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Spin density in YTiO3: II. Momentum-space representation of electron spin density
supported by position-space results
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Unpaired electrons in YTiO3 ferromagnetic crystal (below 30 K) were studied by polarized neutron diffraction
(PND) and incoherent x-ray magnetic Compton scattering (MCS). These experiments provide both position
and momentum representations of the electrons at the origin of the magnetic behavior, mostly those in the
t2g state of Ti atoms. A two-dimensional reconstruction was conducted from experimental and theoretical
directional magnetic Compton profiles to obtain the two-dimensional magnetic electron momentum density. A
“superposition” method is proposed to examine the coherence between results for position and momentum spaces,
respectively. This model-free approach allows a straightforward cross-checking of PND and MCS experiments.
An “isolated Ti model” is proposed to emphasize the role played by O1 in the ferromagnetic coupling between
Ti and its neighboring atoms.
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I. INTRODUCTION

Perovskite YTiO3 (Fig. 1) is a ferromagnetic crystal at low
temperature (below 30 K) [1]. The magnetic properties are
widely accepted to result from a single d electron in a t2g

state localized on each Ti atom [2]. As this electron plays a
crucial role in the control of the magnetic properties of YTiO3,
a precise determination of the electronic state is necessary.
The electron probability density in position space, ρ(r), can
be determined from x-ray diffraction (XRD), and the electron-
spin probability density in position space, ρmag(r), can be deter-
mined from polarized neutron diffraction (PND) using models
such as that proposed by Hansen and Coppens [3]. Combining
these two techniques in the refinement of a unique model
provides the spin resolved electron density using the spin-split
pseudoatoms extension of the Hansen-Coppens model [4,5].
However, XRD and PND techniques have limited potential for
observing the most diffuse electrons, which play an important
role in many properties. As a complementary technique, inco-
herent x-ray inelastic scattering, in the large momentum and
energy transfer limit (referred to as “Compton scattering”), can
be employed to observe delocalized electrons. For a scattering
vector pointing to the direction given by unit vector u, the
signal is related to the electron probability density in momen-
tum space n(p). To be more specific, the Compton scattering
signal, for a scattering vector aligned with u, is proportional
to the so-called directional Compton profiles (DCPs) J (u,q):

J (u,q) =
∫

n(p)δ(u · p − q)dp. (1)

The DCP is thus the probability density for an electron of
having a momentum q along direction u, whatever the values
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of the other two components. Expression (1) shows that the
DCP is a projection of n(p) on a particular vectorial line of
momentum space. Therefore, two-dimensional (2D) [6–8] or
three-dimensional [9–14] electron density in the momentum
representation n(p) can be reconstructed from a set of such
projections.

Both ρ(r) and n(p) are thus electron-density descriptions in
different representations. They can be connected through the
one-electron reduced density matrix (1-RDM) [15] �(x,x′),
which contains all the information at the one-electron level. If
the spin variable is included, the 1-RDM is constructed from
the N -electron wave function according to

�(x,x′) = N

∫
�∗(x,x2, . . . ,xN)

×�(x′,x2, . . . ,xN)dx2 . . . dxN (2)

where x represents the spin and position variables. In this
paper, we concentrate on the spin properties and the magnetic
1-RDM can be obtained from spin resolved 1-RDMs:

�mag(r,r′) = �↑(r,r′) − �↓(r,r′) (3)

where ↑ and ↓ refer to up- and down-spin states, respectively,
and r and r′ refer to the position variables. By definition, the
spin density in position space ρmag(r) is given by the diagonal
elements (r = r′) of the magnetic 1-RDM:

ρmag(r) = �mag(r,r) (4)

and, shifting to the momentum-space representation, similar
quantities can be defined:

nmag(p) = �̃mag(p,p), (5)

which is the value for p = p′ of the 1-RDM matrix in
momentum space:

�̃mag(p,p′) =
∫

�mag(r,r′)eir·pe−ir′ ·p′
drdr′ (6)
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FIG. 1. Unit cell of perovskite YTiO3: space group Pnma, a =
5.69 Å, b = 7.6094 Å, c = 5.335 Å.

with p representing the momentum of the electron and the
directional magnetic Compton profile:

Jmag(u,q) =
∫

nmag(p)δ(u · p − q)dp. (7)

In the present paper, where unpaired electrons are the focus
of interest, PND and magnetic Compton scattering (MCS)
techniques are probably the best suited tools for retriev-
ing complementary information in position and momentum
spaces.

The purpose of this paper is to shed light on how
momentum-space quantities can be connected to the position-
space densities presented in Ref. [16] and explain why
delocalized unpaired electron density provides additional
information. First, theoretical directional magnetic Comp-
ton profiles (DMCPs) are computed for comparison with
experimental measurements. Second, both experimental and
theoretical two-dimensional magnetic electron momentum
densities (2D-MEMDs) are reconstructed from the DMCPs.
Third, the “superposition” spin density is defined and shown
to be coherent with the reconstructed magnetic momentum
density. Finally, an “isolated Ti model” is used to better
connect the position and momentum spaces. It emphasizes the
ferromagnetic coupling along Ti-O1-Ti and shows that, while
the interaction contribution between atoms is seldom consid-
ered in position space, the metal-oxygen coherent coupling
can no longer be neglected for describing momentum-space
properties.

II. DIRECTIONAL MAGNETIC COMPTON PROFILES

Experimental Compton profiles have been measured using
the magnetic Compton scattering spectrometer on the high-
energy inelastic-scattering beamline, BL08W, at Spring8 syn-
chrotron radiation facility in Japan. Polarized x rays are emitted
from an elliptical multipole wiggler and monochromatized
to 175 keV before reaching the sample (single crystal with
dimensions 1 × 2 × 3.5 mm3). The energy of the scattered x
rays at an angle of 178.5◦ is analyzed by a ten-segmented Ge
solid-state detector. During the measurement, a ±2.5-T exter-
nal magnetic field was alternately applied along the scattering
direction in order to reverse the sample magnetization in the
10–18-K temperature range. For each considered scattering
direction, each DMCP was extracted as the difference between
the two Compton profiles measured on the same sample
magnetized in the opposite directions with a fixed photon
helicity. The width of the elastic scattering peak provides
an estimate of 0.4 a.u. for the momentum resolution of the
magnetic spectrometer [17]. A total of 12 DMCPs were
measured: along the principal axes a, b, and c; 37(2), 55(2),
and 72(2)◦ from the axis a in the ab plane; and 22(2), 45(2),
and 67(2)◦ from the axes a and b in ac and bc planes,
respectively. To serve as a reference, theoretical magnetic
Compton profiles have been computed at the density functional
theory (DFT) level, using the PBE0-1/3 [18] hybrid functional
and atomic basis sets [19,20] as provided by the CRYSTAL14

package [21]. Generally, the purpose of DFT methods is
not the computation of momentum-space properties [22,23]
and such results have been shown to have recurrent flaws.
Conversely, the Hartree-Fock (HF) method usually performs
better [24,25] because it aims at optimizing a wave-function
model. For YTiO3, HF computation turns out to suffer from
severe convergence difficulties and it was found that a DFT
approach converges much faster to a robust solution. Moreover,
as shown below, the momentum-space properties computed
from the Fourier transform of Kohn-Sham orbitals provide
very satisfactory results [26].

As shown in Fig. 2, the theoretical and experimental
DMCPs compare extremely well considering that less than 2%
of electrons contribute to the inelastic magnetic signal. A more
detailed analysis shows that for each direction of momentum
space the theoretical distributions are systematically more
localized than their experimental counterparts. Two reasons
have previously been put forward: a possible functional effect
on electron correlations as proposed by Huotari et al. [27]
and thermal disorder. In the YTiO3 case, we have tested a
range of functionals (PBE0, PBE-1/3, PBESOL0, B3LYP,
HISS, HSE06, BLYP) [18,28–34] and, except for BLYP, all of
them result in very similar DMCPs. Given the low-temperature
condition of the present experiment and that thermal smearing
usually yields a contraction of momentum-space distributions
[35], it is legitimate to also rule out this second source of
broadening.

DMCPs (Fig. 2) reflect the unpaired electrons distribution
in momentum (velocity) space. The ab plane exhibits the
most isotropic results. Conversely the ac plane shows greater
anisotropy: The bisecting direction is the lowest at low
momenta, while it increases to reach a maximum around
q = 1 (a.u.). This implies that, in position representation, the
electrons are delocalized along the ac 45◦ direction, and more
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FIG. 2. Directional magnetic Compton profiles Jmag(u,q) for
YTiO3 for five nonequivalent directions u in each plane. Each row
corresponds to a set of DMCPs in a given plane: (a) ab plane,
(b) ac plane, and (c) bc plane. The spectra are in atomic units and
normalized to one electron. Left column: Experimental DMCP data
points, given with their estimated error bars. Right column: Periodic
ab initio DMCP, convoluted by a 0.4-a.u.-wide Gaussian resolution
function.

localized along the a or c directions. The bc plane exhibits
a significant difference between the b and c directions, with
lower Jmag(u,q) values at low momenta in the b direction.

III. TWO-DIMENSIONAL RECONSTRUCTION

DCPs or DMCPs can be used to reconstruct the momentum
density n(p) or the magnetic momentum density nmag(p),
respectively. Reconstruction algorithms have been discussed
by Hansen [36] and Dobrzynski and Holas [37]: The DCPs
are used to compute directional reciprocal form factors or
autocorrelation functions B(u,t) by Fourier transform:

B(u,t) =
∫

J (u,q) exp(−iq · t)dq (8)

where u is the unit vector collinear to the scattering vector
and t refers to the relative position between two locations
of the same particle along this direction. It is known as the
“intracule position coordinate” along u. From a limited set
of directional B(u,t), corresponding to several nonequivalent
scattering directions u, an interpolated function B(r) can be
estimated. The momentum density can then be approximated

FIG. 3. Reconstructed spin density in momentum space (in a.u.),
projected onto the three main crystallographic planes (2D-MEMD).
Each row corresponds to a plane: (a) ab plane, (b) ac plane, and
(c) bc plane. Left column: Periodic ab initio results using convoluted
DMCPs, with white dashed lines indicating the projections of Ti-O
directions in momentum space. Middle column: Experimental results.
Right column: The same quantity obtained by the isolated Ti model
(see Sec. V). Contours are at intervals of 0.01 a.u. Color bar scaling
is from 0 to 0.15 a.u.

by inverse Fourier transform:

n(p) = 1

(2π )3

∫
B(r) exp(ip · r)dr. (9)

For this paper, the directional magnetic Compton profiles
have been used to conduct 2D-MEMD reconstructions as
projections of the magnetic momentum density in each of
the above-mentioned planes. To avoid any interpretation bias
in comparing theoretical and experimental 2D-MEMD, it
was decided that both quantities should be recovered from
their respective set of DMCPs by the same reconstruction
procedure.

2D-MEMD anisotropies, defined as the difference between
magnetic momentum density nmag(p) and the angular averaged
isotropic density niso

mag(p), can be calculated in each plane:

naniso
mag (p) = nmag(p) − niso

mag(p). (10)

As expected, these anisotropies are characteristic of the
unpaired electron distribution upon the chemical bond forma-
tion and supplement the information available from diffraction
data. If electrons on Ti sites are described from a pure
crystal-field perspective, the spin momentum density can be
seen to bear many features of the occupied atomic orbitals
(in momentum representation) [8]. Results of Figs. 3 and 4
(left and middle columns) confirm the analysis of Fig. 2: The
ab plane is the most isotropic with also the least informative
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FIG. 4. Anisotropies of 2D-MEMD in each plane (in a.u.). Each
row corresponds to a plane: (a) ab plane, (b) ac plane, and (c) bc plane.
Left column: Periodic ab initio results using convoluted MDCPs,
with white dashed lines indicating the projections of Ti-O directions
in momentum space. Middle column: Experimental results. Right
column: The same quantity obtained by the isolated Ti model (see
also Sec. V). Contours are at intervals of 0.005 a.u. Color bar scaling
is from −0.03 to 0.03 a.u.

features. In contrast, the ac plane displays a strong anisotropy,
the projected momentum density is concentrated into well-
resolved lobes near (±1.3, 0) and (0, ±1.05) a.u., and the
momentum density favors the a direction over c. Likewise,
the bc plane exhibits a clear difference between b and c
directions. From the crystal geometry (Fig. 1), the b direction
approximately corresponds to the Ti-O1-Ti interactions, while
Ti-O2-Ti lies parallel to the ac planes.

IV. ERROR ANALYSIS

An error propagation analysis is necessary to ensure the
trustfulness of the experimental reconstruction and evaluate the
significance of possible discrepancies with theoretical results.
Experimental error bars on DMCPs are expected to impact the
corresponding 2D-MEMD [38] and the following method has
been used to simulate error propagation in the reconstruction
process.

A Gaussian random distribution is assumed, the mean value
and standard deviation of which are set to the experimental
values {Jmag(u,qi)} and associated error bars {σ [Jmag(u,qi)]},
respectively. The error propagation is thus estimated as
follows (Fig. 5).

(1) Generate random DMCPs {J random
mag (u,qi)} following

such a Gaussian distribution centered on the mean value
{Jmag(u,qi)}.

(2) Renormalize to one electron each DMCP to obtain
{J ′

mag(u,qi)} for each direction.
(3) Apply the reconstruction process to obtain a new 2D-

MEMD {nmag(p)}.
(4) Repeat N times steps 1 to 3, and perform a statistical

analysis of the ensemble {nmag(p)} to evaluate a propagated
error distribution σn(p) for each plane.

For each direction, 1000 sets of random normalized DMCPs
following a Gaussian distribution law were generated. As
a result, 1000 reconstructions could be carried out. Such
a statistical set is analyzed for estimating the influence of
experimental uncertainty on the final 2D reconstruction of
spin density in momentum space.

In order to assess the quality of the error propagation
estimate, a simple test can be carried out using the theoretical
DMCPs and the corresponding 2D-MEMD as a reference. For
both quantities, theory-experiment agreement factors can be
defined as

χ2
J (u,q) = 1

NJ (u,q)

∑
u,q

[
J theo

mag (u,q) − J
exp
mag(u,q)

]2

σ 2
J (u,q)

, (11a)

χ2
n(p) = 1

Nn(p)

∑
p

[
ntheo

mag(p) − n
exp
mag(p)

]2

σ 2
n(p)

(11b)

Magnetic
Compton
Scattering

Computation N times{σ(Jmag(u, qi))}

{Jmag(u, qi)}

Generate random
{Jmag(u, qi)} from

Gaussian distribution
{Jrandom

mag (u, qi)}

{Jmag(u, qi)} {nmag(p)}

Reconstruction Statistical analysis

{σn(p)}

Normalization

FIG. 5. Process of statistical error propagation analysis. {Jmag(u,qi)} is the set of experimental values with the associated set of error bars
{σ [Jmag(u,qi)]}. These values are used as the respective means and standard deviations of Gaussian distribution laws to randomly generate a
large set of profiles (typically 1000) for each direction {J random

mag (u,qi)}. Each of these profiles, by construction, falls within the experimental error
bars. It thus becomes possible to conduct many reconstructions of 2D-MEMD, {nmag(p)}. The statistical analysis of this set of reconstructions
gives a fair estimate of the propagated error on the 2D-MEMD experimental reconstruction {σn(p)}.
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FIG. 6. Estimated propagation error map σn(p) for reconstructed
2D-MEMD (in a.u.). The result is obtained by analysis of Ntimes =
1000 reconstructions in the ac plane with an adapted color bar scaling
from 0 to 0.01 a.u. Contours are at intervals of 0.001 a.u.

where Nn(p) and NJ (u,q) are the 2D-MEMD and DMCPs
numbers of respective data points. These expressions indicate
the extent of the discrepancy relative to the experimental
standard deviations. While Eq. (11a), computed in the p ∈
[−6,6]-a.u. range, yields a value of 3.09, Eq. (11b) amounts
to 3.02. These two values are very consistent and clearly
indicate that the order of magnitude for reconstructed σn(p)

is trustworthy. Therefore, the reconstructed error reported
in Fig. 6 shows very weak features compared with that of
the experimental 2D-MEMD, and mostly concentrated in the
[−1,+1]-a.u. range.

Additionally, it can be noted that a χ2 > 1 value is an
evidence that ab initio DMCPs or 2D-MEMD significantly
deviate from experimental results. A refined model is thus
necessary to make full use of experimental data, to identify the
origin of discrepancies and to reconnect with position-space
information.

V. COMPARISON BETWEEN TWO SPACE
REPRESENTATIONS OF THE SPIN DENSITY

Electron densities in position and momentum spaces
describe the electron behavior in a solid from different
representations. However, it is difficult to analyze the chemical
bond formation solely from a momentum perspective. In
point of fact, most reported research make use of Compton
scattering as a mere additional contribution to conduct a
model refinement [39]. It was decided that, in this particular
case, a joint analysis between PND and MCS deserves further
exploration.

We propose here a method to reconsider the connection
between position and momentum representations. Magnetic
properties are expected to mostly result from a single d electron
on the Ti site [2,16]. However, a more thorough picture can be
provided by a momentum-space study which emphasizes the
behavior of the most delocalized unpaired electrons.

As a first approximation to the theoretical atomic spin
population, a Mulliken partitioning analysis [40] yields the
following results {Y: 0.043, Ti: 0.967, O1: −0.006, and O2:
−0.002}. On the experimental result side, PND data [as well
as those from magnetic x-ray diffraction (XMD)] presented
in Ref. [16] have permitted us to reconstruct the spin-density

FIG. 7. Two steps to construct the superposition cube: (1) For a
given unit cell, extract four cubes with 2-Å edges, centered on each
Ti nucleus (4b positions generated by space group symmetries [42]);
(2) add up (and divide by 4) the respective spin-density distributions
in the four cubes to obtain the superposition density cube.

distribution using the pseudoatomic wave-function model [41].
Parameters of the model include spin population for all atoms
Y, Ti, and O. While the contribution of Ti clearly dominates
with the 0.974 electron, experiments confirm the weak addition
from O1, O2, and Y with an estimated value of 0.026.

To emphasize the coherence of experimental results for both
position- and momentum-space representations, we propose a
procedure. The respective contributions of the four Ti atoms
(within the limits of a 2-Å cube) in the primitive cell are
superimposed. The resulting averaged density is hereafter
denoted as the “superposition representation” of the spin
density, 〈ρmag(r)〉Ti, and computed as

〈ρmag(r)〉Ti = 1

4

4∑
n=1

ρmag(r + Rn) (12)

where r is in the 2-Å cube, with −1 � {x,y,z} � 1 Å,
and Rn are the Ti nucleus positions at different sites (as
shown in Fig. 7). The two-dimensional projections of the
superposition spin density for the three planes perpendicular
to the three crystallographic axes, respectively, are computed
and compared with 2D-MEMD results in Fig. 8.

For each plane, the ab initio projected superposition spin
density is slightly larger than its experimental counterpart.
As previously mentioned, this can be attributed to the larger
theoretical unpaired population on the Ti sites. A comparison
of Figs. 3 and 8 highlights the striking similarity of projected
superposition spin density with 2D-MEMDs for all planes.
This method thus provides a possible means of checking the
coherence between PND and MCS experiments. Moreover,
this is visual confirmation that observing d electron density in
momentum space (using Compton scattering data) is possible
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FIG. 8. Projections of the superposition spin density (in μB · Å−2)
onto the three main crystallographic planes. Each row corresponds
to a plane: (a) ab plane, (b) ac plane, and (c) bc plane. Left
column: Periodic ab initio results, with white solid lines indicating
the projections of oxygen positions in superposition space. Middle
column: Experimental data. Right column: Single Ti orbital model.

Contours are at intervals of 0.1 μB · Å
−2

. Color bar scaling is from 0
to 1.2 μB · Å−2.

in much the same way as it is (more commonly) done in
position space. To provide a qualified explanation of this ob-
servation, an isolated Ti model can be used. It is first considered
that the dominant contribution to the spin density comes from
an unpaired electron on a Ti 3d-type orbital. Following a
combination of symmetries suggested by Akimitsu et al. [43],
we use the following expression for the local wave function:

|ψ〉 =
√

0.61|yz〉 +
√

0.39|xz〉 (13)

where the coefficients have been determined by the pseu-
doatomic wave-function refinement on PND data presented
in Ref. [16]. Such a d orbital population anisotropy is
also in excellent agreement with our recent electron-density
modeling based on high-resolution x-ray-diffraction data [44].
A noticeable difference with the construction brought forward
by Akimitsu et al. [43] is that the local y and z axes are reversed
for site 1 and 2 with fractional coordinates: (0.5, 0.5, 0) and
(0, 0.5, 0.5), respectively. The four Ti atoms are identical by
symmetries (4b positions in Pnma) [42], but cannot be super-
imposed by translations only. The local z direction is defined
by the Ti-O′

2 bond, while the local x and y directions are set ap-
proximately along the Ti-O1 and the Ti-O2 bonds, respectively.

In this isolated Ti model, the Ti atomic radial function
for |yz〉 and |xz〉 is that given by Clementi and Roetti [45].
The model superposition density using expression (13) for
each Ti contribution can then be computed as defined in
Eq. (12). Similarly, the total spin density in momentum space
results from a mere addition of the Ti sites’ contributions. The

projections of the superposition density and the momentum
density obtained by this isolated Ti model will be used for
comparison with theoretical and experimental superposition
spin density and 2D-MEMDs.

Figures 8 and 3 (right column) confirm the strong geomet-
rical similarities between the superposition and momentum
distributions. More importantly, a comparison of this result
with the two other columns supports the dominant belief
that a pseudoatomic model is often enough to qualitatively
account for observations in position space. However, from
Fig. 3, it is essential to note that the single Ti model is not
fully adapted to reproduce momentum-space properties. While
the model’s 2D-MEMD (Fig. 3) and its anisotropy (Fig. 4)
exhibit features which are quite comparable in the ac plane
to those found from experiment (or ab initio results), this is
no longer true for the momentum-space spin density projected
onto the ab or bc planes. Obviously, the isolated Ti model is
dominantly affected by discrepancies along the b direction for
which the lack of coupling with the O1 (4c position) atom
appears to have the strongest impact. It can thus be reasonably
claimed that momentum-space properties, which are known
to be more sensitive to delocalized electrons, support the role
played for the unpaired electron by the coupling along the
Ti-O1-Ti chemical bond (close to the b direction). Therefore
it qualifies this bond as a possible ferromagnetic pathway in
YTiO3.

In order to further validate such a mechanism, it becomes
necessary to go beyond the single Ti picture for elaborating a
local wave function. The joint use of PND, XMD, and DMCP
data will thus be essential to refine a more sophisticated model
accounting for the role played by unpaired electrons in the
coupling between the metal and its oxygen atomic neighbors.

VI. CONCLUSION

With the aim of facilitating a possible comparison of
information obtained from polarized neutron diffraction and
magnetic Compton scattering experimental data, a construc-
tion called “superposition density” has been introduced. It
is simply the accumulation of electron-spin densities from
different atomic contributions translated to the same site. It
can be projected onto any given plane. The pertinence of this
construction is supported by periodic ab initio calculations at
the DFT level. Geometrical similarities with 2D-MEMD are
striking and confirm the coherence of experimental results but
additional conclusions can be drawn. An estimate of the ex-
perimental uncertainties propagation through the 2D-MEMD
reconstruction process shows that all observed experimental
features, including those emphasized by momentum-space
anisotropies, bear a significant physical meaning. In particular,
the similarity of 2D-MEMD with superposition spin density
clearly confirms that it provides a momentum-space represen-
tation of unpaired electron occupation in atomic spin orbitals.
This is another demonstration of the results obtained by
Sakurai et al. [8]. On the one hand, an isolated Ti model, using
an optimized linear combination of Slater orbitals on Ti only,
fairly reproduces the superposition spin density for all planes
and reproduces rather well the 2D-MEMD in the ac plane.
On the other hand, the strong sensitivity of momentum-space
observables to delocalized electrons introduces significant
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discrepancies in planes involving the Ti-O1-Ti chemical bond
direction. This very direction is thus identified as playing
a major role in the spin delocalization and possibly the
ferromagnetic coupling of metallic sites.

It can be concluded that a clearer understanding of the
ferromagnetic mechanism pathway can be gained from a
further detailed orbital model, involving both the Ti atom and
its neighbors O1. A more elaborate model, which thus involves
the one-particle spin-density matrix, should be refined jointly
from PND, XRD, XMD, and MCS data and is currently under
development. It is expected that such a refinement should bring
a more robust and deeper description of the subtle mechanisms
at work in ferromagnetic compounds.
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