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We investigate the ground state properties of Na2IrO3 based on numerical calculations of the recently
proposed ab initio Hamiltonian represented by Kitaev and extended Heisenberg interactions. To overcome the
limitation posed by small tractable system sizes in the exact diagonalization study employed in a previous study
[Y. Yamaji et al., Phys. Rev. Lett. 113, 107201 (2014)], we apply a two-dimensional density matrix renormalization
group and an infinite-size tensor-network method. By calculating at much larger system sizes, we critically
test the validity of the exact diagonalization results. The results consistently indicate that the ground state of
Na2IrO3 is a magnetically ordered state with zigzag configuration in agreement with experimental observations
and the previous diagonalization study. Applications of the two independent methods in addition to the exact
diagonalization study further uncover a consistent and rich phase diagram near the zigzag phase beyond the
accessibility of the exact diagonalization. For example, in the parameter space away from the ab initio value
of Na2IrO3 controlled by the trigonal distortion, we find three phases: (i) an ordered phase with the magnetic
moment aligned mutually in 120 degrees orientation on every third hexagon, (ii) a magnetically ordered phase
with a 16-site unit cell, and (iii) an ordered phase with presumably incommensurate periodicity of the moment.
It suggests that potentially rich magnetic structures may appear in A2IrO3 compounds for A other than Na. The
present results also serve to establish the accuracy of the first-principles approach in reproducing the available
experimental results thereby further contributing to finding a route to realize the Kitaev spin liquid.

DOI: 10.1103/PhysRevB.96.054434

I. INTRODUCTION

Novel quantum phenomena induced by strong spin-orbit
interaction have recently attracted much interest in condensed
matter physics. Iridium oxides offer a typical example that
shows rich and interesting phenomena [1–4]. Among them,
A2IrO3 (A = Na or Li) have most intensively been investigated
[5–10] since the theoretical proposal that the Kitaev spin liquid
would be realized [1,2].

The Kitaev interaction is an anisotropic Ising-like interac-
tion, Sγ Sγ , with the easy axes γ depending on the direction
of the interacting bonds. For the model represented only by
the Kitaev interaction called Kitaev model, the ground state is
proved to be a quantum spin liquid [11]. As a more realistic
model representing Na2IrO3, the so-called Kitaev-Heisenberg
model with both the Heisenberg and Kitaev interactions has
been proposed [1,2]. However, it has turned out that this model
does not properly account for the experimental observation
of the zigzag magnetic order stabilized at low temperatures
either [6–8]. In order to bridge the discrepancy between the
experiments and the theoretical predictions, several alternative
models have been proposed. They contain further neighbor
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interactions [6,7,12–14] or additional anisotropic interactions
caused by the trigonal distortion [15–19].

In this paper, in order to further clarify the nature of
Na2IrO3, we investigate the ground state of the ab initio
Hamiltonian for Na2IrO3 proposed by Yamaji et al. [18] and
summarized in Appendix A. In the ab initio Hamiltonian,
where off-diagonal anisotropic interactions due to the trigonal
distortion as well as weak second-nearest neighbor and third-
nearest neighbor interactions are nonzero beyond the simple
Kitaev-Heisenberg Hamiltonian, the experimentally observed
zigzag order was reproduced by exact diagonalizations (ED)
of clusters of 24 and 32 sites [18,20]. However, more thorough
studies are desired beyond small clusters to understand
intrinsic properties in the thermodynamic limit.

In the present paper, we carry out larger size calcula-
tions using sophisticated numerical methods: density matrix
renormalization group (DMRG) and tensor network (TN).
Applicability of the newly developed TN method to ab initio
Hamiltonians containing complex interactions beyond simple
model Hamiltonians [21] is examined by carefully comparing
with the ED and DMRG. If the trigonal distortion is close
to that of the ab initio Hamiltonian for Na2IrO3, the two
methods show the zigzag order consistently with the exact
diagonalization results in Ref. [18].

Another purpose of this study is to clarify the role of
the trigonal distortion and search phases competing with
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the zigzag order when the trigonal distortion is deviated
from that of Na2IrO3. Richer phase diagram beyond the
exact diagonalization is determined, where several distinct
symmetry broken magnetic orders emerge, when the trigonal
distortion is monitored away from Na2IrO3 [as introduced in
Eqs. (8) and (9), later]. This study may have relevance to other
materials A2IrO3 for A other than Na because the trigonal
distortion depends on A.

The rest of the paper is organized as follows. In Sec. II,
we describe our model. In Sec. III, we present results of
classical approximations. Our main results for the ab initio
Hamiltonian and its derivatives are presented in Sec. IV.
Finally, we summarize our results in Sec. V.

II. MODEL

The Hamiltonian of the model we investigate is given by

H ≡ H1st + H2nd + H3rd, (1)

where H1st,H2nd, and H3rd express the nearest neighbor, the
second neighbor, and the third neighbor interactions on the
honeycomb lattice, respectively (see Fig. 1). For the nearest
neighbor interaction, we consider distorted Kitaev-Heisenberg
interaction with off-diagonal terms as

H1st ≡
∑

�=X,Y,Z

∑
〈i,j〉∈�

�ST
i J�

�Sj , (2)

where � means the directions of the interactions and real
symmetric matrices J� (� = X,Y,Z) are given by

JX ≡
⎛
⎝K ′ I ′′
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2
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FIG. 1. (a) Two-dimensional honeycomb lattice where J2 and
J3 represent the second- and the third-neighbor interaction pairs. In
numerical calculations, we mainly use Lx×Ly lattices or unit cells
with periodic boundary condition for both of Lx and Ly directions. (b)
Three directions of the nearest-neighbor interactions. (c) Definition
of the unit used in the classical analysis.

For the second neighbor interactions, we consider only the
interaction perpendicular to the Z bond because the other
interactions are much smaller than this dominant interaction:

H2nd ≡
∑

〈〈i,j〉〉∈Z′

�ST
i J

(2nd)
Z′ �Sj , (4)

where
∑

〈〈i,j〉〉∈Z′ represents the sum over second neighbor pairs

perpendicular to the Z bond, and J
(2nd)
Z′ is given by

J
(2nd)
Z′ ≡ J (2nd) =

⎛
⎜⎝

J (2nd) I
(2nd)
1 I

(2nd)
2

I
(2nd)
1 J (2nd) I

(2nd)
2

I
(2nd)
2 I

(2nd)
2 K (2nd)

⎞
⎟⎠. (5)

Finally, for the third neighbor interaction the Hamiltonian is
given by

H3rd ≡
∑

�=X,Y,Z

∑
〈〈〈i,j〉〉〉∈�

�ST
i J�

�Sj , (6)

where
∑

〈〈〈i,j〉〉〉∈� represents the sum over the third neighbor
pairs parallel to the � direction (� = X,Y,Z). We consider
only the isotropic Heisenberg interaction for the third neighbor
interaction because the off-diagonal elements and anisotropies
are negligible compared with the isotropic Heisenberg inter-
action (see also Appendix A):

J
(3rd)
� ≡ J (3rd) =

⎛
⎝J (3rd) 0

0 J (3rd) 0
0 0 J (3rd)

⎞
⎠. (7)

The above spin Hamiltonian has been derived from the
ab initio Hamiltonian for t2g electrons of iridium atoms in
Na2IrO3:

Ĥt2g = Ĥ0 + Ĥtri + ĤSOC + ĤU , (8)

where Ĥ0, Ĥtri, ĤSOC, and ĤU represent the hopping term,
the trigonal distortion with orbital-dependent chemical po-
tentials, the spin-orbit coupling, and the Coulomb term,
respectively [18]. Due to the trigonal distortion term, the
spin Hamiltonian does not possess the symmetry among
spin components Sx,Sy,Sz; only the symmetry with respect
to 180-degree rotations around the z axis in the effective
spin space remains. Thus, the global symmetries of the
Hamiltonian are the Z2 time-reversal symmetry, the Z2

symmetry against the 180-degree rotations in the effective
spin space, and the lattice translational symmetry. By using a
vector representation of the electron creation operators at site

i, �̂ci

† = (ĉ†i,yz,↑,ĉ
†
i,yz,↓,ĉ

†
i,zx,↑,ĉ

†
i,zx,↓,ĉ

†
i,xy,↑,ĉ

†
i,xy,↓), the trigonal

distortion term is expressed as

Ĥtri =
∑

i

�̂ci

†

⎡
⎣−μyz � �

� −μzx �

� � −μxy

⎤
⎦σ̂0 �̂ci, (9)

where σ̂0 is the 2×2 identity matrix. The ab initio values of
μyz,μzx,μxy , and � for Na2IrO3 were estimated as μxy −
μzx = 35 meV, μyz 
 μzx , and � = −28 meV [18]. Note
that the mean of μyz, μzx , and μxy , which corresponds to the
ionization energy of the t2g orbitals, does not change the low
energy spin Hamiltonian, i.e., only the differences among the
chemical potential are relevant for the Hamiltonian.
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TABLE I. Kitaev and extended Heisenberg exchange interactions
derived from the second-order perturbation theory applied to the ab
initio Hamiltonian at � = −28 meV [18].

K ′ J ′ J ′′ I ′
1 I ′

2 I ′′
2JX,Y (meV) −23.9 2.0 3.2 1.8 −8.4 −3.1

K J I1 I2
JZ(meV) −30.7 4.4 −0.4 1.1

K (2nd) J (2nd) I
(2nd)
1 I

(2nd)
2J2(meV) −1.2 −0.8 1.0 −1.4

J (3rd)

J3(meV)
1.7

All interactions for Na2IrO3 have been determined based
on the second-order perturbation theory by using the strong-
coupling expansion applied to the first principles Hamiltonian
[18] (see Appendix A). The estimated interactions of the
Hamiltonian are listed in Table I. Based on the exact diag-
onalization for small clusters, Yamaji et al. have shown that
the ground state of the Hamiltonian for Na2IrO3 is expected to
be a magnetically ordered state with the zigzag configuration
consistent with the experimental observations. Although the
second and the third neighbor interactions are much smaller
than the dominant Kitaev couplings, they are important to
stabilize the zigzag state (see also Appendix C). Within the
diagonalization of small clusters, they have also determined the
phase diagram in the parameter space of the trigonal distortion
monitored around the ab initio value of Na2IrO3 and have
shown that several distinct magnetically ordered states emerge
depending on the amplitude of the trigonal distortion [18].
However, the system size in the previous exact diagonalization
is only up to 24 sites and is too small for establishing
properties in the thermodynamic limit. Thus, in order to verify
the conclusion of the previous work and further clarify the
nature of the ab initio Hamiltonian that contains anisotropic
Kitaev-Heisenberg interaction, we clearly need to investigate
larger system sizes. In the following sections, we clarify the
ground state properties in the thermodynamic limit derived
from results of much larger system sizes including the infinite-
size calculations. We focus on the two problems; properties of
the ab initio Hamiltonian for Na2IrO3 in comparison with the
experimental results and the phase diagram of the Hamiltonian
obtained by monitoring the trigonal distortion � away from
the ab initio value, because � is an experimentally tunable
control parameter by pressure or elemental substitutions.

III. CLASSICAL APPROXIMATION

We first consider the classical ground state, motivated by the
fact that the system has a magnetic order in the experimentally
observed ground state. In particular, the classical analysis
provides us with insight complementary to the quantum
analysis, because it enables studies on incommensurate order,
whereas it is hard to capture within the framework of the TN
or DMRG in which commensurability is assumed.

In the case of the classical Heisenberg spins, where �Si

is a unit vector with three components, the candidates of
the ground state are obtained from the Fourier transform of

exchange interactions. Suppose two spins connected by the z

bond on the honeycomb lattice as a unit [see Fig. 1(c)]. Because
the Hamiltonian retains the translational symmetry based on
such units constituting the triangular lattice, the Hamiltonian
is diagonalized by the Fourier transform as

Hcl = 1

2

∑
q

�ST
−qJq �Sq, (10)

where
∑

q is the summation over the wave vectors in the
Brillouin zone. Jq is the 6×6 Hermitian matrix representing
the Fourier transform of the exchange interaction, and it is
given by

Jq ≡
(

A B

B† A

)

A = 2J (2nd) cos q · (a − b)

B = Jxe
−iq·a + Jye

−iq·b + Jz

+ J (3rd)[2 cos q · (a − b) + e−iq·(a+b)], (11)

where �Sq is the Fourier transform of spins in a unit

�Si ≡
(�S(1)

i

�S(2)
i

)
. (12)

By diagonalizing the exchange matrix Jq numerically, we
obtain candidates of the classical ground states as the lowest
eigenmode. However, note that the obtained eigenvector is not
necessarily the ground state because it may not satisfy the fixed
length condition of classical spins; | �S(1)

i | = 1 and | �S(2)
i | = 1

for each site on the lattice. Instead, the lowest eigenmode
can be regarded as the ground state in the spherical approx-
imation

∑
i | �Si |2 = 2N . When the wave vector of the lowest

eigenmode is incommensurate to the lattice, the eigenvector
generally does not satisfy the fixed length condition. In such
cases, a commensurate order, which usually satisfies the fixed
length condition, close to the incommensurate wave vector
often appears as the true ground state by recovering the fixed
length condition.

In Fig. 2(a), we plotted the wave vector of the lowest energy
mode as a function of the trigonal distortion �. We see that in
most parts of the parameter �, the lowest eigenmode appears
at wave vectors incommensurate to the lattice [see Fig. 2(b)].
However, for −20 meV � � � −10 meV we find that the
commensurate zigzag (Z) order is the ground state, where the
ferromagnetically-ordered chains consist of X and Y bonds
while these chains are antiferromagnetically coupled by the
Z bonds [see Fig. 3(a)]. Note that the ab initio value for the
distortion of Na2IrO3 is � 
 −28 meV, which is in the vicinity
of the zigzag (Z) phase boundary.

The obtained � dependence of the wave vector clearly
indicates that the incommensurate region consists of three
distinct phases [see Fig. 2(a)]. For large negative �, the
lowest energy states are characterized by the wave vectors
qy = 0 [the IC(qy = 0) phase], which move toward the M

point characterizing the zigzag (Z) state. Around � = 0, the
Bragg wave number of the lowest energy states is located on
the line connecting the M and K points with qx = 2π/

√
3 [the

IC(qx = 2π/
√

3) phase]. Note that the M point represents the
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FIG. 2. (a) Classical phase diagram within the spherical approximation in the parameter space of the trigonal distortion around the ab initio
value. The symbols represent the amplitude of the wave vectors for the ground state. (b) The position of the ground-state wave vectors. The
symbols (colors) follows the notation in (a). The dashed lines represent the boundaries of the first Brillouin zone and the circles indicate high
symmetric points. (c) The Bragg peak positions of several magnetic orders that appear in the present ab initio Hamiltonian (see also Fig. 3).

zigzag (Z) phase while the K point is the Bragg point for
the 120 degree phase. Finally, for large � the lowest energy
state appears inside the first Brillouin zone (the IC phase).
Note that at the phase boundary between the zigzag (Z) and
the IC (qx = 2π/

√
3) phases, the characteristic wave vector

discontinuously changes from the M point to a vicinity of the
K point. Thus, at the boundary the phase transition is expected
to be of the first order. On the other hand, the wave vector might
change continuously without a jump between IC(qy = 0) and
the zigzag (Z) and also between the IC(qx = 2π/

√
3) phase

and the IC phase. Although the wave vector looks varying
steeply in the former case, it is likely to be continuous because
the wave vector looks naturally connected to the M point. For
these boundaries, the phase transitions could be continuous.

Although the classical ground state within the spherical
approximation is characterized by the incommensurate wave
number [IC (qx = 2π/

√
3) phase], it is close to the commen-

surate 120 degree structure near the phase boundary to the
zigzag phase. In fact, it was claimed to be the ground state
in a simple classical model proposed by Rau et al. [16,19]:
They considered the classical Kitaev-Heisenberg model with
an additional I1 term, e.g., SxSy interaction on z bonds. In their
model, the 120 degree structure appears as the ground state
for a region with the antiferromagnetic Kitaev coupling and
the antiferromagnetic Heisenberg coupling with finite I1 term.
Although they have not discussed details of this 120 degree
structure, in their model, it is actually degenerate with states
that have any relative angles between the clusters consisting
of three neighboring sites of a site, where the three sites
are aligned mutually with 120 degrees, i.e., we can see it as
two decoupled triangular sublattices with 120 orders forming
coplanar structures with the freedom in the relative orientation
[see examples in Figs. 3(c) and 3(d)]. When we set zero
relative angle, we obtain a state that has a unit cell containing
three sites, which we call three-site structure [Fig. 3(c)]. (A
similar terminology will be used below for larger unit-cell
structures.). On the other hand, the relative angle of 180
degrees makes a six-site structure [Fig. 3(d)]. Furthermore any
value of the relative angle produces a ground state. Note that
the classical ground state within the spherical approximation

does not contain the 120-degree commensurate phase, but the
IC (qx = 2π/

√
3) order replaces it, although they are close in

energy. Such degeneracy among various 120-degree orders is
often lifted by thermal or quantum fluctuations by the so-called
order-by-disorder mechanism [22]. Actually, our classical
Monte Carlo calculation of the Rau’s model shows that either
the three-site or the six-site 120-degree commensurate order
is selected at finite temperatures depending on the sign of K

and I1. Thus, we expect that if the commensurate 120-degree
order is stabilized instead of the IC (qx = 2π/

√
3) order in

the present ab initio Kitaev-Heisenberg Hamiltonian with
S = 1/2 quantum spins, it could be either the three-site or
the six-site structures, as reported in previous 24-site exact-
diagonalization calculations [18].

In addition, we also expect that other types of magnetic
order may be stabilized because incommensurate wave vectors
plotted in Fig. 2 are close to some commensurate values. For
example, in the IC(qx = 2π/

√
3) region, the wave vectors are

located in the vicinity of �q/2π = (1/
√

3,1/4) and �q/2π =
(1/

√
3,1/5) which corresponds to a 16-site structure and a 20-

site structure, respectively. Unfortunately, these large unit-cell
structures are not fitted to a 24-site cluster used in previous
ED calculation [18]. In order to investigate stability of such
structures, we need larger unit cells beyond ED.

IV. GROUND STATE PROPERTIES

A. Methods

In order to investigate the ground state property of the
Hamiltonian in the presence of strong quantum fluctuations,
we conduct three types of numerical calculations based on
the ED, two-dimensional DMRG, and tensor network based
methods.

Our ED calculations were done up to 32 site based on
the Lanczos algorithm. A part of the results has already been
reported in Ref. [18]. In order to investigate larger systems, we
use a two-dimensional DMRG method where we represent the
ground state wave function as a matrix product state (MPS)
and variationally optimize the wave-function parameters so
as to minimize the energy [23]. In the DMRG calculation,
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FIG. 3. Schematic views of magnetically ordered states emerging
in the present ab initio quantum Hamiltonian and its extensions
containing Kitaev and extended Heisenberg interactions: (a) zigzag
(Z), (b) zigzag (X), (c) 120 degree structure with three-site structure,
(d) 120 degree structure with six-site structure, and (e-1) xy

components and (e-2) z components of the 16-site structure. For
the 16-site structure, dashed rectangles indicate a magnetic unit cell.

we investigate Lx×Ly lattice systems with periodic boundary
conditions along both of Lx and Ly directions [see Fig. 1(a)].
We keep 1000 states in DMRG processes and perform more
than 10 sweeps, resulting in a typical truncation error 10−5 or
smaller.

The ED and DMRG are quite accurate for finite systems.
The maximum size they can treat is, however, restricted to
about 100 sites, which are a little too small to clarify the
thermodynamic properties beyond a reasonable doubt. In order
to investigate the property in the thermodynamic limit further,
we also conduct recently developed tensor network methods
which can treat infinite-size system directly. Here we use the
tensor network ansatz for infinite-size systems so called infinite
projected entangled pair state (iPEPS) [24–26] or infinite
tensor product state (iTPS) [27,28] as the ansatz of the ground
state wave function. We assume infinitely repeated Lx×Ly

unit-cell structure, i.e., Lx×Ly independent tensors with bond
dimensions D, which is the same shape with the lattice shape
used in DMRG (Fig. 1). Note that the unit-cell structure used
in iPEPS allows the ground state that spontaneously breaks the
lattice translational symmetry in the thermodynamic limit with
the periodicity taken into account up to the unit cell size. Thus,
even if we assume a finite Lx×Ly unit-cell structure, a wave
function represented by iPEPS is that of the infinite system
without any finite size boundary effects. For the optimization
of the tensors, we use the imaginary-time evolution with the
so-called simple update technique [29], which is extended
to treat the second- and third-neighbor interactions (see
Appendix B). Reliability of the simple update optimization is
demonstrated by comparing with the full update [26,30] for the
nearest-neighbor ab initio Hamiltonian in Appendix C. After
obtaining optimized tensors, we calculated physical quantities
by using the corner transfer matrix method [30–36]. In the
following calculations, we use the bond dimension D � 9 for
the case of the ab initio value of Na2IrO3 and D � 6 for
the case of the trigonal distortion controlled away from the
ab initio value.

B. Ground state of Na2IrO3

First, we examine the ground state of the Hamiltonian at the
ab initio matrix elements in Eq. (8) for Na2IrO3 obtained by
a first principles calculation [18]. Based on the second order
perturbation theory, we can evaluate the exchange interactions
as a function of � [18]. For Na2IrO3, the ab initio value of
the trigonal distortion was calculated as � = −28 meV, and
estimated interactions of the Hamiltonian are listed in Table I
(see also Appendix A). At this value, 24-site ED calculation
predicts that the ground state is the zigzag (Z) state where the
ferromagnetically-ordered chains consist of X and Y bonds
while these chains are antiferromagnetically coupled by the Z

bonds [see Fig. 3(a)] [18].
In Fig. 4(a), we show the energies calculated by ED,

DMRG, and iPEPS as a function of the 1/
√

N (ED, DMRG) or
1/D (iPEPS). In the case of iPEPS, we used an Lx×Ly = 4×6
unit cell. We see that the energies calculated by different
methods are consistent with each other and they seem to reach
a common value, E 
 −6.22 meV in the limit of D,N → ∞.

In order to further clarify the nature of the ground state, we
plot in Fig. 4(b) the order parameter of the zigzag (Z) state
defined as

�Mzig(Z) ≡ 1
2 (�σ1 − �σ2), (13)

where σα (α = 1,2) represents the average of spins over the
equivalent sites in the zigzag (Z) state [see Fig. 3(a)]. In the

cases of ED and DMRG we plot Mzig(Z) =
√

〈 �M2
zig(Z)〉, while in

the case of iPEPS we plotted Mzig(Z) =
√

〈 �Mzig(Z)〉2. Note that
these two definitions should reach the same thermodynamic
limit. One can clearly see that Mzig(Z) takes a large finite value
and remains nonzero in the limit of D,N → ∞, indicating
that zigzag (Z) state is stabilized as the ground state in
the thermodynamic limit. Thus, the previous proposition that
the ground state of the ab initio Hamiltonian of Na2IrO3 is
the zigzag (Z) state has been established beyond a reasonable
doubt. In the inset of Fig. 4(b), we also plot the amplitude
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FIG. 4. Bond-dimension (D) or system size (N ) dependences
of the ground-state energy (a) and zigzag (Z) order parameter (b)
calculated by ED, DMRG, and iPEPS for the ab initio Hamiltonian
of Na2IrO3, where the Kitaev and extended Heisenberg interactions
are derived from the ab initio value � = −28 meV. The inset
of (b) shows the amplitude of 〈 �Mzig(Z)〉 projected onto (x,y,z) =
(1,1,0),(1,−1,0), and (0,0,1) directions obtained by iPEPS (D = 9).

of 〈 �Mzig(Z)〉 projected onto (x,y,z) = (1,1,0),(1,−1,0), and
(0,0,1) directions obtained by iPEPS. We see that the (1,1,0)
component is dominant rather than (1,−1,0) and (0,0,1)
components. Similar results have been reported based on the
pinning field analysis of ED in the previous study [18]. Thus
the ordered moment in this zigzag (Z) state is nearly along
the (1,1,0) direction in the effective spin basis, although it has
also a weak (<15%) (0,0,1) component.

From x-ray resonant-magnetic-scattering experiments, the
ordered moment in the low temperature phase of Na2IrO3

was estimated to be located in the ac plane [5,8,37]. Because
(1,1,0) direction in the effective spin model is converted to
(1,1,0) direction in the real space [18], which is on the ac plane
of Na2IrO3, the predicted ordered spin direction is consistent
with the experimental observation.

A further quantitative analysis of earlier experimental data
suggested that the ordered moment was almost parallel to
the a axis [5,8], which was (1,1,−2) directions in the real
space. Thus, ordered spin direction (1,1,0) predicted from
the ab initio Hamiltonian does not completely match this
experimental observation. However, a recent experiment and
a subsequent theoretical analysis suggested that the ordered
moment was tilted about 40 degrees from the a axis [37,38].
Because (1,1,0) direction is estimated to be tilted about
55 degrees from the a axis, the predicted ordered-moment
directions from the ab initio Hamiltonian is more consistent
with the latter experiment. In order to reproduce the ordered-
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FIG. 5. Phase diagram in parameter space of trigonal distortion
around ab initio Hamiltonian represented by Kitaev and extended
Heisenberg interactions for Na2IrO3. Red triangles and blue circles
represent the energies calculated by iPEPS with D = 6 and DMRG
for the 6×8 lattice, respectively. In the case of iPEPS we calculated the
energy for 2×6, 4×4, 6×8, 6×10, and 8×12 unit cells and took the
lowest energy state among them as the ground state. The derivatives
of the energies with respect to � are also shown by solid curves
without symbols to gain insight into the positions of the phase
transitions.

moment direction more precisely, we might need to take into
account the coupling between the honeycomb layers, which is
ignored in the present ab initio Hamiltonian [18].

C. Phase diagram for parameters away from the ab initio
trigonal distortion

Next, we discuss the ground-state phase diagram in the
parameter space of the trigonal distortion monitored around
the ab initio value � = −28 meV. Once we set �, one can
calculate the exchange couplings as a function of � through the
second-order perturbation theory [18]. As expected from the
classical analysis, we need to keep in mind that magnetically
ordered ground states stabilized by controlling the trigonal
distortion are subject to have large unit cells including
periodicity that is incommensurate to the lattice. In order to
obtain the true ground state, we examine the dependence on
the system size (DMRG) and on the assumed unit cell size and
structure (iPEPS). We then take the lowest energy state among
various choices as the ground state.

In Fig. 5, we show the phase diagram that is determined
from consistent results of DMRG and iPEPS calculations,
together with the energies and their derivatives calculated by
iPEPS and DMRG. In the phase diagram, we find four types
of magnetically ordered states.

For � � −3 meV, the zigzag state is stabilized. The zigzag
phase is separated in two types depending on the direction
of ferromagnetically-ordered chains. For � � −44 meV the
ferromagnetically-ordered chains are perpendicular to the X

bond or to the Y bond [zigzag (X) and zigzag (Y ) states,
respectively], while for −44 meV � � � −3 meV they are
perpendicular to the Z bond [see Figs. 3(a) and 3(b)].
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This zigzag (Z) phase contains the ab initio value of
Na2IrO3,� = −28 meV. When we increase �, the 120 degree
structure is stabilized for −3 meV � � � −1 meV. Whereas
the previous 24-site ED calculation suggested that the 120
degree structure survives for larger trigonal distortion � <

40 meV [18], the new results based on iPEPS and DMRG
reliably show that the 16-site structure characterized by the
wave vector q/2π = (1/

√
3,1/4) [see Fig. 2(c)] is stabilized

for −1 meV � � � 30 meV. Finally, for even larger � values
(� � 30 meV), large unit-cell magnetic structures appear as
the ground state. As is indicated by the anomaly around
45 meV in the iPEPS result of dE/d�, there are at least two
types of states in this region. These two states have the 48-site
magnetic unit cells with different shapes, which are equal to
unit-cell size used in the iPEPS calculation (6×8) or a half of
the size (8×12). Comparing the two states with the classical
states in Fig. 2(a), we speculate that the ground state in this
region is incommensurate to the periodicity of the honeycomb
lattice in the thermodynamic limit. The reason why only the
two states are observed may be attributed to the limited sizes
allowed for the iPEPS unit cell.

In order to see these magnetic orders clearly, we define the
order parameter through the spin structure factor as

M(q) ≡
√√√√ 1

N

∑
γ=x,y,z

N∑
i=1

〈
Ŝ

γ

0 Ŝ
γ

i

〉
cos(q · r i). (14)

In the case of iPEPS, we use

M(q) ≡

√√√√√ ∑
γ=x,y,z

∣∣∣∣∣ 1N
N∑

i=1

〈
Ŝ

γ

i

〉
eiq·r i

∣∣∣∣∣
2

. (15)

Because the wave function obtained by iPEPS is that of the
infinite system, we calculate M(q) of iPEPS approximately
by using the 96×96 finite lattice. In Fig. 6, we plot M(q)s

 0
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FIG. 6. Order parameters M(q) as a function of trigonal distor-
tion. For the nature of the wave vector characterizing each state, see
the main text [see also Fig. 2(c) for the Bragg wave number of each
order]. In the cases of DMRG and ED, we use 6×8 and 4×8 lattices,
respectively. Thus, we only plot the order parameter commensurate
to the lattices in the cases of DMRG and ED.

corresponding to zigzag (Z), zigzag (X) [and zigzag (Y )], 120
degree structure and 16-site order together with the 48-site
order representing the incommensurate region in the phase
diagram. The Bragg wave vectors for each state are given as

q
2π

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1

2
√

3
, 1

2

)
,
(− 1

2
√

3
, 1

2

)
[zigzag (X,Y )](

1√
3
,0
)

[zigzag(Z)](
1√
3
, 1

3

)
(120 deg.)(

1√
3
, 1

4

)
(16-site)(

3
4
√

3
, 1

3

)
(48-site)

. (16)

One can see that corresponding order parameters become finite
in each phase, which ensures the stability of the identified
phases. Note that the order parameters at the phase boundaries
remain at large nonzero values before the transition to zero
indicating the first order nature of the phase transitions. In
the case of the DMRG, the finite-size effects smear the jump
to some extent. In addition to M(q)s calculated by iPEPS
and DMRG, we plot those obtained by ED for 32 sites at
� = −50,−40,−30,−20,−10, 0, and 10 meV in Fig. 6.
The largest M(q)s obtained by ED are consistent with our
phase diagram determined by iPEPS and the DMRG: at
� = −50 meV, M(q) corresponding to the zigzag (X,Y ) is
the largest, at � = −40,−30,−20, and −10 meV, M(q)
corresponding to the zigzag (Z) is the largest, and at � = 0
and 10 meV, M(q) corresponding to the 16 site becomes the
largest.

In the following, we investigate details of each phase in the
phase diagram.

1. Zigzag phase

As we have shown in the phase diagram, two types of
zigzag states are stabilized in the negatively large � region.
In the vicinity of the phase boundary, we can obtain both of
the zigzag (X,Y ) and the zigzag (Z) states depending on the
unit-cell structures and/or the initial conditions of the tensors in
the iPEPS, at least as a metastable state. Thus, we can locate the
first-order phase boundary at the point where the two energy
curves cross each other. In Fig. 7(a), we plot the energies of
the zigzag (X,Y ) state and zigzag (Z) state obtained by the
iPEPS. We see a clear energy crossing around � = −44 meV
indicating the first-order phase transition between the zigzag
(X,Y ) phase and the zigzag (Z) phase.

In the DMRG for 6×8 cluster, there is no clear anomaly
around � = −44 meV in the energy and the order parameters
(see Figs. 5 and 6). Because the 6×8 cluster does not fit
the zigzag (X,Y ) structure, the zigzag (Z) state is probably
stabilized in a wider region than the iPEPS.

Note that the degeneracy of the ground states is different
between the zigzag (X,Y ) and the zigzag (Z) phases: fourfold
degeneracy for the zigzag (X,Y ) state and twofold for the
zigzag (Z) state. Thus we expect finite-temperature phase
transitions with the Z4 symmetry breaking for the zigzag (X,Y )
phase, distinct from the Z2 symmetry breaking for the zigzag
(Z) state.
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FIG. 7. Energies obtained by iPEPS in the vicinity of phase boundaries. (a) Phase boundary between the zigzag (X, Y ) and zigzag (Z)
phases. (b) Phase boundaries of the 120 degree phase. (c) Phase boundaries of the IC phase. The arrows indicate the positions of the phase
boundaries.

2. 120 degree phase

Next we focus on the phase with the 120 degree structure. In
Fig. 7(b), we plot the energies of the zigzag (Z), the 120 degree,
and the 16-site states as a function of �. For −3 meV � � �
−1 meV, the 120 degree state has the lowest energy. Although,
the range of the 120 degree structure is largely reduced from
the previous estimate based on the 24-site ED calculation [18],
the data show that the 120 degree structure phase survives.

Although the 120 degree structure does not fit the 6×8
cluster used in DMRG, we observed that in DMRG for the 8×6
cluster the 120 degree structure appears and around � = 0
meV its energy is lower than that of the 6×8 cluster. This
observation also indicates that around � = 0 meV, the 120
degree structure is stabilized rather than the 16-site structure.

As we mentioned in Sec. III, in the case of the simple Rau’s
model, the classical 120 degree state is highly degenerated
including three-site and six-site states in Figs. 3(c) and 3(d).
In the case of the present ab initio Hamiltonian, the 120
degree state is expected to be slightly distorted from 120
degrees structure by varying the canting angle because of the
anisotropy. Then the quantum fluctuation and the distortion
would lift the degeneracy between three-site and six-site
states, and one of them could be realized as the ground state.
Although it is difficult to determine which structure is actually
realized in the ground state from finite-size calculations that
prohibit spontaneous symmetry breaking, we can investigate
the structures of the infinite system using iPEPS where we
observe the spontaneous symmetry breaking measured by a
nonzero local magnetization.

In order to investigate the magnetic structure, we study the
relative angle φ between two spins connected by z bond, which
is defined as

cos(φ) ≡ 〈�S(1)〉 · 〈 �S(2)〉·
|〈 �S(1)〉||〈 �S(2)〉| . (17)

In the ideal 120 degree structure, cos(φ) takes three values
depending on the position. For the three-site and the six-site
structures, they are

cos(φ) =
{

(1, − 1/2, − 1/2) three site
(−1,1/2,1/2) six site. (18)

In the iPEPS, we obtained two sets of cos(φ) depending on
the initial conditions: They are cos φ = (−0.98,0.75,0.58)
and cos φ = (1.00, − 0.25, − 0.26) at � = −2 meV. Based
on the comparison with the expected values of the three-site
and the six-site structures, we interpret that the states obtained
by iPEPS correspond to three-site and six-site states with
distortion caused by the anisotropy. The energy of the expected
six-site state is slightly lower than that of the three-site state.
However, the energy difference is only � 
 0.0003 meV
which seems to be smaller than the numerical errors that arise
from the imaginary-time evolution with finite time steps [29]
and the approximate contraction of the infinite tensor network
[30,35,36]. Thus, based on the present numerical data, we
only conclude that the three-site state or the six-site state are
realized as the ground states in the 120 degree phase.

Both of the three-site and six-site 120 degree states are
sixfold degenerate: Z3 from the lattice translation and Z2

from the time reversal symmetries. Thus, we speculate a
finite-temperature phase transition with breaking of the Z6

symmetry, which is often a successive Berezinskii-Kosterlitz-
Thouless (BKT) transition. By decreasing the temperature
from the high temperature paramagnetic phase, a BKT transi-
tion occurs at T = Tc1 and a quasi-long-range ordered phase of
an emergent U (1) symmetry appears in Tc2 < T < Tc1. Below
the second BKT transition temperature Tc2, the magnetic
long-range order with breaking Z6 symmetry is expected to
be stabilized [39].

3. 16-site phase

Based on the DMRG and iPEPS, we found that the 16-site
state, which has not been reported in the previous analyses,
is stabilized in a wide region of the phase diagram. Here we
investigate the magnetic structure of the 16-site state.

As we mentioned, the 16-site state is characterized by the
wave vector q∗/2π = (1/

√
3,1/4). Using the wave vector

q∗, the local magnetizations obtained from iPEPS are well
reproduced by

〈�S(1)(r)〉 =
⎛
⎝rxy cos(q · r + θ + α)

rxy cos(q · r − θ + α)
rz cos(q · r + α)

⎞
⎠ (19)
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and

〈�S(2)(r)〉 =
⎛
⎝rxy cos(q · r − θ + α)

rxy cos(q · r + θ + α)
rz cos(q · r + α)

⎞
⎠, (20)

where �S(1)(r) and �S(2)(r) are two spins in the unit defined in
Fig. 1(c) located at r . Note that the amplitudes and the phases
rxy, rz, θ , and α depend on �. For a better understanding of
the complex spin structure, we plot a schematic view of this
16-site structure in Figs. 3(e) and 3(f). We found that this spin
structure is consistent with the eigenvectors obtained from the
classical analysis described in Sec. III.

Although the classical analysis totally ignores the quantum
fluctuation effects, it still offers insight into the reason why
the 16-site state has lower energy than the 120 degree state.
In the region of −1 meV � � � 20 meV, the lowest-energy
mode (wave vector) in the classical analysis is closer to the
qy/(2π ) = 1/4 (the 16 site) than the qy/(2π ) = 2/3 (the 120
degree) [see Figs. 2(a) and 2(b)]. Thus, the 16-site state is more
favorable than the 120 degree state. This simple interpretation
also explains why the 120 degree structure is stabilized for � �
−1 meV: The lowest-energy mode of the classical analysis
shows that the wave number approaches qy/(2π ) = 2/3 in
this region.

Because the lowest modes are also close to q/(2π ) =
(1/

√
3,1/5), one might speculate that a state characterized

by this wave vector could be realized. However, that is not the
case. Although we also calculated the energy using the iPEPS
with a 6×10 unit cell, which is compatible with q/(2π ) =
(1/

√
3,1/5), the energy was higher than that of the 16-site

state. In this model, the state with q/(2π ) = (1/
√

3,1/5) does
not appear as the ground state.

The 16-site state has eightfold degeneracy: Z4 from the
lattice translation and Z2 from the time reversal symmetries.
In this case, we again expect a successive BKT transition
at nonzero temperatures with breaking of the Z8 symmetry
similar to the case of Z6 symmetry [39].

4. Incommensurate phase

Finally, we investigate the incommensurate phase. In
Fig. 7(c), we show the energies obtained by iPEPS around
the incommensurate phase. In the incommensurate phase, we
obtained two types of large unit-cell structure depending on
the unit-cell shape used in the iPEPS. In addition to the phase
transition between the 16-site phase and these large unit-cell
states around � 
 35 meV, one can see the energy crossing
between two distinct large unit-cell states around � 
 45 meV
indicated by an arrow. Although the second energy crossing
may represent a phase transition, it could instead be “finite size
effects” due to finite unit cells used in the iPEPS. Actually,
in the classical analysis, the characteristic wave vectors of
the lowest-energy mode continuously shift for � � 35 meV.
It suggests the existence of the incommensurate phase in
this region, the possibility of which in the quantum case is
not excluded from the present analysis. Thus, we tentatively
speculate that these two large unit-cell structures are a part
of the incommensurate phase, where the Bragg wave number
continuously moves with � in the thermodynamic limit.

V. CONCLUSIONS

In this paper, we have investigated the ground state
properties of the realistic effective Hamiltonian for Na2IrO3.
Based on the three numerical methods, ED, DMRG, and
iPEPS, we have firmly established that the ground state of
the ab initio Hamiltonian for Na2IrO3 is the zigzag (Z) state,
in agreement with the experiment. In the zigzag (Z) state,
ferromagnetically-coupled chains are perpendicular to the z

bond and ordered spin moments are on the ac plane of Na2IrO3.
These features are also consistent with the experimental
observation [5–8].

The direction of the ordered moment predicted from our ab
initio Hamiltonian is nearly parallel to the (x,y,z) = (1,1,0)
direction, which is tilted about 55 degrees from the a axis.
It does not match the analysis of earlier experimental data
implying the moment nearly parallel to the a axis [the
(1,1,−2) direction] [5,8], while it is much more consis-
tent with recent experimental data implying the moment
is tilted about 40 degrees from the a axis [37,38]. In
order to reproduce the precise direction further, the weaker
interactions ignored in the present ab initio Hamiltonian,
such as the couplings between honeycomb layers, could be
important.

We have also determined the ground state phase diagram of
the Hamiltonian when the trigonal distortion � is monitored
as a control parameter away from the ab initio value for
Na2IrO3. We have found at least five distinct magnetically
ordered phases: the zigzag (X,Y ), the zigzag (Z), the 120
degree structure, the 16-site structure, and the presumably
incommensurate phase that appears as 48-site states in the
present calculation. For large negative � region, zigzag (X,Y )
states are stabilized. When we increase �, the direction of
the ferromagnetically-coupled chain in the zigzag state rotates
120 degree forming zigzag (Z) state around � 
 −44 meV.
In the middle of the phase diagram an 120 degree structure
appears in the narrow region. We have identified it as the
three-site and/or the six-site order according to the result of the
iPEPS calculations for infinite systems. When we increase �

toward positive values, the 16-site phase is stabilized. Although
the previous 24-site ED calculation has not identified this
phase, we have found that it has a lower energy than that
of the 120 degree structures in a wide region based on the
DMRG and iPEPS calculations. For large positive �, we
have found a presumable incommensurate state. Although
it is difficult to prove the “true” incommensurate nature
because of the limitation of finite-size systems (ED, DMRG)
or the number of the independent tensors (iPEPS), the results
indicate that its magnetic unit cell is at least larger than
that consisting of 48 spins. Since the trigonal distortion
may be selectively controlled by substitution of elements
in Na2IrO3, the present results give a useful guideline to
understand possible rich phase diagram based on the combined
effort of the reliable ab initio approach and experimental
progress.

The accuracy and reliability of the ab initio Hamiltonian
has been established in the present study through the detailed
comparison with the experimental indications: The present
study by combining three independent and accurate numerical
algorithms has enabled a reliable approach to the thermody-
namic limit by keeping high accuracy of the result.
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Recently, another ab initio Hamiltonian for Na2IrO3 and
related materials has been proposed by Winter et al. [40].
Their derivation of the ab initio Hamiltonian is similar to
that of our Hamiltonian, while they use cluster ED instead
of the second order perturbation method to get the effective
spin Hamiltonian. In their Hamiltonian, the third-neighbor
Heisenberg interaction J3 is estimated as J3 
 7 meV which is
about four times larger than our estimation, and they concluded
that the zigzag ordered is stabilized by the third neighbor
Heisenberg interaction [40]. Their conclusion is consistent
with our case where the zigzag (Z) order is stabilized by
further neighbor interactions, although we need both of the
second and the third neighbor interactions.

An interesting question untouched in the present study on
the ab initio Hamiltonian and left for future studies is how we
can approach the spin-liquid state starting from the magnetic
Na2IrO3 under the normal pressure. Based on 24-site ED
calculation, Yamaji et al. pointed out that a lattice expansion
from Na2IrO3 may stabilize a Kitaev-type spin-liquid state
[18]. Since it was already shown that the iPEPS is able to
describe the Kitaev spin liquid state reliably [21], searching
and designing the spin liquid state by using the combined
DMRG or PEPS on the realistic and first-principles framework
is an intriguing future subject.
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APPENDIX A: THE AB INITIO HAMILTONIAN OF Na2IrO3

In this appendix, we summarize the derivation of the ab
initio Hamiltonian of Na2IrO3 (1). In order to derive the
effective spin Hamiltonian from the ab initio Hamiltonian for
t2g electrons (8), we employ the second order perturbation
theory: Here we take the Hamiltonian of an isolated iridium
atom Ĥtri + ĤSOC + ĤU as an unperturbed Hamiltonian and
the hopping term Ĥ0 as a perturbation [18]. We consider
the doubly degenerated ground state of Ĥtri + ĤSOC + ĤU

for a single-site problem as a pseudospin. The exchange
couplings among the pseudospins are derived through the
second order perturbation theory by numerically diagonalizing
the Hamiltonian Ĥtri + ĤSOC + ĤU [18].

In Table II, we show thus obtained exchange interactions
which we used in our ab initio calculation of the ground

TABLE II. Precise exchange interactions of the ab initio Kitaev-
Heisenberg Hamiltonian at � = −28 meV calculated from the
second-order perturbation theory. In the third-neighbor interaction,
we approximated it as the isotropic Heisenberg interaction by
neglecting off-diagonal interactions I 3rd

1 and I 3rd
2 and by averaging

diagonal interaction as J3 = (K (3rd) + 2J (3rd))/3.

K ′ J ′ J ′′

−23.9467619 2.0225331 3.2124194
JX,Y (meV) I ′

1 I ′
2 I ′′

2

1.8470590 −8.4040133 −3.1148375

K J

−30.7439117 4.4421939
JZ(meV)

I1 I2

−0.3777579 1.0659292

K (2nd) J (2nd)

−1.2250998 −0.8030967
J2(meV)

I
(2nd)
1 I

(2nd)
2

0.9901792 −1.4245524

K (3rd) J (3rd)

1.7161468 1.5996219
J3(meV)

I
(3rd)
1 I

(3rd)
2

0.1203473 0.0476719

state of Na2IrO3. Note that for the third-neighbor interaction,
we approximated it as the isotropic Heisenberg interaction
where we neglected off-diagonal interactions (I (3rd)

1 and I
(3rd)
2 )

and we averaged the diagonal interactions as J3 = (K (3rd) +
2J (3rd))/3.

APPENDIX B: iPEPS CALCULATION METHOD

In this appendix, we describe methods used in iPEPS
calculations. In our calculation, we first represent the ground-
state wave function |�〉 of the model as a tensor product state:

|�〉 =
∑

{mr1 ,mr2 ,...,mri ,...}
Tr
∏

R

(A1[m1,R]
∣∣A2[m2,R]

· · ·Ai[mN,R])
∣∣mr1mr2 · · · mri · · · 〉, (B1)

where Ai[m] is a four-rank tensor located at the vertex i

of the honeycomb lattice with three virtual indices and one
physical index m (see Fig. 8), and Tr means the contraction
over virtual indices. In order to treat an infinite system, we
assume that the tensors are translationally invariant with a unit
cell containing N = Lx×Ly sites, and mr = mi,R means the
ith spin on a unit cell located at R (see Fig. 1). Note that
this iPEPS ansatz with a unit cell is totally different from a
finite Lx×Ly system with the periodic boundary condition.
Although the same tensors repeatedly appear in the definition
of the wave function [namely, Ai does not depend on R in
Eq. (B1)], the spins on equivalent but different unit-cell sites
can take different values mi,R. Thus, the iPEPS is able to take
into account infinitely large spin degrees of freedom in contrast
to the finite-size algorithm.

Our iPEPS calculations are conducted in two steps. The
first step is optimization of the tensors and the second step is
calculation of physical quantities.
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FIG. 8. Schematic picture of iPEPS tensor network for honey-
comb lattice. Tensor A has a physical index and three virtual indices.
The dimension of the physical index is m = 2 in the case of S = 1/2
spin system. The dimension of the virtual indices is set to D, which
determines the accuracy of the iPEPS wave function for the ground
state. The iPEPS becomes exact in the limit D → ∞ and the accuracy
is improved systematically with increasing D.

In the first step, we optimize tensors using the imaginary-
time evolution by multiplying eτH repeatedly. The imaginary-
time evolution operator is decomposed into a product of
eτHij with two-body interactions Hij using Suzuki-Trotter
decomposition [43,44]. Typically, we start from τ = 0.1/|K|
and gradually decrease τ to τ = 0.001/|K| to reach the
ground state accurately, where K is the largest exchange
interaction of the model. In this imaginary-time evolution,
we need a truncation in order to keep the bond dimensions of
the tensor Ai[m] within a tractable size. For this truncation
we use the so-called simple-update method [29]. In this
simple-update method we insert diagonal matrices λi,j on the
bond connecting virtual indices, and they are considered as
mean-field-like environments at the truncation [see Fig. 9(a)].
For the nearest-neighbor interactions, we use the singular value
decomposition (SVD) and truncate smaller singular values
[29].

In the presence of further neighbor interactions, we need
to treat at least three tensors simultaneously because the
tensors Ai and Aj interacting through a further-neighbor
interaction are not directly connected in our tensor network.
In order to treat further-neighbor interaction, we connect Ai

and Aj through other intermediate tensor(s) and consider the
imaginary-time evolution of the cluster as shown in Fig. 9(a).
In order to construct the clusters, we use the smallest cluster
(the shortest path). If there are more than one smallest
clusters, we decompose the imaginary-time evolution. For
instance, if two smallest clusters exist, we decompose it as
eτHij = eτHij /2eτHij /2 and assign the different cluster to each
of eτHij /2. In the case of the ab initio Kitaev-Heisenberg
Hamiltonian, the smallest cluster is unique for J2 interaction
[see Fig. 10(a)], while there are two types of the smallest
cluster for J3 interactions [see Figs. 10(b) and 10(c)]. In order
to decompose the cluster, we use symmetric decomposition
by constructing projectors, which is slightly different from the
decomposition using successive SVDs [45].

In the case of a cluster consisting of three tensors, first
we construct a cluster by combining three A tensors, mean-
field-like environments

√
λ, and the imaginary-time evolution

operator as shown in Fig. 9(a). Note that we can see the
cluster as a one-dimensional chain shown in the left part
of Fig. 9(a), where for the sake of flowing calculations we

FIG. 9. Procedure of imaginary-time evolution for the second
neighbor interaction. Blue and red circles with legs represent tensor
A defined in Eq. (B1), where thick lines are virtual bonds and a vertical
thin line is the physical bond (see also Fig. 8). A shaded rectangle
represents the imaginary-time evolution operator eτHi,j . (a) A cluster
consisting of three tensors [Ai, Aj (blue), and an intermediate tensor
(red)] and an imaginary-time evolution operator with mean-field-
like environment (

√
λ). Note that because we use tensors defined in

Eq. (B1), each tensor includes
√

λ implicitly. Thus,
√

λ is sufficient
as the mean-field-like environment for the simple update. By using
a matrix product operator representation of eτHi,j , we can transform
the cluster into a one-dimensional chain representation shown in the
left side. (b) Two types of SVDs which decompose the cluster into
2 + 1 (top) or 1 + 2 (bottom) segments. Here we truncate the tensor
by keeping only the largest D singular values. (c) Construction of
two pairs of projectors (Pr,P̃r ) and (Pl,P̃l). U †

r ,U
†
l ,Vr , and Vl are

complex conjugates of the tensors obtained by SVDs in step (b).
(d) We approximate the original cluster by inserting the projectors
calculated in step (c). (e) Definition of updated tensors Anew.

introduce the matrix product operator (MPO) representation
of the imaginary-time evolution operator.

Next, we perform two SVDs which decompose the cluster
into 2 + 1 and 1 + 2 segments [see Fig. 9(b)]. From these
SVDs, we obtain two sets of tensors and singular values,
(Ur,λr ,V

†
r ) and (Ul,λl,V

†
l ).
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(a) (b)

(c)

FIG. 10. Schematic pictures representing the smallest clusters
used in imaginary-time evolutions for further neighbor interactions.
Blue open circles represent tensors interacting through a further-
neighbor interaction. Red open circles are intermediate tensors. The
smallest clusters are indicated by red rectangles. (a) In the case
of the second-neighbor interaction, the smallest cluster is uniquely
determined. (b),(c) In the case of the third-neighbor interactions, there
are two types of the smallest cluster.

Then, we construct two pairs of projectors (Pr, P̃r ) and
(Pl, P̃l) by using tensors obtained by the previous SVDs as
shown in Fig. 9(c). Note that these projectors satisfy the
relation P̃ P = identity.

Finally, we insert projectors into the cluster [Fig. 9(d)] and
decompose it into three parts to obtain updated tensors. The
updated tensors are defined as Fig. 9(e).

For larger clusters we can use the same method by
considering several SVDs and creating projectors. In the actual
calculation, we perform QR decomposition of tensors Ai and
Aj before applying imaginary-time evolution operator in order
to reduce the computational cost [46,47].

In the second step, we calculate expectation values from the
obtained wave function. In this step, we use the approximate
contraction based on the corner transfer matrix (CTM) method
[30–36]. In order to treat the several unit-cell shapes, we use
the directional CTM renormalization group [30], with the
generalization to arbitrary unit-cell sizes [35,36]. As the bond
dimension χ of the CTMs, we typically use χ = D2 because
further increase of χ beyond D2 did not change expectation
values largely in the case of the magnetically ordered phase
we observed.

APPENDIX C: iPEPS CALCULATION FOR THE NEAREST
NEIGHBOR MODEL

In this appendix, to compare with the full ab initio studies
and to gain further insights, we briefly show the analysis on a
simplified nearest-neighbor ab initio Hamiltonian for Na2IrO3

where we neglect the second and the third neighbor inter-
actions and consider only the nearest-neighbor interactions.
For this analysis, we use tensor network methods with the
iPEPS ansatz. In the case of the nearest-neighbor interaction,
we can easily apply the so-called “full update” method [26,30],

FIG. 11. (a) Bond-dimension (D) dependence of the energy of
the nearest-neighbor ab initio Hamiltonian calculated by the iPEPS
optimized by using the simple update and the full update with the
Lx×Ly = 2×4 unit cell. (b) Spin-spin correlation function of Sx,Sy ,
and Sz along the y direction obtained by iPEPS with the simple update
(D = 7).

which is expected to be more accurate than the simple update
used in the analysis of the main part. By considering the
nearest-neighbor interaction only, we can compare the results
obtained by the simple update and the full update and estimate
the reliability of the simple update method.

In Fig. 11(a), we show the energy of the nearest-neighbor
ab initio Hamiltonian as a function of the bond dimension
D. Although the energies obtained by the full update method
are slightly lower than those of the simple update at the same
D, the difference is quite small compared with the decrease
in the energy with increasing the bond dimension. Thus, the
simple update seems to be sufficiently reliable for the present
ab initio Hamiltonian whose ground state is expected to be a
magnetically ordered state.

In order to further investigate the nature of the ground state,
we show the spin correlation along the y direction (see Fig. 1)
in Fig. 11(b). One can see that the spin correlation shows
four-site periodicity, which is totally different from the zigzag
(Z) structure observed in the ground state of the ab initio
Hamiltonian including the second and the further neighbor
interactions. Indeed, the ground state of the nearest-neighbor
ab initio Hamiltonian is an eight-site state different from the
zigzag (Z) state. Thus, in order to obtain the experimentally
observed zigzag (Z) state, the further-neighbor interactions
are crucially important. Indeed we found that both of the
second and the third neighbor interactions were necessary to
stabilize the zigzag (Z).

Note that the iPEPS has been able to describe the Kitaev spin
liquid state by using the full update optimization if it is applied
to the Kitaev-Heisenberg model [21]. Therefore, the method
is capable of describing the Kitaev spin liquid in general.
Nevertheless, we did not obtain the spin liquid state for a more
realistic Hamiltonian with only the nearest-neighbor interac-
tion truncated from the ab initio Hamiltonian even if we used
the full update. Furthermore, the further-neighbor interactions
stabilize the magnetically ordered state rather than the Kitaev
spin liquid, as we see in the ground state of the full ab initio
Hamiltonian, which includes the second and the third neighbor
interactions. Therefore, our result shows that the magnetic
order rather than the spin liquid is robust around the ab initio
parameter values, consistent with the experimental results.
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