical directions z′, defined as

mz′ = 1

N

∑
i

〈0|Sz′
i |0〉 = S + 1

2
−

∑
k

Ak

2
√

A2
k − |Bk|2

. (16)

A large value of the summation in the last term signals the
breakdown of the LSW approximation, meaning that quantum
fluctuations destroy the classical order. This occurs in the
shaded regions of the classical phase diagram in Fig. 2.

We show in Fig. 4 mz′
vs h for coupling ratios within

the DF phase, J/D < 5
8ζ (3), while in Fig. 5 we show

the corresponding results for ratios within the AF phase,
J/D > 5

8ζ (3).
These results extend those obtained in Ref. [3], at J = 0, to

the whole DF region and show a new phase with antiferromag-
netic characteristics. One can observe that the LSW corrections
to the order parameter diverge as h approaches hsat, both in
the DF and the AF phases. From the slopes in these figures
the sensitivity to quantum fluctuations is shown to be higher
when J approaches Jc, i.e., when the competition between
dipolar and exchange interactions is stronger. In the AF phase
quantum fluctuations are crucial not only close to saturation
but also close to zero field, as expected for antiferromagnetic
systems. Here the LSW corrections are more important for
larger J . Indeed, the crossings in the curves in Fig. 5 signal
a crossover from a dipolar-reminiscent behavior, close to JC ,
towards an exchange-dominated behavior for J � D.

These features agree with the classical thermal fluctuations
picture and are confirmed by extensive DMRG computations
and a bosonization analysis in the next section.
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FIG. 5. Mean local magnetization vs h for different values of
antiferromagnetic J > Jc, in the LSW approximation.

IV. EXTREME QUANTUM LIMIT: SPIN-1/2 CASE

In this section we discuss specific features of the spin-1/2
case, using bosonization techniques and extensive state-of-the-
art DMRG numerical computations for long-range coupled
systems.

A. Bosonization approach

For the present discussion we find it convenient to rewrite
the Hamiltonian in Eq. (1) by separating the nearest-neighbor
interactions (HNN) from the longer-distance dipolar terms
(Hint), which we then treat perturbatively. For the sake of
clarity, we consider first the zero-field case. The Hamiltonian
reads

H = HNN + Hint, (17)

where

H = (J + D)
∑

i

[
S

y

i S
y

i+1 + Sz
i S

z
i+1 + J − 2D

J + D
Sx

i Sx
i+1

]

(18)

and

Hint = D
∑

j>i+1

(−2Sx
i Sx

j + S
y

i S
y

j + Sz
i S

z
j

(j − i)3

)
. (19)

Notice that HNN corresponds to the well known anisotropic
XXZ Heisenberg chain with � = J−2D

J+D
(see for instance

Ref. [7]). In this sense, the short-range effect of dipolar
interactions is the onset of an exchange-like anisotropy along
the chain direction. Without further interactions, a Luttinger
liquid phase is present, extending from a ferromagnetic
transition point at J = 0.5D (� = −1) up to an isotropic
Heisenberg point (� = 1) to be reached at J/D → ∞, with a
free fermion point (� = 0) located at J = 2D. Bosonization
of the spin S = 1/2 chain in this regime has succeeded in
describing the ground state and correlation functions, as well as
allowing for a conformal perturbative scheme (see for instance
Ref. [8]). Following this scheme one can show that the 1/r3

decaying long-range dipolar interactions inHint do not alter the
Luttinger liquid behavior, but only renormalize the Luttinger
parameters. In accordance with the spin wave indications,
the system enters a disordered phase for J > J

q
c , a quantum

critical point which is eventually shifted from 0.5D by dipolar
interactions.

In the region J < 0.5D the truncated Hamiltonian HNN

enters a gapped ferromagnetic phase [7], with a twofold
degenerate ground state characterized by the order parameter
〈Sx

i 〉 = 0. Though conformal perturbations cannot be applied
in this region, notice that the full Hamiltonian HNN + Hint

classically exhibits the same ordering, which is robust against
thermal and quantum fluctuations. For the quantum case
S = 1/2 we explore numerically this order parameter in the
next section.

The behavior of the present system under a transverse
magnetic field, both in the Luttinger and the ferromagnetic
region, can be naturally related to the anisotropic XXZ
Heisenberg chain in a transverse field. As discussed in Refs. [9]
and [10], a small transverse field induces a gap on the Luttinger
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FIG. 6. Total magnetic moment m/S as a function of the applied
magnetic field h for two representative values of the antiferromagnetic
exchange J/D = 0.6 < Jc and J/D = 1.0 > Jc and lattice sizes
L = 36,48,64 (each curve is normalized by its corresponding
saturation magnetic field hDF

sat and hAF
sat ).

phase, driving the spin system into an Ising Néel phase with
staggered nonvanishing expectation value of spin components
along the y direction (i.e., transverse to both the anisotropy
and the magnetic field). On the gapped ferromagnetic phase,
the transverse field diminishes the order parameter, until a
quantum phase transition into a paramagnetic phase is reached.
Discussing how the longer-range interactions in Hint may
modify this picture is beyond the scope of the present paper.

These predictions, namely the renormalization of the quan-
tum critical point and the behavior in a transverse magnetic
field, are confirmed below by a DMRG analysis.

B. DMRG calculations

With the aim of characterizing the spin S = 1/2 quantum
phases of the antiferromagnetic chain with dipolar interactions,
we have analyzed the ground state of the Hamiltonian in
Eq. (1) with the DMRG technique [11]. Including long-range
interactions is a nontrivial task, comparable with current
studies of two-dimensional spin systems [12,13]. Based on our
experience in such investigations, we use here open boundary
conditions and long-range interactions involving all available
neighbors in chains of finite size. We have considered chains of
length L up to 64 sites, keeping m = 350 states and achieving
truncation errors in the density matrix of the order of 10−11.

As a first step to identify the configurations of the system
we compute the total magnetic moment m defined in Eq. (6),
where now mα = 1

L

∑
i〈Sα

i 〉 stands for the average of quantum
expectation values. In Fig. 6 we show DMRG results for
the total magnetic moment m as a function of the magnetic
field for two representative values J = 0.6D and J = 1.0D

of the antiferromagnetic exchange interaction, chosen to be
compared with the figures shown in Sec. III. As in the classical
chain, we observe two different configurations depending on
the value of the exchange interaction J being below or above
a critical value. In more detail (not shown in the figure) we
have been able to estimate a quantum critical coupling J

q
c =

0.7275(25) slightly lower than the classical value obtained
in Sec. II, Jc = 5

8ζ (3)D ≈ 0.7512. In the DF phase, J < J
q
c ,

the magnetization exhibits a minimum, a similar behavior to
that of the pure dipolar case in Ref. [3]. Instead, in the AF
phase, J > J

q
c , we find that the total magnetization smoothly

increases with the applied magnetic field.
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FIG. 7. Magnetic moments mx and mz as a function of the applied
magnetic field for a chain of L = 48 sites. Left panel: Results for
J/D = 0.6 (J < Jc). Right panel: Results for J/D = 1.0 (J > Jc).

As a further step we analyze the components of the magnetic
moments along the three directions x, y, and z separately. In
Fig. 7 we show the values of mx and mz as functions of the
applied magnetic field, for exchange J = 0.6D < J

q
c and J =

1.0D > J
q
c . In both phases mz increases smoothly with the

applied field, approaching to saturation at about the classical
saturation field. Instead, the mx component makes apparent the
difference between the DF and AF regimes. The component
my vanishes in both cases, and for the sake of clarity it is not
shown in the figures; we argue below that the reason why this
happens is very different for each phase.

In the DF phase (J < J
q
c ) we found a twofold-degenerate

ground state, as dictated by parity Z2 symmetry under x →
−x reflections. A parity-resolved basis for this ground state
subspace is given by states with mx < 0 and mx > 0. A tiny
magnetic field hx = 10−10D acting just on the end sites of the
chain [3] is enough to explicitly break parity Z2 symmetry,
selecting the state with mx > 0. This response supports the
interpretation that the finite-size ground state is a simple
superposition of disentangled ferromagnetic product states.
Following this strategy we produced the states shown in the left
panel of Fig. 7: at low fields the most important contribution to
the magnetization is provided by the mx component, followed
by a sudden drop well before mz approaches saturation. This
explains the pit in Fig. 6. As the magnetic field increases,
we found a magnetic field hc ≈ 0.47hDF

sat above which all the
magnetization weight is already in the z direction. The value
of hc is obtained by extrapolation of the hc(L) for different
chain lengths, and signals that all spins already align with
the magnetic field at less than half the classical saturation
field. In this phase, as in the pure dipolar case, there is no
symmetry reason for the system to choose an orientation in
the y direction; we accordingly found that 〈Sy

i 〉 = 0 at each
site.

In the AF phase (J > J
q
c ) we observed distinct ground

states in the absence or presence of the external magnetic
field. Without external field, in agreement with the Luttinger
regime found in the bosonization analysis, the ground state
shows no order; local expectation values vanish for any
spin component as shown in the right panel of Fig. 7
at h = 0. Under a magnetic field, also in agreement with
the gapped Ising Néel phase predicted by bosonization, we
found a twofold-degenerate ground state, related to one-site
Z2 translation invariance. While we expect a spontaneous
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symmetry breaking in the thermodynamic limit, leading to
a staggered magnetization along the y direction, one should
notice that translation symmetry is not broken in the available
finite-size systems;2 as a consequence, one-point operators can
only show homogeneous expectation values and a staggered
magnetization is compatible with the observed local result
〈Sy

i 〉 = 0. In contrast to the DF phase, in this case a tiny
staggered magnetic field hy acting on the end sites of the chain
is not enough to explicitly break Z2 translation invariance.
In order to obtain clear signals of the Néel order classically
observed and quantum mechanically predicted in the AF
phase, we resorted to the computation of Sy two-point spin
correlations 〈Sy

i S
y

j 〉 which allow for staggered nonvanishing
results, invariant under one-site translations. For J > J

q
c

we indeed found staggered correlations, which include an
exponentially decaying connected part and a nonvanishing
long-range order disconnected part,〈

S
y

i S
y

j

〉 = 〈
S

y

i S
y

j

〉
0 + 〈

S
y

i

〉〈
S

y

j

〉
(20)

with 〈Sy

i 〉〈Sy

j 〉 ∝ (−1)j−i(mstag
y )2. We thus can extract the

antiferromagnetic order parameter from the two-point spin
correlations. The long-distance behavior can be better ana-
lyzed by considering the end-to-end correlations3

C1,L = 〈
S

y

1 S
y

L

〉
. (21)

As pointed out in Ref. [14] these correlations between the
spins at opposite ends of the chain provide a more tractable
distance scaling than bulk correlations. Because of the even-
odd sign of correlators, we rather plot |C1,L| to identify the
response of end-to-end correlations to the applied magnetic
field. We plot in Fig. 8 the results for the considered finite-
size chains at J/D = 1.0 for several values of the field, as
well as their infinite-size extrapolations. As a first feature it
can be observed that at intermediate values of the field, the
order parameter is nonzero, with a negligible size scaling. This

2The argument is valid for periodic boundary conditions. Still, one-
site translations are an approximate symmetry for the open boundary
chains considered in this work.

3In order to reduce boundary effects caused by OBC we discarded
some sites at each end of the chain.

confirms the presence of long-range AF order for J > J
q
c .

As a second one, the staggered correlations drop down and
vanish at about 60% of the classical saturation field. This
coincides with the high slope rise of mz in the right panel of
Fig. 7. Finally, end-to-end correlations approach zero as the
magnetic field vanishes (this is more clear deep inside the AF
phase, for instance at J/D = 1.5), confirming that staggered
order is destroyed at zero field as suggested by thermal and
quantum fluctuations and symmetry arguments. Moreover, the
noticeable size scaling indicates the typical quasi-long-range
order in the Luttinger phase. These results resemble those
found for the Luttinger phase of the anisotropic XXZ spin
chain in the presence of a transverse field (see for instance
Fig. 5 in Ref. [10]).

V. CONCLUSIONS

In the present work we have described the phase diagram
for an antiferromagnetic nearest-neighbor spin chain (with
exchange strength J ) including the effects of long-range
dipole-dipole interactions (of strength D) and a transverse
magnetic field (of strength h).

On the one hand, we have characterized the presence of
ordered phases for classical spins and their stability under the
influence of classical and quantum fluctuations. The main fea-
ture here is the presence of a phase transition at J/D = 5

8ζ (3)
from a dipolar-dominated phase to an antiferromagnetic phase.
In the former one classical spins are aligned in a ferromagnetic
pattern forming an angle θDF(h,D) = arccos( h

6ζ (3)SD
) with

the external field, according to the competition between the
dipolar tendency to align them parallel to the chain and
the Zeeman energy, while in the latter phase spins order
antiferromagnetically, transverse to the dipolar anisotropy and
canted towards the external field at an angle θAF(h,J,D) =
arccos( h

4S[J+ 7
8 ζ (3)D]

). Classical and quantum fluctuations de-

stroy both these classical orders before reaching the saturation
field, and also the antiferromagnetic order close to zero field.

On the other hand, in the extreme quantum case S = 1/2,
DMRG computations indicate that classical order disappears
well before reaching the classical saturation fields. This is in
agreement with previous studies on the purely dipolar S = 1/2
chain [3] where a quantum critical point belonging to the 2d

Ising universality class was identified and the effect of quantum
fluctuations was proved to reduce the value of the critical field
to magnetic saturation. Regarding the competition between
dipolar ferromagnetic and antiferromagnetic orders, we have
found that the quantum critical point separating these phases
is slightly shifted (about 3%) to a lower value. This behavior
is fully compatible with the bosonization analysis discussed
in the text. The observed quantum phases are similar to those
present in the well known XXZ anisotropic spin chain. Also
the quantum critical transition reported in Ref. [3] for the
dipolar S = 1/2 chain and the corresponding transition line
for the XXZ chain belong to the same universality class. Our
results suggest that the qualitative effect of dipolar interactions
might be encoded in the anisotropy introduced by the nearest-
neighbor terms. Were this the case, the shaded phase transition
lines in Fig. 2 would be critical. Further work along this
rationale is in progress and will be reported elsewhere.
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The current development of quantum simulations with
ultracold trapped atoms is promising for testing an ever
wider spectrum of quantum many-body properties. Some key
achievements paving the way to the present discussion are
the techniques described in Ref. [15] to simulate spin-1/2
exchange interactions and the control of magnetic dipole-
dipole interactions between chromium atoms in Ref. [16], as
well as the stronger electric dipole-dipole interactions between
polar molecules in Ref. [17]. Most recently, a controlled
competition between short-range and long-range interactions
in a bosonic optical lattice revealed in Ref. [1] the possibility
of simulating different quantum phases and their transitions.

We hope that such techniques can test our predictions in the
near future.
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