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We show that, in certain circumstances, exact excitation energies appear as locally site-independent (or flat)
modes if one records the excitation spectrum of the effective Hamiltonian while sweeping through the lattice
in the variational matrix-product-state formulation of the density matrix renormalization group, a remarkable
property since the effective Hamiltonian is only constructed to target the ground state. Conversely, modes that
are very flat over several consecutive iterations are systematically found to correspond to faithful excitations. We
suggest to use this property to extract accurate information about excited states using the standard ground-state
algorithm. The results are spectacular for critical systems, for which the low-energy conformal tower of states can
be obtained very accurately at essentially no additional cost, as demonstrated by confirming the predictions of
boundary conformal field theory for two simple minimal models: the transverse-field Ising model and the critical
three-state Potts model. This approach is also very efficient to detect the quasidegenerate low-energy excitations
in topological phases and to identify localized excitations in systems with impurities. Finally, using the variance
of the Hamiltonian as a criterion, we assess the accuracy of the resulting matrix-product-state representations of
the excited states.
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I. INTRODUCTION

Modern quantum many-body physics relies to a large extent
on numerical simulations. Over the years, the density matrix
renormalization group (DMRG) [1,2] has established itself as
the most powerful tool for strongly correlated one-dimensional
systems. The reformulation of the algorithm in terms of matrix
product states (MPSs) [3,4] has not only brought new insights
in one dimension, but has also boosted the generalization of
the DMRG to higher dimensions, an approach known as tensor
network algorithms.

The DMRG algorithm was first developed as a method
to search for the ground state. To access excited states is in
general significantly more involved. Several approaches have
been developed to address this problem.

If some symmetry can be imposed on the wave function,
and if the excited state of interest is the lowest-energy state
of some symmetry sector, the search for this excited state is
then simply a ground-state search within the corresponding
symmetry sector. In particular, this approach leads to a rather
straightforward calculation of the singlet-triplet gap in quan-
tum antiferromagnets by calculating the lowest-energy states
in the sectors of total magnetization Sz

tot = 0 and Sz
tot = 1.

If, however, symmetry cannot be used to distinguish
excitations, for instance if the Hamiltonian does not preserve
any symmetry or if the excitation lies in the symmetry sector of
the ground state, the algorithm has to be modified significantly.
In conventional DMRG, the way to proceed is to construct
the density matrix not only from basis vectors that appear in
the Schmidt decomposition of the ground state, but also from
basis vectors that appear in the Schmidt decomposition of
low-lying excitations [5–9]. Typically one targets five or fewer
excited states [2]. This approach can also be implemented in
variational MPSs, using tensors that encode mixed states. All
excited states are then calculated together with the ground
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state, but the price to pay is high since the bond dimension
increases very fast with the number of eigenstates.

The MPS representation allows for a significant improve-
ment in that respect: After the construction of the ground state,
one can search for an eigenstate that is orthogonal to the ground
state and has the smallest energy [4,9,10]. Higher excitations
can also be accessed by looking for an eigenstate that is
orthogonal to all previously constructed eigenvectors of the
Hamiltonian. This method is systematic and well controlled,
but the algorithm has to be rerun for each eigenstate. Moreover,
the states should be well converged, otherwise the error will
accumulate in the following runs. So it becomes very heavy if
one wishes to access many eigenstates.

In the present paper, we show that, in certain cases, there
is a much cheaper alternative. It relies on keeping track
of several eigenvalues of the effective Hamiltonian during
DMRG iterations, usually referred to as sweeps. In general,
the Hamiltonian written in the effective basis of the ground
state gives only a poor estimate of the excitation spectrum.
However, in some particular cases, this effective Hamiltonian
gives access to very accurate estimates of excitation energies,
as we demonstrate in three contexts: (i) critical systems,
(ii) in-gap states in topological phases, and (iii) localized
excitations. The central observation is that, in all these cases,
exact excitation energies are essentially completely flat during
part of the sweeps. Quite remarkably, the flat behavior does
not necessarily occur at the center of the system, where the
algorithm is expected to be most accurate; it can also occur
near the edges or close to the impurity.

The calculation of the excitation spectra of critical systems
is perhaps the most important application of this method.
According to conformal field theory, the excitation spectrum
at a critical point forms a conformal tower that is characteristic
of the universality class of the transition and of the underlying
critical theory. Traditionally, the universality class of the
transition is identified by computing the central charge and the
critical exponents of some observables (on-site magnetization,
spin-spin correlations, etc.). The determination of the critical
exponents is, however, extremely sensitive to logarithmic
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corrections if they are present, and the calculation of the central
charge can be affected by strong finite-size effects. Quite
generally, the excitation spectrum contains more information
on the underlying critical theory. It can be used as a useful
complement to the central charge and the critical exponents,
and in cases where those are difficult to extract, the conformal
tower becomes the method of choice [11,12].

The paper is organized as follows. In Sec. II A, we briefly
review the basics of the matrix-product-state formulation of
DMRG, and we put forward the central idea of this paper
about the possibility of extracting excitation energies from
DMRG iterations. In Sec. II B, we benchmark the method on
the transverse-field Ising model, for which the full spectrum of
open chains with free boundary conditions can be calculated
exactly using the Jordan-Wigner transformation. In Sec. III A,
we apply this method to the critical transverse-field Ising
model. By changing the boundary conditions of open chains,
we show that the special structure of the conformal towers
of all the primary fields that appear in the Ising minimal
model can be obtained along these lines, in perfect agreement
with the predictions of boundary conformal field theory
(CFT). Section III B is dedicated to a similar study of another
minimal model: the three-state Potts model. In Sec. IV, we
show that the gap between the low-lying in-gap states can be
extracted in the same way, and we show how the algorithm
can be modified to detect the presence of the edge states at
very low computational cost. In Sec. V, we show that it is also
possible to detect localized excitations around impurities. The
accuracy of the resulting MPS representation of the excited
states is discussed in Sec. VI. The results are summarized and
put in perspective in Sec. VII.

II. THE METHOD

A. Introduction to MPS

We start with a brief reminder of MPS notations and on
the variational optimization of the ground state (DMRG). A
complete and pedagogical introduction to the algorithm can
be found in a recent review [4].

Let us consider a chain of N interacting spins S. The Hilbert
space of the chain grows exponentially fast with the number of
sites as dN , where d is the size of the local Hilbert space: d =
2S + 1. The limitation on the memory restricts the maximal
number of sites for which the quantum state can be written
explicitly to N ≈ 20. The key point of the MPS representation
is to overcome this restriction and to write the state as a product
of local tensors. This can be done since any quantum state of
a bipartite system can be effectively represented in a compact
basis constructed with the Schmidt decomposition. According
to linear algebra, for any rectangular matrix M of dimension
m × n there exists a singular value decomposition (SVD)
M = USV†, where U is of dimension m × min(m,n) and is
left normalized (U †U = I ), V is of dimension n × min(m,n)
and is right normalized (V V † = I ), and S is a diagonal matrix
of dimension min(m,n) with non-negative entries.

Using successive SVDs, any quantum state can be repre-
sented in terms of local three-dimensional tensors. One leg
of each tensor corresponds to the physical (spin) index of
dimension d. The remaining legs are auxiliary: A tensor is
connected to its left and right neighbors by contracting the

FIG. 1. Graphical notations for matrix-product-state representa-
tion. (a) MPS representation of a state |ψ〉 in terms of left- (green) and
right-normalized (blue) tensors and of the diagonal matrix S whose
entries are given by the Schmidt values. The tensors are contracted
over connected bonds. The vertical unconnected bonds correspond to
the physical (spin) index. (b), (c) Graphical representation of left and
right normalizations.

corresponding auxiliary bonds. In practice, the state is given
in the mixed-canonical representation including both left- (Ai)
and right-normalized (Bi) tensors, as shown in Fig. 1(a).
The graphical representation of the normalization condition
is shown in Figs. 1(b)–1(c). Connected lines correspond to the
contracted bonds of the tensors.

The auxiliary bond dimension Rj grows exponentially
with the distance to the edges as Rj = min(dj ,dN−j ). So
the decomposition itself does not reduce the required amount
of memory. However, for strongly correlated systems, the
Schmidt values Si,i decay fast with i, as shown in Fig. 2.
Therefore, the exact decomposition of the matrix can be
replaced by an approximate one: Mk,l ≈ ∑D

i=1 Uk,iSi,iV
†
i,l ,

where the summation index i only runs over a few of the largest
Schmidt values D < Rj = min(m,n). With this approxima-
tion, the bond dimension Rj of the MPS representation is
given by Dj = min(di,dN−i ,D). The number D is known in
the literature as the “number of kept states.” According to the
area law, this number is a constant that does not depend on the
system size for gapped systems. Typically it varies between a
few hundred and a few thousand, which is much smaller than
the size of the total Hilbert space. In critical systems, the decay
of Schmidt values is slower (see Fig. 2 for comparison), and
D depends on the system size.

The search for the ground state consists of finding an MPS
representation of the state |ψ〉 that minimizes the energy:

E = 〈ψ |H |ψ〉
〈ψ |ψ〉 . (1)

The Hamiltonian is itself represented as a matrix product
operator (MPO), a product of local matrices with two auxiliary

FIG. 2. Decay of the Schmidt values for gapped and critical
systems. Here we show singular values computed in the middle of
the spin-1/2 transverse-field Ising chain with N = 100 spins at the
critical point h = 0.5J and inside the gapped phase h = 0.7J .
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FIG. 3. Graphical representation of the total and effective Hamil-
tonians: The row of on-site MPOs (yellow boxes) contracted through
the auxiliary bonds is a dN × dN matrix that represents the total
Hamiltonian. Contracting through all bonds except the physical
indices at sites n and n + 1 gives rise to a local effective Hamiltonian
that acts in a Hilbert space of dimension (dD)2 � dN . The collection
of An and Bn tensors approximate the basis via rotation and truncation.

indices and two physical indices [4]. The algorithm operates
iteratively: While all but two (or a few) tensors of the MPS
are kept constant, a selected couple of tensors are updated by
solving the corresponding eigenvalue problem.

Let us first consider the full MPS with all states kept
so that the auxiliary bond of the MPS has dimension Rj =
min(dj ,dN−j ). The size of the effective Hamiltonian obtained
by contraction of the MPO and MPS around sites n and
n + 1 (as shown in Fig. 3) is equal to min(dn−1,dN−n+1) ×
min(dn+1,dN−n−1) × d2. This means that at the center of
the chain for n = [N/2 − 1,N/2,N/2 + 1] if N is even and
for n = [(N − 1)/2,(N + 1)/2] if N is odd the size of the
Hilbert space in which the effective Hamiltonian operates is
equal to the size of the total Hilbert space of the system.
Thus, the MPS contracted with the MPO does not truncate
the set of basis vectors but only rotates the basis in which
the Hamiltonian is written. This implies that, by keeping
all states in the MPS, (i) one can compute the complete
spectrum by diagonalizing the effective Hamiltonian for sites
n = N/2 − 1, N/2, or N/2 + 1 when N is even or for
sites n = (N − 1)/2 and n = (N + 1)/2 when N is odd, and
(ii) since this calculation is exact, the values of the energies
at these points are equal. Thus, the energies as a function of
iterations are completely flat in the middle of the chain, as can
be seen in Fig. 4. Note that the above statements hold true
for both gapless and gapped systems. Due to the limitation of
numerical precision, highly local Hamiltonians, e.g., chains
of weakly coupled dimers, are exceptions. For instance, for a
spin-1/2 chain with alternating bonds, the coupling between
the dimers should exceed Jweak/Jstrong � 10−3 in order to
compute the exact spectrum for N = 16 spins. This comes
from the fact that, for highly local Hamiltonians, the Schmidt
values decrease immediately to almost-zero values that are
of the order of machine precision, and thus the vectors that
correspond to these states have nearly zero weight in the basis
of the effective Hamiltonian. Interestingly, a few (four or five)
excited states can still be captured within machine precision
even for Jweak/Jstrong = 10−6.

By truncating the bond dimension in SVD, we reduce the
number of basis vectors. The basis formed by on-site states

FIG. 4. Results of the diagonalization of the effective Hamil-
tonian with all D = 256 kept states for the transverse-field Ising
chain of Eq. (2) with J = −1 and h = 0.7, in the gapped phase
with a nondegenerate ground state. (a) Energy of the lowest 50
states as a function of iteration during left-to-right half sweep. The
exact results are provided for reference and shown with grey lines.
(b) The difference between the energy obtained by diagonalizing the
effective Hamiltonian and the exact values of the energy as a function
of iteration. The difference vanishes for three points in the middle of
the chain for all energy levels.

is no longer optimal. Instead, linear combinations of the basis
vectors should be used. The tensors A and B constructed at
each step perform a basis rotation in such a way that the new
basis becomes the best set of basis vectors for the selected state:
the ground state. Thus, the effective Hamiltonian diagonalized
at each iteration can be understood as the original Hamiltonian
written in a rotated and truncated basis of dimension (Dd)2

(see Fig. 3).
In terms of the truncated basis vectors, the slow decay of

the singular values in critical systems means that more vectors
possess essentially nonzero weight in the basis. Then more
physical states can be efficiently constructed from the chosen
set of basis vectors. Thus, one might expect that the truncated
basis can be good enough to describe a few low-lying excited
states, and the diagonalization of the original Hamiltonian
written in this truncated basis could provide good estimates
of the corresponding excitation energies. Moreover, the size
of the effective basis (Dd)2 remains the same along the chain
except for very close to the edges. Then intuitively, if the
size of the basis is sufficient to describe the excited state, the
energy of this state will be flat while iterating along the chain,
in complete analogy with the flattening of the exact spectrum
in the three middle points when all states are kept. The rest of
the paper is devoted to testing this simple idea in a number of
systems ranging from critical systems to gapped topological
phases.

Throughout the paper, and unless specified otherwise, the
simulations are done with a variable bond dimension D that
increases during the simulation. We start with relatively small
bond dimension in the range 22 < Dinf < 44 in infinite-size
DMRG, and we increase it by a factor of 2.25 during the
warmup. Therefore, after a warmup, the bond dimension is
in the range 50 < Dstart < 100. Then we increase the bond
dimension linearly with each half sweep up to its maximal
value Dmax, which is specified for each model. Regarding the
Lanczos diagonalization [13] of the effective Hamiltonian, we
typically perform at most D + 10n Lanczos iterations when we
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FIG. 5. Energy of the 30 low-energy states in the critical Ising
model in a transverse field with N = 100 sites as a function of
iterations. The flattening of the energies in the middle of the chain is
an indicator of convergence. The periodic increase of the energy that
occurs close to the chain boundary is the result of the reduced Hilbert
space by MPS construction. Exact results are provided for reference
and shown with grey lines. The plot starts with the first full sweep.
The result from infinite-size DMRG and warmup are not shown.

diagonalize the effective Hamiltonian if we target n low-lying
states.

B. Excitation spectrum of the effective Hamiltonian:
A simple test case

In order to test this idea, we consider as a toy model the
transverse-field Ising model:

H = −J
∑

i

Sx
i Sx

i+1 + hSz
i , (2)

where S
x,z
i are spin-1/2 operators at site i. A positive (negative)

coupling constant J corresponds to the antiferromagnetic
(ferromagnetic) Ising model. In both cases, a quantum phase
transition occurs at the critical values of the magnetic field
h = ±J/2. The underlying conformal field theory is discussed
in detail in the next section.

On a finite chain with open boundary conditions, the
Hamiltonian (2) can be rewritten as a quadratic form of Fermi
operators using the Jordan-Wigner transformation. Following
Refs. [14,15], the eigenvalue problem in the Hilbert space of
dimension 2N can be reduced to the diagonalization of an
N × N matrix to find the elementary excitations. This can be
performed exactly even for very long chains. The full spectrum
can then be obtained by combining elementary excitations. The
resulting spectrum is taken as a reference for the comparison
with the DMRG results (gray lines in Figs. 5 and 6).

When performing DMRG simulations for the transverse-
field Ising model, we typically set Dinf = 22, Dstart = 50,
and Dmax = 200. According to Fig. 3, this corresponds to a
truncation error of about 10−14 or lower. We performed up to
500 Lanczos iterations while diagonalizing the Hamiltonian.
An insufficient number of Lanczos iterations results in some
noise that affects the upper levels of the energy spectrum, as
discussed in Appendix C.

In Fig. 5, we show the 30 lowest-energy states of the critical
Ising model computed by Lanczos diagonalization [13] of the
effective Hamiltonian in the DMRG calculation of the ground

FIG. 6. Excitation energies obtained during one DMRG sweep
in the (a)–(e) critical and (f), (g) gapped transverse-field Ising model
for an open chain with N = 100 sites. Exact results are provided
for reference and shown with grey lines. (a) DMRG results at the
center of the chain agree with exact energies. (b)–(e) Enlarged parts
of (a) around different excitation levels. The ordinal numbers of the
states are indicated in each plot, with 1 corresponding to the ground
state. The number at the left side of plots (b)–(e) indicates the energy
window around the selected energy level. (f), (g) Far from criticality,
DMRG results do not reproduce the exact energy levels: some states
are missing, and strong oscillations appear.

state as a function of the sweeps. This spectrum exhibits
several typical remarkable features. First of all, in the middle
of the chain, several levels are completely flat during a half
sweep. By contrast, a sharp increase of all energies except
the ground-state energy occurs close to the chain boundary.
This comes from the fact that the Hilbert space is too small
at the edges by MPS construction. Second, the interval over
which a given level is flat increases in subsequent sweeps,
while the energy itself does not change significantly. Third,
more and more levels become flat upon increasing the number
of sweeps. Finally and most importantly, the energies that are
stabilized in the flat portions match very accurately the exact
results obtained with the Jordan-Wigner transformation, with
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no state missing, so that the low-energy part of the conformal
tower is very well reproduced by our DMRG calculation. Even
when states are quasidegenerate, they are properly captured
[see Figs. 6(b)–6(e)].

By contrast, this is not the case when the system is not
critical. In Fig. 6, we compare the results obtained at the critical
point with those obtained away from the critical point, below
hc, where the spectrum is gapped with a twofold-degenerate
ground state, and above hc, where the spectrum is gapped
with a nondegenerate ground state. The results obtained for
these gapped spectra differ from those obtained for the critical
system in many respects. First of all, apart from the in-gap
state below hc, the energy levels are never really flat, apart
maybe from the first one, but even that one has a residual
curvature definitely larger than those of the flat states of the
critical case. Second, most of the levels are very noisy, and
this noise is intrinsic, i.e., not due to the Lanczos truncation.
Third, the comparison with the exact spectrum is rather poor.
Many states are missing, and the energies around the center
are in general not really close to an exact eigenstate.

We think that the difference comes from the very different
nature of the excitations in both cases. In gapped phases,
low-lying states can be significantly different from each other
and can even belong to different symmetry (here parity)
sectors, requiring essentially different sets of basis vectors.
By contrast, at the critical point, the excitation spectrum is
obtained by applying some primary fields and descendants on
the ground state. Therefore, it is natural that the basis obtained
from the ground state also describes the excited states with
high accuracy. This hypothesis agrees with the observation
made by Läuchli [16] that conformal towers for different
critical models can be extracted via the entanglement entropy
calculated in the ground state. Both the results of Ref. [16] and
the present results show that the ground state contains not only
the central charge and the critical exponents, but essentially
all the information about the critical theory.

Alternatively, a poor convergence of excited states in
gapped systems can be explained by the finite size of the MPS.
As pointed out above, the Schmidt values decay exponentially
fast in the gapped system and the number of states with weight
above the machine precision is relatively small. Thus, the basis
chosen for the ground state might not be complete enough to
describe the excitations. An exact MPS representation (e.g.,
Affleck-Kennedy-Lieb-Tasaki (AKLT) state) and highly local
Hamiltonians (e.g., decoupled dimers discussed above) are
extreme cases of restricted MPS basis. According to the area
law the entanglement entropy scales as S ∝ Nd−1 and the
number of nonzero Schmidt eigenvalues in a one-dimensional
system (d = 1) is constant with the system size. In general
in critical systems the entanglement entropy has logarithmic
corrections to the area law and scales with system size as
∝ log N . It implies that when the Schmidt values decay too
fast on a small system, the excitations cannot be extracted
properly; sometimes the problem can be resolved by increasing
the system size.

In any case, what is really interesting from a practical point
of view is that there is a one-to-one correspondence between
eigenenergies that are completely flat during a portion of the
sweep and exact eigenenergies of the system: In the critical
system, flat energies reconstruct exactly and precisely the

entire conformal tower with no energy missing, while in the
gapped phases, the eigenenergies are never really flat, apart
from the ground-state energy (which is of course exact) and
possibly the in-gap state (see Sec. IV). This suggests that
looking for flat eigenenergies of the effective Hamiltonian
during sweeps might be a very economical way of identifying
excited states. As we now demonstrate, this actually works in
many different situations.

III. CONFORMAL TOWERS OF CRITICAL MODELS

A. Ising model in a transverse field

In this section, we continue the investigation of the critical
transverse-field Ising model given by the Hamiltonian of
Eq. (2). We concentrate on open chains with different boundary
conditions, and we use DMRG to extract the conformal
towers that we compare with the predictions of boundary CFT.
Apart from the case of free boundary conditions, the model
cannot be mapped on free fermions with a Jordan-Wigner
transformation.

The critical Ising model is described in the context of CFT
by the minimal model defined by (p,p′) = (4,3) [17,18]. A
brief review of the general properties of the minimal models
is included in Appendix A. The central charge is given by
c = 1 − 6(p − p′)2/pp′ = 1/2. This minimal model has three
operators: the identity I with conformal dimension h1,1 = 0,
the spin operator σ with h1,2 = 1/16, and the energy density
ε with conformal dimension h2,1 = 1/2.

The finite-size spectra of the critical Ising model on an open
chain with different boundary conditions have been worked out
by Cardy [19]. For free boundary conditions, the excitation
spectrum is the superposition of the I and ε conformal towers.
The two towers appear separately when the edge spins are
fixed: the identity conformal tower I is realized for ↑,↑ (and
↓,↓) boundary conditions, while the ε one is realized for ↑,↓
(and ↓,↑) boundary conditions. Finally, the σ conformal tower
is induced by mixed boundary conditions that fix the spin at
one edge to be either ↑ or ↓ while the spin at the other edge
remains free.

The multiplicities of the excited states can be read out from
the characters of these conformal towers, which have first been
calculated in Ref. [20]. Their expansions up to order 8 are listed
below for convenience:

χI = q−1/48(1 + q2 + q3 + 2q4 + 2q5

+ 3q6 + 3q7 + 5q8 + · · · ), (3)

χε = q1/2−1/48(1 + q + q2 + q3 + 2q4 + 2q5

+ 3q6 + 4q7 + 5q8 + · · · ), (4)

χσ = q1/16−1/48(1 + q + q2 + 2q3 + 2q4 + 3q5

+ 4q6 + 5q7 + 6q8 + · · · ). (5)

The terms inside the parentheses give the structure and the
multiplicities of the excitation spectrum: a term mqn means
that the nth energy level has multiplicity m. The ground state
corresponds to n = 0. Accordingly, the scaling of the ground
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FIG. 7. Finite-size scaling of the energies of the critical Ising model in open chains with different boundary conditions: (a), (e), (i) free at
both edges; (b), (f), (j) fixed with both edge spins pointing up; (c), (g), (k) fixed with one edge spin pointing up and the other pointing down;
and (d), (h), (l) fixed at one edge and free at the other one. (a)–(d) Finite-size scaling of the ground-state energy after removing the ground-state
energy in the thermodynamic limit ε0 and the boundary terms ε1. (e)–(h) Conformal towers of the excitation spectra. Blue dots are the DMRG
data for n ≡ (En − E0)/(πvN ) with v = vIsing = 1/2. The CFT predictions are shown with grey lines for reference. The multiplicities of the
levels are indicated on the right of each tower. (i)–(l) Finite-size scaling of the excitation energies. Blue dots are DMRG data, and red, green,
and magenta lines are conformal towers for the identity I , energy ε, and spin σ fields, respectively.

state of a given tower is given by

E = ε0N + ε1 + πv

N

[
− 1

48
+ x

]
, (6)

where ε0 and ε1 are nonuniversal constants and x is the
corresponding conformal dimension: x = hI = 0 for the
identity, x = hε = 1/2 for ε, and x = hσ = 1/16 for σ con-
formal towers. When the excitation spectrum is given by the
superposition of several conformal towers, the corresponding
characters are added. In that case, the x that appears in
the finite-size scaling of the ground-state energy is equal
to the smallest conformal dimension. For free boundary

conditions, since hI < hε , the ground state belongs to the I

conformal tower and its energy scales according to Eq. (6) with
x = 0.

We have computed the excitation spectrum of the critical
Ising model in open chains with different boundary conditions
with DMRG by following many eigenvalues of the effective
Hamiltonian during sweeps. The resulting finite-size spectra
are shown in Fig. 7. Figures 7(a)–7(d) show the scaling of the
ground-state energy for different boundary conditions. The
nonuniversal constants ε0 and ε1 and the velocity v are treated
as fitting parameters. The values of the velocities vfree = 0.491
and v↑↑ = v↑↓ = 0.509 coincide within 2% with the exact
value vIsing = 1/2.
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Figures 7(e)–7(h) keep track of the levels of the conformal
towers obtained numerically by reporting the value of n ≡
(En − E0)/(πvIsingN ). The DMRG results (dots) are in good
agreement with CFT predictions (grey lines). Note that, due
to the absence of logarithmic corrections in the Ising model,
the structure of the conformal tower is independent of the
system size and can already be observed for very small system
sizes (N ≈ 30–40). The multiplicities of each level observed
numerically are shown on the right of Figs. 7(e)–7(h). They
coincide with the expansion of the characters of Eqs. (3)
and (5).

The finite-size scaling of the gaps is shown in Figs. 7(i)–7(l).
They contain essentially the same information as the three
figures above. The DMRG results for up to 20 states are marked
with blue dots while red, green, and magenta lines show the
CFT prediction for the scaling of the I , ε, and σ conformal
towers, respectively. The agreement is excellent.

Previously, the three lowest levels of the conformal towers
of the critical Ising model were computed numerically by
Evenbly and Vidal [21] using the scale-invariant multiscale
entanglement renormalization ansatz (MERA). Our results
agree with theirs, but without much numerical effort we have
been able to get many more states. This flexibility can be useful
in general to distinguish between different boundary conformal
field theories. For instance, the three lowest excitation energies
in the conformal towers of ε [given by Eq. (4)] and σ [given
by Eq. (5)] have the same degeneracy, and the two conformal
towers only differ starting from the fourth excitation level. The
conformal towers (up to 12 levels) have also been obtained
from the entanglement spectrum in chains with free and
periodic boundary conditions by Läuchli [16].

B. The quantum three-state Potts model

The next minimal model that we probe numerically is
the three-state Potts model, which is a generalization of
the transverse-field Ising model to a system with a local
Hilbert space of dimension d = 3. For convenience, we label
single-particle states by A, B, and C. The model can be defined
by the Hamiltonian [22]

HPotts = −J

N−1∑
i=1

3∑
μ=1

P
μ

i P
μ

i+1 − h

N∑
i=1

Pi, (7)

where P
μ

i = |μ〉ii〈μ| − 1/3 tends to project the spin at site
i along the μ direction while Pi = |λ0〉ii〈λ0| − 1/3 tends to
align spins along the direction |λ0〉i = ∑

μ |μ〉√3. The first
term in the Hamiltonian plays the role of the ferromagnetic
interaction, while the second one is a generalized transverse
field. The model is critical and integrable for h = J . The
critical theory is again described by a minimal model of CFT
with (p,p′) = (6,5) [18,23,24]. Its central charge is given by
c = 4/5. This minimal model has ten primary fields, with the
conformal dimensions listed in Table I.

The small-q expansion of the characters for these ten
fields is provided in Appendix B. Six of them appear in
the description of the operators I of zero dimension, σ of
dimension 1/15, ε of dimension 2/5, and ψ of dimension 2/3.

TABLE I. Conformal dimension hr,s of the fields φ(r,s) in the
critical three-state Potts model. Conformal dimensions that just repeat
values realized for smaller integers are not included.

s = 1 s = 2 s = 3

r = 1 0 1/8 2/3
r = 2 2/5 1/40 1/15
r = 3 7/5 21/40
r = 4 3 13/8

The corresponding characters are

χI = χ1,1 + χ4,1, χε = χ2,1 + χ3,1,

χσ = χσ † = χ2,3, χψ = χψ† = χ1,3. (8)

The small-q expansion of these characters up to order 6 is
given by

χI = q−1/30(1 + q2 + 2q3 + 3q4 + 4q5 + 7q6 + · · · ), (9)

χε = q−1/30+2/5(1 + 2q + 2q2 + 4q3 + 5q4 + 8q5

+ 11q6 + · · · ), (10)

χσ = q−1/30+1/15(1 + q + 2q2 + 3q3 + 5q4 + 7q5

+ 10q6 + · · · ), (11)

χψ = q−1/30+2/3(1 + q + 2q2 + 2q3 + 4q4 + 5q5

+ 8q6 + · · · ). (12)

The appearance of different conformal towers under various
applied boundary conditions was studied by Cardy [19].
Our numerical results for all possible boundary conditions
obtained along the same lines as for the Ising model are
reported in Figs. 8–10. These simulations have been performed
with Dinf = 24, Dstart = 54, and Dmax = 200. The results
agree very well with Cardy’s predictions, with occasionally
significant finite-size effects. In the rest of this section, we
perform a detailed comparison between Cardy’s predictions
and our numerical results.

In an open chain with free boundary conditions at both
ends, the excitation spectrum corresponds to the superposition
of three conformal towers given by χI ⊕ χψ ⊕ χψ† . However,
the characters of the field ψ and its conjugate are equal: χψ† =
χψ . So the spectrum looks like the superposition of the I

conformal tower with two copies of the ψ conformal tower.
The three towers split under fixed boundary conditions. If only
the local state A is allowed at both edges (boundary condition
of A-A type), the excitation spectrum is given by the identity
conformal tower I . When the allowed state is different at the
edges, the boundary conditions are then A-B and A-C, and in
both cases the excitation spectrum is given by the conformal
tower of ψ , leading to two copies of this conformal tower
in the spectrum. Note that the conformal towers for free and
periodic boundary conditions were obtained previously from
entanglement spectra by Läuchli [16].
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FIG. 8. Finite-size scaling of the energies of the critical three-
state Potts model in open chains with different boundary conditions:
(a), (d), (g) free; (b), (e), (h) fixed with the same state at both
edges; and (c), (f), (i) fixed with different states on the left and right
edges. (a)–(c) Finite-size scaling of the ground-state energy after
removing the ground-state energy in the thermodynamic limit ε0 and
the boundary terms ε1. (d)–(f) Conformal towers of the excitation
spectra. Blue dots are the DMRG data for n ≡ (En − E0)/(πvN ) with
v = vA-A = 0.857. The CFT predictions are shown with grey lines for
reference. The multiplicities of the levels are indicated on the right of
each tower. (g)–(i) Finite-size scaling of the excitation energies. Blue
dots are DMRG data, and red and blue lines are conformal towers for
I and ψ fields, respectively.

The finite-size scaling of the ground state is given by

E = ε0N + ε1 + πv

N

[
− 1

30
+ x

]
, (13)

where ε0 and ε1 are nonuniversal constants. In the case of
free and A-A boundary conditions, the ground state belongs to
the conformal tower I with conformal dimension x = hI = 0,
while the spectrum of A-B (and A-C) boundary conditions
belongs completely to the ψ conformal tower with conformal
dimension x = hψ = 2/3. DMRG results on the ground-state
scaling are summarized in Figs. 8(a)–8(c). ε0 and ε1 together
with the velocity v are treated as fitting parameters. The
obtained values of the velocities are vfree = 0.827, vA-A =
0.857 and vA-B = 0.862, in reasonable agreement with each
other.

Figures 8(d)–8(f) keep track of the levels of the conformal
towers obtained numerically by reporting the value of n ≡
(En − E0)/(πvA-AN ). The DMRG results (dots) are in good
agreement with CFT predictions (grey lines). Note that the

FIG. 9. Finite-size scaling of the energies of the critical three-
state Potts model in open chains with partially fixed boundary
conditions: (a), (d), (g) only two states are allowed at the edges and
the excluded state is the same for left and right edges; (b), (e), (h) only
two states are allowed at the edges and the excluded state is different
for left and right edges; and (c), (f), (i) only two states are allowed at
one edge while the other edge remains free. (a)–(c) Finite-size scaling
of the universal term in the ground-state energy. (d)–(f) Conformal
towers of the excitation spectra. Blue dots are the DMRG data for
n ≡ (En − E0)/(πvN ) with v = vA-A = 0.857. The CFT predictions
are shown with grey lines for reference. The multiplicities of the
levels are indicated on the right of each tower. (g)–(i) Finite-size
scaling of the excitation energies. Blue dots are DMRG data, and
lines of different colors correspond to different conformal towers.

structure of the conformal towers does not depend on the
system size and the excitation spectra do not reveal finite-
size corrections. The multiplicities of each level observed
numerically are shown on the right of Figs. 7(d)–7(f) and
coincide with the expansion of the characters of Eqs. (9)–(12).
Finally, the finite-size scalings of the excitation energies for
different boundary conditions are provided in Figs. 8(g)–8(i).
The DMRG results for up to 20 states are marked with blue
dots, while red and blue lines show the CFT prediction for the
scaling of I and ψ conformal towers, respectively.

According to Cardy’s prediction [19], the conformal towers
of ε and σ appear under partially fixed boundary conditions,
when two states are allowed at the edges but not the third
one. When the same pair of states is allowed at both edges
(boundary conditions of AB-AB type), the energy spectrum
is described by the superposition of the conformal towers of
I and ε [see Figs. 9(d) and 9(g)]. The ground state scales
according to Eq. (13) with x = hI = 0 as shown in Fig. 9(a).
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FIG. 10. Finite-size scaling of the energies of the critical three-
state Potts model in open chains with mixed boundary conditions: (a),
(d), (g) only two states are allowed at one edge and only one of those
is allowed at the other edge; (b), (e), (h) only two states are allowed at
one edge and the third one is the only state allowed at the other edge;
and (c), (f), (i) only one state is allowed at one edge while the other
edge remains free. (a)–(c) Finite-size scaling of the universal term in
the ground-state energy. (d)–(f) Conformal towers of the excitation
spectra. Blue dots are the DMRG data for n ≡ (En − E0)/(πvN )
with v = vA-A = 0.857. The CFT predictions are shown with grey
lines for reference. The multiplicities of the levels are indicated on
the right of each tower. (g)–(i) Finite-size scaling of the excitation
energies. Blue dots are DMRG data, and lines of different colors
correspond to different conformal towers.

When different pairs of states are allowed at the two edges
of a chain (boundary conditions of AB-AC type), the energy
spectrum is a superposition of the σ and ψ conformal towers
[see Figs. 9(e) and 9(h)]. The ground state scales according
to Eq. (13) with x = min(hσ ,hψ ) = hσ = 1/15 as shown in
Fig. 9(b).

Surprisingly, the excitation levels that belong to σ or ε

towers exhibit strong finite-size effects, while towers I and ψ

remain unaffected. It can be most clearly observed in Figs. 9(g)
and 9(h). The discrepancy between the numerical data and the
CFT predictions for σ and ε towers is only significant for
small systems N < 100 and disappears upon approaching the
thermodynamic limit, for which CFT predictions apply.

The velocity extracted from the scaling of the ground-state
energy for AB-AB boundary conditions vAB,AB = 0.857 is
in good agreement with previous results. By contrast, in the
case of AB-AC boundary conditions the ground-state energy
scaling gives a velocity vAB-AC = 1.05, more than 20% off the

velocities obtained with other boundary conditions. Since the
ground state belongs to the σ conformal tower, this discrepancy
is probably a finite-size effect.

When the applied boundary condition fixes one edge and
partially fixes the second one, the energy spectrum is described
by only one tower. If the allowed states at the two edges are
different (A-BC boundary), the whole spectrum belongs to
the ε conformal tower; otherwise the excitation spectrum is
described by the σ conformal tower (A-AB boundary). The
ground-state energy scales according to Eq. (13) with x =
hε = 2/5 [Fig. 10(b)] and x = hσ = 1/15 [Fig. 10(a)]. As
in the case of partially fixed boundary conditions (AB-AB
and AB-AC), strong finite-size effects appear in both σ and ε

conformal towers [Figs. 10(g) and 10(h)].
In order to see the towers for the remaining four primary

fields, namely for φ(1,2), φ(2,2), φ(3,2), and φ(4,2), the boundary
conditions should be fixed or partially fixed only at one
edge, the spin remaining free at the other edge [19]. The
superposition of the towers with conformal dimensions h2,2 =
1/40 and h3,2 = 21/40 appears under AB-free boundary
conditions. The other two towers with h1,2 = 1/8 and h4,2 =
13/8 are superposed under A-free boundary conditions. In the
case of AB-free boundary conditions, the ground-state energy
scales according to Eq. (13) with x = h2,2 = 1/40. This leads
to a very small numerical prefactor for the universal term
−πv/120N [Fig. 9(c)] and therefore requires a much higher
precision for the ground-state energy. Moreover, finite-size
effects are significant in all states that belong to the χ2,2 tower
including the ground state. These two factors lead to a poor esti-
mate of the velocity, vAB-free ≈ 0.2. Numerically, the calculated
conformal towers χ2,2 and χ3,2 are shown in Figs. 9(f) and 9(i).
Significant finite-size effects appear in both towers. However,
by contrast to the velocity extracted from the ground-state
energy scaling, the velocities extracted from the excitation
energy of any of the 20 lowest excited states agree within 8%
with the reference value vA-A ≈ 0.857. This indicates that the
finite-size effects partially cancel out in the difference between
excited energies and the ground-state energy.

If the spin is fixed only at one edge (A-free boundary
condition), x = h1,2 = 1/8 in the ground-state energy scaling
of Eq. (13) [Fig. 10(c)]. The calculated conformal towers
match the theoretical predictions for χ1,2 and χ4,2. Note that
the finite-size discrepancy does not appear in these two towers
and the structure of the energy spectrum is clear starting from
small systems [Figs. 10(f) and 10(i)].

As an example of convergence, we show in Fig. 11 the 21
lowest energy levels as a function of iterations for the A-free
boundary conditions. As for the Ising model, a structure typical
of a conformal tower emerges from the energy levels that are
flat at the center. Remarkably, the nonsymmetric boundary
conditions are reflected in the convergence. The interval over
which the excitation energy is poorly estimated is significantly
larger close to the left fixed edge than close to the right free
one. Since only one state is selected at the left edge, the number
of basis states with essentially nonzero weight in the ground
state of the left block is, roughly speaking, d times smaller than
the number of basis vectors with nonzero weight in the case of
free boundary conditions. It is thus not surprising that in the
larger effective basis the excited states are better captured than
in the reduced one.
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FIG. 11. Energy of the ground state and of 20 low-lying excited
states in the critical three-state Potts model as a function of iterations.
The results are obtained for open chains with N = 100 spins with
mixed boundary A-free conditions: at the left edge (site 1) the state
is fixed while at the right edge (site N ) the boundary spin remains
free. The flattening of the energies in the middle of the chain is taken
as an indication of convergence. A periodic increase of the energy
occurs close to the chain boundary and is the result of the reduced
Hilbert space by MPS construction. Remarkably, the boundary effect
on the convergence disappears faster close to the free edge than in the
vicinity of the fixed one.

To summarize this section, keeping track of the spectrum
of the effective Hamiltonian during sweeps appears a cheap
and reliable way of accessing the conformal tower of critical
systems. This method has allowed us to confirm Cardy’s
predictions regarding the conformal towers of both the
transverse-field Ising and three-state Potts models under all
types of boundary conditions with very high accuracy and at
moderate numerical cost.

IV. LOW-LYING IN-GAP STATES
IN TOPOLOGICAL PHASES

In addition to critical systems, we can also expect this
method to work well for in-gap states, as suggested by
the results we have obtained for the transverse-field Ising
model at h < hc, where the twofold-degenerate ground state
of the thermodynamic limit shows up as two very flat
quasidegenerate states [see Fig. 6(g)]. Let us check this by
looking at a case where the degeneracy is of direct topological
nature, the spin-1 Heisenberg chain [25]:

H = J

N−1∑
i=1

Si · Si+1, (14)

where Si are spin-1 operators. In the following, we set J =
1. The topologically nontrivial nature of the Haldane phase
implies the existence of spin-1/2 edge states [26,27]. The
coupling between these edge states decays exponentially with
the size of the chain, and accordingly the model is expected to
have two low-lying states below the bulk gap, a singlet and a
triplet (known as Kennedy triplet [26]), the singlet being below
the triplet for even chains and above it for odd chains.

By targeting several eigenvalues of the effective Hamilto-
nian, we have been able to extract the excitation energy of the

FIG. 12. Ground-state and excitation energies calculated in the
sectors Sz

tot = 0 (blue) and Sz
tot = 1 (red) in an open Haldane chain

with (a) N = 100 and (b) N = 101 sites. (c), (d) Enlarged parts of
(a) and (b) close to the ground-state energy.

low-lying in-gap state with sufficiently high precision, while
the rest of the spectrum remains unphysical [see Figs. 12(a)
and 12(b)]. The exponentially small gap to the low-lying
in-gap states requires one to keep a relatively large number of
states. However, as shown in Figs. 12(c) and 12(d), when the
number of states is large enough and the effective Hamiltonian
is far enough from the edges, the energy as a function
of iterations becomes completely flat, exactly like for the
excitation spectrum of critical systems.

Since, for an even number of sites, the ground state of the
model is a singlet and the low-lying in-gap state is a triplet,
the energy of the first excited state in the sector of zero total
magnetization Sz

tot = 0 can be checked by comparing it to that
of the lowest-energy state in the sector Sz

tot = 1 in Fig. 12(c),
and the agreement is very good as soon as the energy of that
state is sufficiently flat.

Of course, the real worth of this method shows up when
the first excited state cannot be calculated simply as the
ground state in a different symmetry sector. For instance, in the
Haldane chain with an odd number of sites, where the ground
state is a triplet and the in-gap state is a singlet, this in-gap
state is only accessible as the first excited state in the sector of
Sz

tot = 0. The results for N = 101 are shown in Figs. 12(b) and
12(d). To check the value of the gap in the case of odd chains,
we have calculated it for several system sizes, and we have
compared it with the better-controlled results of even chains.
As expected, all these gaps fall on a single curve consistent
with 
 ∝ e−L/ξ with ξ 
 6, a rather stringent confirmation of
the accuracy of our results for odd chains.
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FIG. 13. Transformation of an open system with edge states (left)
into a system where two quasidecoupled spins are brought next to each
other (right). (a), (c) valence-bond solid (VBS) sketches. (b) MPS
tensor network for (a). The tensor network for (c) can be obtained
either (d) by shift of the MPS with respect to the MPO or (e) by
breaking a selected bond in the MPO for a periodic Hamiltonian.
From the physical point of view, (d) and (e) are equivalent. However,
the implementation sketched in (e) has lower complexity.

Interestingly, the idea of following the excitation spectrum
during sweeps can also be used to show directly that this in-gap
state is indeed the result of the coupling between emergent
spin-1/2 degrees of freedom that are localized close to the
edge. The standard way of proving this consists of calculating
the excited state explicitly and in computing observables in
that state, for instance the local magnetization if this state is
a triplet [5,28–30]. The basic idea behind the alternative we
propose is that, if we were able to construct an MPS that
does not start at the edge so that the Hilbert space of the
effective Hamiltonian is not small close to the edge, we might
be able to follow the first excitation close to the edge and keep
track of the convergence as a function of the position of the
effective Hamiltonian. This could be achieved by shifting the
MPS with respect to the MPO as shown in Fig. 13(d). It turns
out to be more efficient to reformulate this problem in terms
of a periodic Hamiltonian with one broken bond, as shown in
Fig. 13(e). To be more specific, we include in the MPO with
open boundary conditions an additional interaction between
the first and last sites represented as a long connecting line in
Fig. 13(c). Although this increases the auxiliary (horizontal)
bond dimension of the MPO from 5 to 8, the MPOs on the first
and last sites remain three-dimensional tensors, and not four
dimensional. Physically, there is a one-to-one correspondence
between Figs. 13(d) and 13(e), but the complexity is smaller for
the latter case. Going from Figs. 13(b) to 13(d) the complexity
increases by a factor of 5, while going from Figs. 13(b) to 13(e)
it increases only by a factor of 1.6.

We have applied this idea to the Haldane chain with
N = 100 sites with periodic boundary conditions (i.e., with
connected edges) and with a broken bond between the 25th and
26th sites, sufficiently far from the edges, where the Hilbert
space is too small, and from the middle of the chain, where
the edge excitations could in principle be mixed with a bulk
one. As expected, the singlet-triplet edge excitation is then
seen in Fig. 14(a) as a local excitation of the bond (25,26).
This local excitation can be captured immediately with the
effective Hamiltonian, even if the bond dimension is small
(D < 50). Although the values of the energies are less precise
than in the previous case because of the slower convergence of

FIG. 14. (a) Ground-state and excitation energies sectors of
Sz

tot = 0 (blue) and Sz
tot = 1 (red) in a periodic Haldane chain with

N = 100 sites and one broken bond between the 25th and 26th sites.
(b) Enlarged part of (a) around the ground-state energy. The energy
of the first excited state is flat over seven spins in the vicinity of the
broken bond.

DMRG for periodic systems, the energy of the first excitation
is completely flat over six or seven spins in the vicinity of
the broken bond. This means that (i) the excitation is well
localized in the vicinity of the broken bond and (ii) the energy
is computed exactly when the rest of the tensor network—the
environment—is fixed. Thus, the decrease of the energy of
the in-gap state is due to the variational optimization of the
environment defined by the ground state. As a confirmation,
one can see in Fig. 14(b) that the big step in the energy of the
first excited state corresponds to a big step of similar magnitude
in the ground-state energy.

To summarize, in-gap states in topological phases appear to
be accessible to this method of keeping track of the spectrum
of the effective Hamiltonian during sweeps, while the rest of
the spectrum is not. In addition to giving access to a very
accurate estimate of its energy, this method also gives insight
into the nature of the in-gap state if an MPS with sufficient
bond dimension close to the edge is used. Indeed, in that case
the low-lying state shows up very quickly as a function of the
bond dimension D as a flat state around the edge. Beyond the
case of edge states, for which alternative methods have long
been used, this observation suggests that localized excitations
around impurities might be conveniently accessed using the
simple ground-state DMRG algorithm provided one keeps
track of the sweeps close to the impurities. This is the subject
of the next section.

V. EXCITATIONS NEAR DEFECTS AND IMPURITIES

The effect induced by impurities in quantum chains has
been studied in the past using DMRG in several ways. Some
properties can be extracted from the ground state, e.g., the
Friedel oscillations induced by defects [31] or the phase
sensitivity of the ground-state energy [32]. However, in many
practical applications, it is important to know how the energy
gap changes in the presence of impurity. The problem is easy
to solve when the ground state and the excitation induced by
the impurity can be distinguished by their quantum numbers
[33,34]. When it is not the case, the energy spectrum is
traditionally extracted by using the mixed-state approach in
conventional DMRG [33,35].

As we now show, localized excitations around impurities
constitute another example where following the spectrum of
the effective Hamiltonian as a function of sweeps can provide
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an accurate estimate for the excitation energy of gapped
systems. In such a situation, it should be possible to write
a localized excited state as the MPS of the ground state on
all sites but just a few, where the on-site tensors have to
be modified to encode the excitation. Thus, it is natural to
expect that the effective Hamiltonian written in the effective
ground-state basis could provide not only the ground-state but
also some excitation energies when optimized in the vicinity
of the localized impurity. To be concrete, let us discuss this
problem in the context of the explicitly dimerized spin-1/2
Heisenberg model with alternating coupling constants:

H = Jeven

N/2−1∑
i=1

S2i · S2i+1 + Jodd

N/2−1∑
i=2

S2i−1 · S2i

+J1S1 · S2 + JNSN−1 · SN (15)

with Jodd = 1 and Jeven = 0.1. We concentrate on even chains
for clarity. Local bond impurities are imposed at the edges
by changing the coupling constants J1 and JN on the first
and last bonds. In the absence of impurities (J1 = JN = Jodd),
the ground state of Hamiltonian (15) approximately consists
of spin-1/2 singlets located on every strong (odd) bond. The
system has a finite gap of order J to the first triplet excitation.
By changing locally the coupling of a particular odd bond one
can control the energy needed to excite the selected bond to
a triplet state. For convenience, let us introduce two different
edge impurities by reducing the coupling of the first and the
last bonds to J1 = 0.3 and JN = 0.8, and let us consider a
system of N = 28 sites with open boundary conditions, for
which exact diagonalizations can be performed, the goal being
to benchmark our method.

Using DMRG, we have calculated the ground-state energy
and the energy of a few low-lying excitations in the sector
Sz

tot = 0. Figure 15(a) shows the energies obtained at each
iteration in variational MPS by calculating several eigenvalues
of the effective Hamiltonian, together with the exact spectrum
(grey lines). The ground state has an energy of about E0 ≈
−9.838. The spectrum computed in the middle of the chain
clearly misses the first two excitations. However, by tracking
the energy as a function of DMRG iterations one can see well-
converged energy levels E1 ≈ −9.539 when the Hamiltonian
is diagonalized close to site 1 and E2 ≈ −9.042 when the
diagonalization is around site N . The DMRG values for these
energies agree within 10−12 with the exact diagonalization
results. Besides, the excitation energies E1 − E0 ≈ 0.299 and
E2 − E0 ≈ 0.796 agree with the rough estimates 
1 = J1

and 
N = JN for the singlet-triplet excitations in the case of
decoupled dimers. So their interpretation as local excitations
is clear. The energies of the higher excited states around
E3,4 ≈ −8.9 have local minima close to the middle of the
chain. They correspond to the bulk gap and agree with exact
diagonalizations.

In these simulations, as usual, we have increased the number
of kept states linearly over the first five sweeps, and then
we have performed three more sweeps with D = Dmax. The
results for different numbers of states are shown in Fig. 15(b).
Interestingly, in most cases except the two last sweeps with
Dmax = 1000, there are small intervals where the first excited
state in the Sz

tot = 0 sector converges to the bulk excitation

FIG. 15. Local excitation energy in the dimerized Heisenberg
chain with bond impurities. (a) Energy spectrum as a function of
the number of iterations for the alternating Heisenberg chain with
Jodd = 1 and Jeven = 0.1 and weak first (J1 = 0.3) and last (JN = 0.8)
bonds for N = 28 in the sector of Sz

tot = 0. Results obtained with
exact diagonalizations are shown with grey lines for reference. The
number of states increases during the warmup and the first five sweeps
up to Dmax = 1000 and is kept constant over the last three sweeps.
(b) Energy spectrum in the sector Sz

tot = 0 for different numbers of
kept states Dmax = 100 (green), 500 (magenta), and 1000 (blue) with
the same growing procedure as in (a).

E3 > E1,E2 while changing between E1 and E2. This happens
when the number of kept basis vectors for the left and right
environment tensors are not sufficiently large to see the edge
excitations. However, the environment tensors converge well
to the ground state, and the bulk spectrum is seen properly.
This is what we expect also for much larger systems: the
localized edge excitations will only be seen in the vicinity of
the corresponding edges, as shown in Fig. 16.

To summarize, although the excitation spectrum calculated
in the middle of the chain is not physical in the sense that
it misses the first two excitations, one can identify these
excitations as flat modes around the edges by keeping track
of the energy as a function of iterations, and their energy is
obtained with very high accuracy. This time, the main reason
for the success of the method is that, for localized excitations,

FIG. 16. Energy spectrum as a function of iteration for the
alternating Heisenberg chain with Jodd = 1 and Jeven = 0.1 and weak
first (J1 = 0.3) and last (JN = 0.8) bonds for N = 100 in the sector of
Sz

tot = 0. The energy of the two localized excited states only appears
in the narrow window close to the edges.
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FIG. 17. Graphical representation of the tensor network that
corresponds to the variance: 〈�j |Ĥ 2|�j 〉 − 〈�j |Ĥ |�j 〉2. Green and
blue boxes correspond to the left and right normalized on-site tensors
of the ground state. Yellow boxes denote the on-site MPO. The
operator Ĥ 2 is obtained by doubling the line of the MPO. The
magenta box corresponds to the various eigenstates of the effective
Hamiltonian. The term in brackets is equal to a real number (energy).
Thus taking the square of this network is a trivial algebraic operation.

a big portion of the system is in the same state as it is in the
ground state. In other words, the triplet excitation localized
at the right edges implies that the left environment tensor is
essentially the same (exactly the same for completely localized
excitations) as that of the ground state. On top of giving
access to accurate estimates of the energies, the method also
has the advantage of distinguishing the excitation energies of
different impurities by the position at which flat modes occur
during the sweeps. This can be used to distinguish localized
or quasilocalized edge excitations from the bulk spectrum in
more complicated critical systems [36].

VI. ACCURACY OF THE WAVE FUNCTIONS

In this section we take a closer look at the MPS wave
functions of the excited states, and not just at their energy. The
aim of this study is twofold: first, to check that the resulting
MPSs correspond to true eigenstates of the full Hamiltonian,
and second, to determine the accuracy of these wave functions.

In order to quantify the accuracy of the MPS for some
state |�j 〉, we compute the variance of the energy of this
state: 〈�j |Ĥ 2|�j 〉 − 〈�j |Ĥ |�j 〉2. The corresponding tensor
network structure is shown in Fig. 17. Different excited
states of the system correspond to different eigenstates of the
effective Hamiltonian (magenta box). Each of these eigenstates
is contracted with the tensors that belong to the left (green)
and right (blue) environments and are defined by the ground
state only.

We start by presenting results for the critical transverse-field
Ising model. The spectrum of the system with N = 100 sites
and free boundary conditions is presented above in Fig. 5.
The variance of the resulting MPS for different excited states
as a function of iterations is shown. As expected for bulk
excitations, the variance is minimal at the center of the chain,
while the accuracy of the MPS states close to the edges is much
lower. Note that the variance in the middle of the chain of all
30 states shown in Fig. 18 is below 10−4. Moreover, the six
lowest states have a variance smaller than 10−8. Interestingly,
the variance is a nonmonotonous function of the sequential
number of the excited states (see inset of Fig. 18). This signals
that some of the excited states converge more slowly than states
of higher energy. This also can be concluded from Fig. 5,
where some energy levels are essentially flat as a function
of iterations, while energy levels below might still exhibit a
significant curvature.

FIG. 18. Variance of the Hamiltonian in the first 30 low-energy
MPS states for the critical transverse-field Ising model as a function
of iterations during one sweep (right to left and left to right). The
energy spectrum for this model is shown in Fig. 5. Inset: Variance in
the middle of the chain as a function of the sequential number of the
excited states.

As the next example we study the variance of the Hamilto-
nian calculated for a couple of excited states of a Haldane chain
with N = 50 sites and in the symmetry sector Sz

tot = 0. The
spectrum of the Haldane chain is discussed in detail in Sec. IV.
As shown in Figs. 19(a) and 19(b), the low-lying in-gap state
is essentially flat as a function of iterations, while the energy
of the bulk excitation has a noticeable curvature, even though
the local minimum does not change much with the sweeps.
The variance of these three states is shown in Fig. 19(c). The
in-gap state is determined with the same order of accuracy as
the ground state; therefore, both MPS representations can be
used to extract the observables and characterize the properties
of these states. By contrast, the variance of the bulk excitation
is of the order of 10−4. So this MPS should only be considered

FIG. 19. Accuracy of the MPS for the ground state (blue),
low-lying in-gap state (red), and the bulk excitation (yellow) of a
Haldane chain with N = 50 sites. (a) Energy of the three lowest states
as a function of iterations during one sweep, with 800 states kept.
(b) Enlarged part of (a). (c) Variance of the Hamiltonian for these
three states as a function of iterations. The MPS representation of the
ground state and of the in-gap state are of the same order of accuracy.
The variance for the bulk excitation is much higher.
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as a reasonable but not very accurate approximation to the true
MPS for this excitation.

To summarize, if the energy of an excited state is very
flat over a larger portion of the sweep, the resulting MPS
representation is a true eigenstate of the total Hamiltonian with
very good accuracy. In that case, the MPS representation can
be used to characterize further the properties of the selected
excited state by computing the correlation functions, local
observables, structure factor, etc. By contrast, when the energy
as a function of iterations is not flat, but its local minimum
is well converged with the sweeps, the corresponding MPS
is only a rough approximation of a true eigenstate of the
Hamiltonian whose accuracy can be assessed by computing
the variance of the energy. To use such an MPS to calculate
observables would require a careful estimate of the error bars.

VII. CONCLUSIONS

The main message of this paper relies on the empirical
observation that, in certain situations, the spectrum of the
effective Hamiltonian used in updating the tensors to get the
ground state in the MPS version of DMRG contains extremely
valuable information about the excited states as well. More
precisely, if one keeps track of the spectrum of the effective
Hamiltonian during sweeps, energies that are completely flat
during part of the sweeps, i.e., which are identical up to
extremely good accuracy for a range of neighboring effective
Hamiltonians, are, in all cases we have looked at, very accurate
estimates of true excitation energies. We have observed this in
three different situations:

(1) For critical systems, such as the transverse-field Ising
and three-state Potts models at their critical points, the low-
lying states of the conformal tower appear as very flat levels
around the center of the chain. We have been able, using this
approach and for moderate computational cost, to calculate
the conformal towers with all types of boundary conditions
and thus to check the predictions of boundary conformal field
theory for all primary fields.

(2) For gapped systems with in-gap states due to the
emergence of localized degrees of freedom at the edges, in-gap
states appear as a flat level at the center of the chain if the MPS
starts at one edge and ends at the other edge, as in the usual
implementation, or centered around the edge if the MPS is
shifted with respect to the chain (or equivalently if periodic
boundary conditions are used, and the edge is described as a
missing bond in the bulk of the chain).

(3) For gapped systems with defects or impurities, local-
ized excitations appear as flat levels close to the impurities,
while they can be missed altogether at the center of the system,
where in general DMRG is most accurate.

By contrast, bulk excitations of gapped systems do not
appear as flat levels for accessible values of the bond dimension
(of course they would for large enough bond dimensions) and
more sophisticated approaches cannot be bypassed in that case.

One interesting aspect of this method, which consists of
keeping track of the spectrum of the effective Hamiltonian
during sweeps, is that it is self-contained. The spectrum of the
effective Hamiltonians can always be calculated, but without
keeping track of the spectrum during sweeps, it is impossible to
know which eigenenergies (if any) are faithful ones. By keep-

ing track of the spectrum during sweeps, one can immediately
spots flat levels, and hence faithful eigenstates, and discard
them from eigenenergies of the effective Hamiltonian which
do not correspond to exact energies. This is somehow similar to
the Lanczos algorithm [13], where eigenenergies can only be
trusted when they have converged upon increasing the number
or iterations. In some sense, the effective Hamiltonian corre-
sponds to the original Hamiltonian written in a truncated basis,
a little bit like in Lanczos, where the Hamiltonian is written in a
truncated Krylov basis [37]. The analogy stops there, however.
In the present approach, the convergence can be checked
by comparing the energies at different sites during a sweep
without increasing the size of the truncated Hilbert space.
Besides, the basis has a real space dependence that allows one
to access information on the nature of the excited states.

In all cases, we have come up with intuitive arguments
to explain the presence of “exact” excitation energies in the
effective Hamiltonian of the ground state, but one should keep
in mind that the most solid piece of evidence clearly comes
from the excellent agreement with exact results whenever
available. It would thus be very interesting to see if one can put
this method on a more formal basis. This clearly goes beyond
the scope of the present paper.
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APPENDIX A: MINIMAL MODEL

A model is called minimal if the corresponding CFT
contains a finite number of local fields with well-defined
scaling behavior. The minimal models can be labeled by two
positive integers (p,p′) that reflect the periodicity properties
of the conformal dimensions:

hr,s = hr+p′,s+p. (A1)

The central charge of the critical theory can be expressed in
terms of these integers as [18]

c = 1 − 6
(p − p′)2

pp′ . (A2)

For minimal models the conformal dimension h is given by
the Kac formula [18,38],

hr,s = (pr − p′s)2 − (p − p′)2

4pp′ , (A3)

where the pair of integers (r,s) labels the various conformal
dimensions and ranges in the intervals 1 � r � p′ − 1 and
1 � s � p − 1. The conformal dimension obeys the following
symmetry property:

hp′−r,p−s = hr,s . (A4)
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A minimal model is unitary if and only if |p′ − p| = 1
[18,39]. In that case, the minimal conformal dimension is
h1,1 = 0 and it corresponds to the identity primary conformal
field φ(1,1) = I . Assuming without loss of generality that
p > p′, then for unitary minimal models the central charge
of Eq. (A2) can be rewritten as

c = 1 − 6

p(p − 1)
. (A5)

The first nontrivial (c > 0) unitary model is labeled by (4,3)
and corresponds to the critical Ising model in a transverse
field [17,18]. The pairs (5,4) and (6,5) label the tricritical
Ising model [18,40] and the three-state Potts model [18,23,24],
respectively.

One of the fundamental characteristics of a conformal field
theory is its central charge, as first realized in Ref. [17].
In practice, the universality class of a critical theory is
usually determined by extracting the central charge from
numerical data. Although it is not always feasible to deduce
the critical theory from the central charge in a unique way,
the number of candidates for possible CFTs is reduced to
just a few. The selection among them can often be based on
simple physical intuition. In addition, the critical exponents
can often be extracted from the scaling of some physical
operators (on-site magnetization, correlations, etc.). Moreover,
in the case of conformally invariant boundary conditions,
the excitation spectrum forms a so-called conformal tower.
Various boundary conditions correspond to primary fields with
different conformal dimensions, resulting in the spectrum of
a model with a given set of boundary conditions in one or
the other conformal tower, or in the superposition of some of
them.

In the minimal model labeled by (p,p′), the irreducible
characters are given by

χ(r,s)(q) = K (p,p′)
r,s (q) − K

(p,p′)
r,−s (q), (A6)

where

K (p,p′)
r,s (q) = q−1/24

ϕ(q)

∑
n∈Z

q(2pp′n+pr−p′s)2/4pp′
, (A7)

and ϕ(q) is the Euler function:

1

ϕ(q)
=

∞∏
n=1

1

1 − qn
. (A8)

The structure of the excitation spectra for a particular CFT can
be deduced from the small-q expansion of the characters in
Eq. (A6).

APPENDIX B: THREE-STATE POTTS MINIMAL MODEL

The small-q expansions of the characters for the ten primary
fields of the theory are given by

χ(1,1)(q) = q−1/30(1 + q2 + q3 + 2q4 + 2q5 + 4q6 + · · · ),

(B1)

χ(2,1)(q) = q−1/30+2/5(1 + q + q2 + 2q3 + 3q4

+ 4q5 + 6q6 + · · · ), (B2)

χ(3,1)(q) = q−1/30+7/5(1 + q + 2q2 + 2q3 + 4q4

+ 5q5 + 8q6 + · · · ), (B3)

χ(4,1)(q) = q−1/30+3(1 + q + 2q2 + 3q3 + 4q4

+ 5q5 + 8q6 + · · · ), (B4)

χ(1,2)(q) = q−1/30+1/8(1 + q + q2 + 2q3 + 3q4

+ 4q5 + 6q6 + · · · ), (B5)

χ(2,2)(q) = q−1/30+1/40(1 + q + 2q2 + 3q3 + 4q4

+ 6q5 + 9q6 + · · · ), (B6)

χ(3,2)(q) = q−1/30+21/40(1 + q + 2q2 + 3q3 + 5q4 + 7q5

+10q6 + · · · ), (B7)

χ(4,2)(q) = q−1/30+13/8(1 + q + 2q2 + 3q3 + 4q4 + 6q5

+ 9q6 + · · · ), (B8)

χ(1,3)(q) = q−1/30+2/3(1 + q + 2q2 + 2q3 + 4q4 + 5q5

+ 8q6 + · · · ), (B9)

χ(2,3)(q) = q−1/30+1/15(1 + q + 2q2 + 3q3 + 5q4

+ 7q5 + 10q6 + · · · ). (B10)

APPENDIX C: COMPLEXITY

Some examples of convergence have already been shown
for the critical Ising model in Fig. 5 and for the three-state Potts
model in Fig. 11. We have noticed that the convergence of the
excitation energies obtained by calculating many eigenvalues
of the effective Hamiltonian not only depends on the number
of kept states, D, but is also extremely sensitive to the number
of Lanczos iterations. In Fig. 20 we show the convergence
of the energy spectra in the critical Ising chain when the

FIG. 20. Same as Fig. 5 obtained with at most 200 Lanczos
iterations. The number of states increases linearly from D = 50
(in the warmup) up to D ≈ 200. When the number of Lanczos
iterations is sufficiently large, the noise in the higher excited states
is suppressed as shown in Fig. 5 obtained with at most 500 Lanczos
iterations.
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number of Lanczos iterations is restricted to 200, a typical
number when looking for the ground state, as opposed to 500
in Fig. 5. The noise that can be seen in the high-energy levels
in Fig. 20 disappears upon increasing the number of Lanczos

iterations (Fig. 5). The number of Lanczos iterations is the
only parameter that increases the complexity of the algorithm
when calculating the excitation spectrum as compared to the
ground-state search.
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