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For the case of Mn2GeO4 we characterize the complex magnetic phase that exists at temperatures below 5.5 K
by order parameters for both the commensurate and the incommensurate ordering. For the incommensurate
ordering we are forced to consider the transformation properties which interrelate magnetic modes at different
noncollinear members of the star of the incommensurate wave vector. The known transformation properties of
the underlying magnetic wave functions are used to deduce the transformation properties of the order parameters.
These results are applied to construct the high-order invariants in the free energy which have been used elsewhere
to describe the characteristics of switching between different domains. The properties of different domains are
discussed in detail.
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I. INTRODUCTION

A. Background

The last dozen years have seen an explosion in the study
of multiferroic systems in which incommensurate magnetic
order induces ferroelectricity, following the pioneering work
of Refs. [1–3]. In 2005 a microscopic model was developed
[4] based on the idea of a “spin current.” This mechanism
has been widely cited in terms of a picture in which the
spin structure is characterized as being a magnetic spiral.
Shortly thereafter, in studies on Ni3V2O8 [5] and on TbMnO3

[6], a phenomenological Landau theory was developed which
invoked a trilinear magnetoelectric interaction. The virtue of
this theory was that it showed for the first time exactly how the
crystal structure controlled the direction of the spontaneous po-
larization, independent of whether the microscopic mechanism
was that of the spin current model or of some other model, e.g.,
one based on ionic displacements [7]. Perhaps motivated by
the spin current model, Mostovoy [8] subsequently introduced
an idealized model based on the spin structure being a perfect
spiral. This model has been extremely popular. However, there
are two issues that, in contrast to the phenomenological theory,
it does not address properly. The first is that in most cases the
spiral magnetic order results from the existence of two order
parameters describing order along the two axes of the spiral.
For Ni3V2O8, as the temperature is lowered, first one ordering
appears and then, at a lower-temperature transition, the second
order parameter grows continuously from zero. Thus, when
the second order parameter is very small, one has an elliptical
helix whose ratio of major to minor axes is large (so that it
really does not look like an ideal helix). According to the
phenomenological approach [5,6,9] the induced polarization
is proportional to the product of the two order parameters,
one of which develops continuously from zero. This result has
been quantitatively verified by a neutron-scattering experiment
[10]. The second issue is that the spin-current mechanism
[4] or Mostovoy construction [8] could not explain the
magnetoelectric transition in RbFe(MoO4)2 [11], in contrast
to the success of the Landau theory [11]. The failure of
the Mostovoy construction [8] and the spin-current model
[4] was subsequently explained by identifying a “missing”
interaction [12]. In most situations missing interactions can

be ignored and the Mostovoy picture is a useful way to
determine the orientation of the induced electric polarization.
However, as is shown elsewhere [13], to treat the coupling
of domains in Mn2GeO4 (MGO) requires analyzing several
higher-order terms in the free energy. Since the application
of Landau theory [9] is not trivial in this case, the present
paper will explain in detail how to identify order parameters
in a system as complicated as MGO. We then use the known
way the magnetization distribution transforms to deduce how
the order parameters transform under the symmetry operations
of the space group. Having this information we construct the
invariant terms in the free energy in the phase which exists for
MGO for T < 5.5 K (see Fig. 1).

Since this discussion is somewhat complicated, we start,
in Sec. II, by giving a brief review of Landau theory and
how various order parameters can appear as the temperature
is lowered. In Sec. III we describe the magnetic modes at the
relevant wave vectors (namely zero wave vector and the star
of k for MGO) as obtained from a well-established computer
resource (ISODISTORT) [14], whose results we have verified
by hand. Here, in what we regard as a textbook example, we
show how order parameters are introduced as amplitudes of
the magnetic modes which have the allowed symmetry for
the wave vectors in question. In Sec. IV we determine the
transformation properties of the order parameters. Since each
order parameter specifies a distribution of magnetization, the
transformation properties of the order parameters follow from
the known way the associated distribution of magnetization
transforms. Since it is necessary to treat all the wave vectors
in the star of k, we develop the transformations that relate
order parameters at different wave vectors of the star of k.
The advantage of the introduction of order parameters with
their associated transformation properties is that they carry
all the symmetry information of each mode. Although there
is some arbitrariness in defining the transformation from one
vector of the star to another, we use this information in Sec. V
to construct the possible invariants which make up the free
energy. It is these third- and fifth-order couplings which govern
the domain dynamics, as described in Ref. [13]. In Sec. V we
also discuss in detail how the various observables vary from
one domain to the next.
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FIG. 1. Magnetoelectric phase diagram of MGO [15]. First-order
(continuous) transitions are indicated by dashed (full) lines. Phase
D has no long-range magnetic or electric order. Only in phase A
(below 5.5 K) does the system exhibit incommensurate magnetic
order together with a spontaneous electric polarization along the z

axis. Phase A also exhibits commensurate magnetic order of irreps
X1 and X3. Phases B and C (not considered in the present paper)
display commensurate magnetic order.

B. Ultrabrief synopsis

For a reader who can devote only a few minutes to this
paper, I suggest to (1) look at Eqs. (9) and (10) to see how the
order parameters are introduced; (2) read the first paragraph of
Sec. IV which defines transformations of the order parameters
based on Eq. (14); (3) look at Eqs. (22), (35), (45), and (54)
to get the flavor of the transformations; and (4) consider in
Sec. V B the construction of invariants (which couple domains
or induce ferroelectricity) used in Ref. [13] to explain domain
dynamics.

II. BRIEF REVIEW OF LANDAU THEORY

Here we give a brief review of the basic structure of Landau
theory. For a more detailed review of Landau theory as applied
to multiferroics, see Ref. [9]. We first consider the free energy
F associated with the development of magnetic ordering at a
continuous phase transition at temperature T = Tc for a system
of Ising spins. When there is one magnetic ion per unit cell,
then the free energy as a function of its magnetic moment
vector M is of the form

F = a(T − Tc)M2 + uM4 + · · · , (1)

where a and u are positive constants. Note that time-reversal
symmetry only permits terms of even order in M . By
minimizing the free energy with respect to M one obtains the
usual mean-field result that M = 0 for T > Tc and M(T ) ∝
(Tc − T )1/2 for T < Tc. More generally, when there are several
(p) magnetic sites in the unit cell, the free energy will be a
generalization of Eq. (1) such that the term in M2 is replaced by
a quadratic form in the variables Mi , where Mi is the magnetic
moment at site i. This quadratic form is diagonalized by a
transformation to normal modes (whose amplitudes are Mα)
which is analogous to the introduction of normal modes for
phonons. As for phonons, the modes carry symmetry labels
which identify their symmetry. In the usual language, the
modes are referred to as irreducible representations (irreps).
Then the generalization of Eq. (1) is equivalent to (with
T1 > T2 > T3 . . . Tp)

F =
p∑

α=1

aα(T − Tα)M2
α + uαM4

α + · · · . (2)

In the interest of simplicity we do not consider the possibility
that Tα = Tβ for α �= β. (In technical language this assumption
is that all irreps are one dimensional.) Taken literally, Eq. (2)
would imply that as the temperature is reduced, first M1

appears continuously, then at a lower temperature M2 appears
continuously, and so forth. (Usually, condensing M1 inhibits
condensing any other Mα which has the same symmetry as
M1.) In MGO, there are four different symmetry zero-wave-
vector modes with symmetry labels [15] X1, X2, X3, and
X4. As is apparent from Fig. 1, the continuous scenario just
mentioned is not followed (viz. order in the lowest-temperature
phase does not develop via sequential continuous transitions
[16]). Nevertheless, the symmetry of the lowest-temperature
phase is the same as if the irreps X1 and X3 had appeared in the
scenario of Eq. (2). The irrep X3 is a mode with a net magnetic
moment along the crystal c axis and X1 is an antiferromagnetic
mode with moments perpendicular to the crystal c axis. We
emphasize that in this paper our main aim is to describe the
symmetry properties of the lowest-temperature phase of MGO
[15,17,18]. To construct a plausible Landau free energy to
explain the extremely complex phase transition [16] below
which not only X1 and X3 but also the incommensurate modes
(which we discuss next) exist is beyond the scope of the present
study. Also, note that for the purpose of the present paper we
do not keep track of the detailed structure of the modes Xn.
Only the symmetry properties of the wave functions determine,
say, whether or not an electric polarization develops. Since our
main aim here is to construct the symmetry-allowed potentials
for the free energy, we do not need to explicitly consider the
details of the wave functions.

Finally, we consider the description of the incommensurate
modes at the wave vector star [15] ±kA = (0.136,0.211,0)
and ±kB = (0.136,−0.211,0). As we have just discussed, we
only need to keep track of the symmetry of the allowed modes.
Since the wave vector is invariant under the mirror mz that takes
z into −z, the allowed modes will be either even or odd under
mz [19]. Thus the symmetry properties of the modes can be
identified independent of the actual interactions, and indeed
without even knowing the details of the spin structure. Also,
one should note that we do not rely on the condition that the
magnetic structure consist of an assembly of magnetic helicies.
While helical structures often give rise to ferroelectricity, the
converse, namely that ferroelectric incommensurate magnets
must be helices, is clearly not the case. An amusing example
of structures which have the same symmetry, but which
have very different appearance, is (a) orientationally ordered
solid ortho-H2 (consisting of rodlike molecules) [20] and (b)
orientationally ordered nearly spherical C60 [21] molecules,
both of which have Pa3 space-group symmetry. In other
words, knowing only the space-group symmetry of a magnetic
structure is not a guarantee that one can identify, even
qualitatively, the actual structure.

III. CRYSTAL SYMMETRY AND MODES

A. Crystal symmetry

For these discussions we record the symmetry operations
of the orthorhombic space group for MGO, namely Pnma =
No. 62 in Ref. [22], where x, y, and z refer to the a, b, and c
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FIG. 2. Magnetic (Mn) ions in the unit cell of MGO. Filled circles
(triangles or squares) represent ch (pl) sites. For ε = 0 all the ions
would be in the three planes z = 0, z = 1/2, and z = 1. Because ε

is positive but very small, the Mn ions represented by a triangle are
displaced (by ε) to the right of the plane and those represented by a
square are displaced (by ε) to the left of the plane.

crystal axes:

E = (x,y,z), I = (x,y,z),

mx = (
x + 1

2 ,y + 1
2 ,z + 1

2

)
, 2x = (

x + 1
2 ,y + 1

2 ,z + 1
2

)
,

my = (
x,y + 1

2 ,z
)
, 2y = (

x,y + 1
2 ,z

)
, (3)

mz = (
x + 1

2 ,y,z + 1
2

)
, 2z = (

x + 1
2 ,y,z + 1

2

)
.

We will also need to refer to the inverse operations:

m−1
x = (

x + 1
2 ,y − 1

2 ,z − 1
2

)
, 2−1

x = (
x − 1

2 ,y + 1
2 ,z + 1

2

)
,

m−1
y = (

x,y + 1
2 ,z

)
, 2−1

y = (
x,y − 1

2 ,z
)
, (4)

m−1
z = (

x − 1
2 ,y,z + 1

2

)
, 2−1

z = (
x + 1

2 ,y,z − 1
2

)
.

The eight sites in the unit cell (shown in Fig. 2) are [15]

τ 1 = (0,0,0), τ 2 = (1/2,0,1/2),

τ 3 = (1/2,1/2,1/2), τ 4 = (0,1/2,0),
(5)

τ 5 = (a,1/4,ε), τ 6 = (a + 1/2,1/4,1/2 − ε),

τ 7 = (1 − a,3/4,−ε), τ 8 = (1/2 − a,3/4,1/2 + ε),

where ε ≈ 0.0 and a ≈ 0.275. Sites τ 1−τ 4 (τ 5−τ 8) are
known as “ch” (“pl”) sites [15].

B. Zero wave-vector modes

Two zero wave-vector irreducible representations (irreps)
are active: X1 and X3. Their parity under the mirror operations
is given in Table I. The actual wave functions for these modes,

TABLE I. Symmetry properties of the two active zero-wave-
vector magnetic order parameters Xn for the irrep �n. Both these
order parameters (OPs) are odd under time reversal.

OP mx my mz

X1 +1 +1 +1
X3 −1 −1 +1

x(a)

y(b)

k

k

A

B

Bk

kA

FIG. 3. Star of the wave vector kA = (0.136,0.211,0) [15].

given in the Supplemental Material to Ref. [15], are not needed
for our symmetry analysis. As mentioned, the phase with X1

is a type of antiferromagnetic ordering and X3 ordering has a
net magnetic moment along the z axis.

C. Incommensurate modes

In Appendix A, based on results from ISODISTORT [14]
we show that the magnetization throughout a domain of wave
vector kA for the irrep D(σ=1) must be of the form

M (A,1)
α (N + τ 1) = aαe−i[N+τ 1]·kA+iφ + c.c.

M (A,1)
α (N + τ 2) = μαaαe−i[N+τ 2]·kA+iφ + c.c.

M (A,1)
α (N + τ 3) = bαe−i[N+τ 3]·kA+iφ + c.c.

M (A,1)
α (N + τ 4) = μαbαe−i[N+τ 4]·kA+iφ + c.c.

(6)
M (A,1)

α (N + τ 5) = zαe−i[N+τ 5]·kA+iφ + c.c.

M (A,1)
α (N + τ 6) = μαzαe−i[N+τ 6]·kA+iφ + c.c.

M (A,1)
α (N + τ 7) = z∗

αe−i[N+τ 7]·kA+iφ + c.c.

M (A,1)
α (N + τ 8) = μαz∗

αe−i[N+τ 8]·kA+iφ + c.c.,

where N ≡ (Nx,Ny,Nz) specifies the integer coordinates (we
always use rlu) of the unit cell, μx = μy = −μz = −1, the
superscripts on M label the wave vector and the irrep, and the
subscript is the component label, α = x, y, or z (see Fig. 3).
The following assume values not fixed by symmetry: aα and
bα which are real valued, zα which is complex valued, and φ

which is an overall global phase. As we verify later, this irrep
is even under mz [19]. To illustrate, we show, in Fig. 4, the
magnetic structure of one of the two magnetic helices which
form the structure of MGO. But we emphasize that the analysis
which follows relies only on the symmetry of the magnetic
structure of MGO and not on the fact that its structure consists
of magnetic helices. Accordingly, we do not reproduce here
the structural parameters which are given in the Supplemental
Material of Ref. [15].

For economy in notation we write Eq. (6) as

M (A,1)
α (N + τ n) = eiφ[aα,μαaα,bα,μαbα; zα,μαzα,z∗

α,μαz∗
α]n

× e−i[N+τn)·kA + c.c. (7)
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FIG. 4. Magnetic structure of one of the two helices in the unit cell associated with wave vector kA.

In this notation the magnetization for irrep D(σ=2) is given by

M (A,2)
α (N + τ n) = eiφ[cα,−μαcα,dα,−μαdα; wα,

−μαwα,w∗
α,−μαw∗

α]ne
−i[N+τn)·kA + c.c.

(8)

As we verify later, this irrep is odd under mz [19]. Note that
we use different constants for irreps 1 and 2. We do this
to emphasize the fact that the wave functions for different
symmetries are not related, just as atomic s and p functions
are not related to each other by symmetry. Analogous results
for wave vector kB are obtained below.

D. Definition of order parameters

If incommensurate magnetic ordering appears below a
continuous phase transition, then the temperature dependence
of the wave function when the ordering initially develops
gives rise mainly to a change of scale of the coefficients.
Accordingly, we describe the wave function as a temperature-
dependent amplitude times a normalized wave function, as
in Eq. (9), below. In so doing, we incorporate the phase
factor exp(iφ) into the amplitude, thus giving rise to a

complex-valued amplitude which we identify as the order
parameter, here denoted Q(σ )

X , for the irrep σ at wave vector
kX, where X = ±A or X = ±B (and k−X denotes −kX). Of
course, it is an approximation to assume that the temperature
dependence of the wave function merely induces a temperature
dependence of the order parameter. However, since this
approximation correctly describes the symmetry of the phase,
it is often useful and can form the basis for a renormalization
group treatment of the critical behavior [23]. Furthermore,
as shown in Appendix B, corrections due to the additional
temperature dependence of the wave function can be generated
within the Landau formulation of the order parameter which
we describe here. Note that in traversing the phase diagram
the symmetry can only change if a phase boundary is crossed.

Here we are interested in describing the symmetry of a
system which can have both incommensurate irreps simulta-
neously present. This means that order parameters for the two
irreps can simultaneously be nonzero. In what follows each
mode is characterized by its complex-valued order parameter
Q(σ )

X which has its own magnitude and phase. Thus we write
the contribution to the α component of the magnetization from
irrep 1 at wave vector kA to be

M (A,1)
α (N + τ n) = Q(1)

A [aα,μαaα,bα,μαbα; zα,μαzα,z∗
α,μαz∗

α]ne
−ikA·[N+τ n] + c.c.

≡ Q(1)
A 	(A,1)

α,n e−ikA·[N+τ n] + c.c. (9)

and that from irrep 2 at wave vector kA to be

M (A,2)
α (N + τ n) = Q(2)

A [cα, − μαcα,dα, − μαdα; wα, − μαwα,w∗
α,−μαw∗

α]ne
−ikA·[N+τ n] + c.c.

≡ Q(2)
A 	(A,2)

α,n e−ikA·[N+τ n] + c.c., (10)

where we require the wave functions �(A,m) to be normalized:∑
α

[
2a2

α + 2b2
α + 4|zα|2] =

∑
α

[
2c2

α + 2d2
α + 4|wα|2] = 1. (11)

We can equally well write the equation for M (A,1)
α (N + τ n) as

M (A,1)
α (N + τ n) = Q(1)

A

∗
[aα,μαaα,bα,μαbα; z∗

α,μαz∗
α,zα,μαzα]ne

−i(−kA)·[N+τ n] + c.c. (12)

This leads us to write

Q(σ )
−X = Q(σ )

X

∗
, 	(−X,σ )

α,n = 	(X,σ )
α,n

∗
, (13)

where the subscript −X refers to the wave vector −kX.
We assume that the 	(A,σ )

αn have been determined by fitting

experimental data, as in Ref. [15]. However, as stated earlier,
their actual values do not affect the symmetry analysis. Below
we will obtain the transformation properties of the order
parameters and thereby determine the wave functions for ±kB

in terms of those for ±kA.
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IV. TRANSFORMATION PROPERTIES
OF THE ORDER PARAMETERS

We define the transformation of order parameters under an
operator O, by considering the effect of O on the distribution
of magnetization over the system. We write the fundamental
equation, which enables us to deduce the transformation
properties of the order parameters, as

M(Nx,Ny,Nz; τ n)′ = OSM([OR]−1[Nx,Ny,Nz; τ n]), (14)

whereOS is the part of the operatorO that operates on spin and
OR is the part of the operator O that operates on the position
of the spin. This equation says that the transformed magnetic
moment, indicated by a prime, which, before transformation,
was at [OR]

−1
[N + τ n], has been transformed by OS and is

placed at its final location at N + τ n. In this section we will
consider the transformations under the three perpendicular
mirror planes, since these operations can be taken to be the
generators of the point group. In Eqs. (9) and (10) we have
already defined the wave functions for the wave vector kA and
in Eq. (13) for the wave vector −kA. In Sec. IV C we will
obtain those for wave vectors ±kB .

A. Transformation by inversion I
Perhaps the simplest operation is spatial inversion I. Since

I−1 = I, Eq. (14) is

M(Nx,Ny,Nz; τ n)′ = ISM([IR][Nx,Ny,Nz; τ n])

= M([IR][Nx,Ny,Nz; τ n]), (15)

where we used the fact that the magnetic moment is a
pseudovector to write the second version of the above equation.
Thus, for wave vector kA and irrep σ ,

Mα(Nx,Ny,Nz; τ n)′ = Q
(σ )
A IR

[
	(A,σ )

αn e−ikA·(N+τ n)
] + c.c.

= Q
(σ )
A

[
IR	(A,σ )

αn

]
e−i[−kA·(N+τ n)] + c.c.,

(16)

where we used Iτ n = −τ n. To evaluate the right-hand side of
Eq. (16) we need to identify Iτ n = τ n, where n is implied by
the last column of Table II. Thus

IR	(A,σ )
αn = 	

(A,σ )
αn = [

	(A,σ )
αn

]∗
, (17)

TABLE II. Transformation of τ n by I to the value τ n. Since the
vector τ is not changed by adding a lattice vector to it, the third
column is equivalent to the fourth column.

n τ n Iτ n ⇒ τ n

1 (0,0,0) (0,0,0) (0,0,0) τ 1

2 ( 1
2 ,0, 1

2 ) (− 1
2 ,0,− 1

2 ) ( 1
2 ,0, 1

2 ) τ 2

3 ( 1
2 , 1

2 , 1
2 ) (− 1

2 ,− 1
2 ,− 1

2 ) ( 1
2 , 1

2 , 1
2 ) τ 3

4 (0, 1
2 ,0) (0,− 1

2 ,0) (0, 1
2 ,0) τ 4

5 (a, 1
4 ,ε) (−a, − 1

4 , − ε) (1 − a, 3
4 ,−ε) τ 7

6 (a + 1
2 , 1

4 , 1
2 − ε) (−a − 1

2 , − 1
4 ,− 1

2 + ε) ( 1
2 − a, 3

4 , 1
2 + ε) τ 8

7 (1 − a, 3
4 , − ε) (a − 1, − 3

4 ,ε) (a, 1
4 ,ε) τ 5

8 ( 1
2 − a, 3

4 , 1
2 + ε) (a − 1

2 ,− 3
4 ,− 1

2 − ε) (a + 1
2 , 1

4 , 1
2 − ε) τ 6

where we used Eqs. (9) and (10) to write 	
(A,σ )
αn = [	(A,σ )

αn ]∗.
Thus,

Mα(Nx,Ny,Nz; τ n)′ = Q(σ )
A

[
	(A,σ )

αn

]∗
[e−i[−kA·(N+τ n)] + c.c.

(18)

This is of the form

Mα(Nx,Ny,Nz; τ n)′ = Q(σ )
−A

′
	(−A,σ )

αn [e−i[−kA·(N+τ n)] + c.c.

(19)

This part of the argument requires some discussion. The right-
hand side of Eq. (19) consists of three factors which we refer
to as Q, 	, and exp. The Q factor is simple: no symmetry
operation can change the irrep, so the superscript σ is fixed.
The effect of the symmetry operation (here I) on the wave
vector subscript of Q is obvious. The scripts on the 	 factor
are those we would expect result from complex conjugation.
The exp factor is exactly what appears in the analog of Eq. (12).
Any leftover phase factors (there are none here) are assigned
to the Q factor. Thus

IQ(σ )
−A ≡ Q(σ )

−A

′ = Q(σ )
A , 	(−A,σ )

αn = [
	(A,σ )

αn

]∗
, (20)

consistent with Eq. (13). The analogous result holds for kB .
So in all we have

IQ(σ )
X = Q(σ )

X

∗ = Q(σ )
−X. (21)

We may consider the order parameter to be a four-
component column vector 	Qσ with components (Qσ )1=Q

(σ )
A ,

(Qσ )2 = Q
(σ )
B , (Qσ )3 = Q

(σ )
A

∗ ≡ Q
(σ )
−A, (Qσ )4 = Q

(σ )
B

∗ ≡
Q

(σ )
−B . We summarize the results of Eq. (21) for the effect

of inversion by writing

I 	Qσ ≡ I

⎡
⎢⎢⎢⎢⎣

Q(σ )
A

Q(σ )
B

Q(σ )
−A

Q(σ )
−B

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Q(σ )
A

Q(σ )
B

Q(σ )
−A

Q(σ )
−B

⎤
⎥⎥⎥⎥⎦

≡ Mσ (I) 	Qσ . (22)

In general, if O is an operator, then we write

O(Qσ )n =
∑
m

[Mσ (O)]nm(Qσ )m. (23)

B. Transformation by mz

Since mz leaves the wave vector k invariant, we consider it
next. We start by considering the case when k = kA. Thus we
apply Eq. (14) when k = kA and O = mz:

Mα(Nx,Ny,Nz; τ n)′ = λαMα([mz
R]−1[Nx,Ny,Nz; τ n]), (24)

where, since M is a pseudovector, λα = (−1,−1,+1). Thereby
we find that

Mα(Nx,Ny,Nz; τ n)′

= λα

([
mR

z

]−1
	(A,1)

αn

)
e−ikA·[mR

z ]−1[N+τ n]Q(1)
A + c.c. (25)

To evaluate the exponential for kz = 0, note that acting on
a vector of the form (vx,vy,0), we have [mR

z ]−1(vx,vy,0) =
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TABLE III. As Table II. Transformation of τ n by mz into τn.

n τ n

[
mR

z

]−1
τ n ⇒ τ n

1 (0,0,0) (− 1
2 ,0, 1

2 ) ( 1
2 ,0, 1

2 ) τ 2

2 ( 1
2 ,0, 1

2 ) (0,0,0) (0,0,0) τ 1

3 ( 1
2 , 1

2 , 1
2 ) (0, 1

2 ,0) (0, 1
2 ,0) τ 4

4 (0, 1
2 ,0) (− 1

2 , 1
2 , 1

2 ) ( 1
2 , 1

2 , 1
2 ) τ 3

5 (a, 1
4 ,0) (a − 1

2 , 1
4 , 1

2 ) (a + 1
2 , 1

4 , 1
2 ) τ 6

6 (a + 1
2 , 1

4 , 1
2 ) (a, 1

4 ,0) (a, 1
4 ,0) τ 5

7 (1 − a, 3
4 ,0) ( 1

2 − a, 3
4 , 1

2 ) ( 1
2 − a, 3

4 , 1
2 ) τ 8

8 ( 1
2 − a, 3

4 , 1
2 ) (−a, 3

4 ,0) (1 − a, 3
4 ,0) τ 7

(vx − 1/2,vy,0). So

Mα(Nx,Ny,Nz; τ n)′

= λα

([
mR

z

]−1
	(A,1)

αn

)
e−ikA·[N+τ n]eikx/2Q(1)

A + c.c. (26)

Now we consider [mR
z ]−1	(A,1)

αn . In Table III we see that[
mR

z

]−1
	(A,1)

αn = 	
(A,1)
αn , (27)

where n = n − 1 if n is even and n = n + 1 if n is odd. But,
since 1/μα = μα , we have, from Eq. (9), that

	
(A,1)
αn = μα	(A,1)

αn . (28)

Note that μαλα = 1, so that the final result is

Mα(Nx,Ny,Nz; τ n)′ = eikx/2	(A,1)
αn e−ikA·[N+τ n]Q(1)

A + c.c.

(29)

This is of the form

Mα(Nx,Ny,Nz; τ n)′ = Q(1)
A

′
	(A,1)

αn e−ikA·[N+τ n] + c.c. (30)

In other words,

Q(1)
A

′ = mzQ
(1)
A = eikx/2Q(1)

A . (31)

For σ = 2 we have

mzQ
(2)
A = −eikx/2Q(2)

A . (32)

The difference in sign for mzQ
(2)
A occurs because here, instead

of Eq. (28), one has

	
(A,2)
αn = −μα	(A,2)

αn , (33)

as follows from Eq. (10). The results of Eqs. (31) and (32) give
rise to the top row of Mσ (mz) in Eq. (35), below.

We now use the above results to obtain analogous results
for wave vectors kB . Since the value of k does not appear
explicitly, the wave functions of kB = (kx,−ky,0) are of the
form

�(B,1) = [a′
α,μαa′

α,b′
α,μαb′

α,z′
α,μαz′

α,z∗
α,μαz′

α

∗] (34)

and similarly for �(B,2). The relation between (a′, b′, z′) and
(a, b, z), given in Table IV will be derived later. Thus Eq. (31)
holds when kA ≡ (kx,ky) is replaced by kB ≡ (kx,−ky) and

TABLE IV. Wave functions 	 (A,σ )
αn and 	 (B,σ )

αn . Here λ′
α =

(−1,1,−1). In lines 2–5 of this table we do not take account of the
fact that the wave function for kA and kB are related by a symmetry
operation. In lines 6 and 7, 	B,σ

αn is constructed by applying my to
	 (A,σ )

αn [see Eqs. (42) and (43)].

n = 1 2 3 4 5 6 7 8

	 (A,1)
αn = aα μαaα bα μαbα zα μαzα z∗

α μαz
∗
α

	 (A,2)
αn = cα −μαcα dα −μαdα wα −μαwα w∗

α −μαw
∗
α

	 (B,1)
αn = a′

α μαa
′
α b′

α μαb
′
α z′

α μαz
′
α z′

α
∗

μαz
′
α

∗

	 (B,2)
αn = c′

α −μαc
′
α d ′

α −μαd
′
α w′

α −μαw
′
α w′

α
∗ −μαw

′
α

∗

	 (B,1)
αn /λ′

α = μαbα bα μαaα aα zα μαzα z∗
α μαz

∗
α

	 (B,2)
αn /λ′

α = μαdα −dα μαcα −cα −wα μαwα −w∗
α μαw

∗
α

we obtain

mz
	Qσ = mz

⎡
⎢⎢⎢⎢⎣

Q(σ )
A

Q(σ )
B

Q(σ )
−A

Q(σ )
−B

⎤
⎥⎥⎥⎥⎦

= (−)σ+1

⎡
⎢⎢⎢⎣

eikx/2 0 0 0

0 eikx/2 0 0

0 0 e−ikx/2 0

0 0 0 e−ikx/2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Q(σ )
A

Q(σ )
B

Q(σ )
−A

Q(σ )
−B

⎤
⎥⎥⎥⎥⎦

= Mσ (mz) 	Qσ . (35)

Here we noted that Q(σ )
−X = [Q(σ )

X ]
∗

to obtain the lower half of
the matrix.

C. Transformation by m y

To identify the modes for wave vector kB from those of
wave vector kA, we transform the wave functions for kA into
those for kB = (kx,−ky,0). Although symmetry allows the
parameters of the wave function (e.g., a, b, etc.) to be arbitrary,
once they are fixed for wave vector kA, they are implicitly fixed
(to within a phase factor: see Appendix C) for wave vector kB .
Under transformation by my we write Eq. (14) as

Mα(Nx,Ny,Nz; τ n)′ = λ′
αMα

([
mR

y

]−1
[Nx,Ny,Nz; τ n]

)
, (36)

where, since M is a pseudovector, λ′
α = (−1,+1,−1).

Thereby, for irrep σ we find that

Mα(Nx,Ny,Nz; τ n)′

= λ′
α

([
mR

y

]−1
	(A,σ )

αn

)
e−ikA·[mR

y ]−1[N+τ n]Q(σ )
A + c.c. (37)

To evaluate the exponential for kz = 0, note that acting on
a vector of the form (vx,vy,0) we have [mR

y ]−1(vx,vy,0) =
(vx,1/2 − vy,0). So

Mα(Nx,Ny,Nz; τ n)′

= λ′
α

([
mR

y

]−1
	(A,σ )

αn

)
e−i[kx (Nx+τnx )+ky (−Ny−τny+1/2)]Q(σ )

A

+ c.c. (38)
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TABLE V. As Table II. Transformation of τ n by my into τn.

n τ n

[
mR

y

]−1
τ n ⇒ τ n

1 (0,0,0) (0, 1
2 ,0) (0, 1

2 ,0) τ 4

2 ( 1
2 ,0, 1

2 ) ( 1
2 , 1

2 , 1
2 ) ( 1

2 , 1
2 , 1

2 ) τ 3

3 ( 1
2 , 1

2 , 1
2 ) ( 1

2 ,0, 1
2 ) ( 1

2 ,0, 1
2 ) τ 2

4 (0, 1
2 ,0) (0,0,0) (0,0,0) τ 1

5 (a, 1
4 ,0) (a, 1

4 ,0) (a, 1
4 ,0) τ 5

6 (a + 1
2 , 1

4 , 1
2 ) (a + 1

2 , 1
4 , 1

2 ) (a + 1
2 , 1

4 , 1
2 ) τ 6

7 (1 − a, 3
4 ,0) (1 − a,− 1

4 , 0) (1 − a, 3
4 , 0 τ 7

8 ( 1
2 − a, 3

4 , 1
2 − a) ( 1

2 − a, − 1
4 , 1

2 − a) ( 1
2 − a, 3

4 , 1
2 − a) τ 8

Now we consider [mR
y ]−1	(A,σ )

αn . In Table V we see that

[
mR

y

]−1
	(A,σ )

αn = 	
(A,σ )
αn , (39)

where n = 5 − n if n < 5 and n = n for n > 4. Then

Mα(Nx,Ny,Nz; τ n)′

= λ′
αe−iky/2	

(A,σ )
αn e−i[kx (Nx+τnx )+(−ky )(Ny+τny )]Q(σ )

A + c.c.

(40)

This is of the form

Mα(Nx,Ny,Nz; τ n)′ = Q(σ )
B

′
	(B,σ )

αn e−i[kx (Nx+τnx )+(−ky )(Ny+τny )]

+ c.c. (41)

We choose the signs of the wave functions for kB such that

	(B,1)
αn = λ′

α	
(A,1)
αn

= λ′
α[μαbα,bα,μαaα,aα; zα,μαzα,z∗

α,μαz∗
α]n, (42)

	(B,2)
αn = −λ′

α	
(A,2)
αn

= λ′
α[μαdα,−dα,μαcα,−cα; −wα,μαwα,

−w∗
α,μαw∗

α]n. (43)

As expected, 	(B,1)
αn is of the form of Eq. (34), but now we

have an explicit evaluation of 	(B,σ )
αn , given in Table IV. With

these definitions the transformed value of the order parameter

Q(σ )
B is

Q(σ )
B

′ = myQ(σ )
B = (−1)σ+1Q(σ )

A e−iky/2. (44)

This result fixes the second row of Mσ (my) in Eq. (45), below.
The result is that

my
	Qσ = my

⎡
⎢⎢⎢⎢⎣

Q(σ )
A

Q(σ )
B

Q(σ )
−A

Q(σ )
−B

⎤
⎥⎥⎥⎥⎦

= (−1)σ+1

⎡
⎢⎢⎢⎣

0 eiky/2 0 0

e−iky/2 0 0 0

0 0 0 e−iky/2

0 0 eiky/2 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Q(σ )
A

Q(σ )
B

Q(σ )
−A

Q(σ )
−B

⎤
⎥⎥⎥⎥⎦

= Mσ (my) 	Qσ . (45)

The other rows of Mσ (my) can be deduced from the second
row by changing the sign of ky or by complex conjugation.

We repeat our previous warning about the phase. We could
have defined 	(B,σ )

αn to be the negative of its value in either or
both of Eqs. (42) or (43). Such a definition would introduce
a σ -dependent phase factor into Eq. (45). This possibility is
analyzed in Appendix C, where we show such a phase factor
implies a choice of sign for the order parameters, but does not
affect the invariant potentials determined in Sec. V.

D. Transformation by mx

We now consider transformation by mx . We write Eq. (14)
for irrep σ as

Mα(N + τ n)′ = mS
xM

(A,σ )
α

([
mR

x

]−1
[Nx,Ny,Nz; τ n]

)
. (46)

Since M is a pseudovector we set mS
x = λ′′

α , with λ′′ =
(1,−1,−1). Then

Mα(N + τ n)′ = λ′′
α

[[
mR

x

]−1
	(A,σ )

αn

]
e−ikA·[mR

x ]−1[N+τ n]Q(σ )
A

+ c.c. (47)

To evaluate the exponential for kz = 0, note that acting on
a vector of the form (vx,vy,0), we have [mR

x ]−1(vx,vy,0) =
(1/2 − vx,vy − 1/2,−1/2). So

Mα(Nx,Ny,Nz; τ n)′ = λ′′
αQ(σ )

A 	
(A,σ )
α,n e−i[kx (−Nx )+kyNy ]−i[kx (−τn,x+1/2)+ky (τn,y−1/2)] + c.c.

= λ′′
αQ(σ )

A 	
(A,σ )
α,n e−i[(−kx )Nx+kyNy+(kyτny−kxτnx )+(kx−ky )/2] + c.c., (48)

where now τ n = mR
x τ n, so that

1 = 3, 2 = 4, 3 = 1, 4 = 2, 5 = 8, 6 = 7, 7 = 6, 8 = 5. (49)

Equation (48) is of the form

Mα(Nx,Ny,Nz; τ n)′ = Q(σ )
−B

′
e−i[−kB ·(N+τ n)	(−B,σ )

αn + c.c. (50)

Thus we have

Q(σ )
−B

′ = mxQ(σ )
−B = ρσ Q(σ )

A e−i(kx−ky )/2, 	(−B,σ )
αn = ρσ	

(A,σ )
αn λ′′

α. (51)

The reason we have included the factor ρσ = ±1 is because 	(B,σ ) was already fixed by Eqs. (42) and (43). Accordingly, here
we have to choose the sign of ρσ to be consistent with our previous definition of 	(B,σ ). Using Eq. (49) and taking 	(A,σ )

αn from
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Table IV we find that Eq. (51) gives

ρ1λ
′′
α

[
	

(A,1)
αn

]∗ = 	(B,1)
αn = 	(−B,1)

αn

∗ = ρ1λ
′′
α[bα,μαbα,aα,μαaα; μαzα,zα,μαz∗

α,z∗
α], (52)

ρ2λ
′′
α

[
	

(A,2)
αn

]∗ = 	(B,2)
αn = 	(−B,2)

αn

∗ = ρ2λ
′′
α[dα, − μαdα,cα, − μαcα; −μαwα,wα, − μαw∗

α,w∗
α]. (53)

Comparing Eqs. (42) and (52) we require that ρ1λ
′′
α = λ′

αμα which gives ρ1 = +1. Comparing Eqs. (43) and (53) we require that
ρ2λ

′′
α = λ′

αμα which gives ρ2 = +1. The final result is that in terms of the order parameter vector 	Qσ introduced in Eq. (22), we
have mx

	Qσ = Mσ (mx) 	Qσ , with

mx
	Qσ = mx

⎡
⎢⎢⎢⎢⎣

Q(σ )
A

Q(σ )
B

Q(σ )
−A

Q(σ )
−B

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0 0 ei(kx+ky )/2

0 0 ei(kx−ky/2) 0

0 e−i(kx+ky )/2 0 0

e−i(kx−ky )/2 0 0 0

⎤
⎥⎥⎥⎦ .

⎡
⎢⎢⎢⎢⎣

Q(σ )
A

Q(σ )
B

Q(σ )
−A

Q(σ )
−B

⎤
⎥⎥⎥⎥⎦ = Mσ (mx) 	Qσ . (54)

In Eq. (51) we have explicitly calculated the (4,1) matrix element of the matrix Mσ (mx). The other matrix elements can be
obtained by suitably changing the sign(s) of the components of the wave vector(s).

E. Transformation by 2z

We write for irrep σ = 1 and wave vector kA under transformation by 2z

Mα(Nx,Ny,Nz; τ n)′ = λ′′′
α Mα

([
2R

z

]−1
[Nx,Ny,Nz; τ n]

)
= λ′′′

α

([
2R

z

]−1
	(A,1)

αn

)
e−ikA·[2R

z ]−1[N+τ n]Q(1)
A + c.c.

= λ′′′
α 	

(A,1)
αn e−ikx [−Nx−τnx+1/2]−iky [−Ny−τny ]Q(1)

A + c.c.

= λ′′′
α 	

(A,1)
αn e−i(−kx )[Nx+τnx−1/2]−i(−ky )[Ny+τny ]Q(1)

A + c.c., (55)

where 1 = 2, 3 = 4, 5 = 8, 6 = 7, and the inverse relations also hold, so that 	
(A,1)
αn = μα	(A,1)

αn

∗
. Also λ′′′

α = (−1,−1,+1), so
that λ′′′

α = μα . Thus Eq. (55) is of the form

Mα(Nx,Ny,Nz; τ n)′ = Q(1)
−A

′
	(−A,1)

αn e−i[(−kx )(Nx+τnx )+(−ky )(Ny+τny )], (56)

with

Q(1)
−A

′ = 2zQ
(1)
−A = Q(1)

A e−ikx/2, 	(−A,1)
αn = λ′′′

α 	
(A,1)
αn = 	(A,1)

αn

∗
, (57)

in agreement with Eq. (13). Since Q(1)
−B has the same value of kx , the above result implies that

Q(1)
−B

′ = 2zQ
(1)
−B = Q(1)

B e−ikx/2. (58)

The transformation properties of Q(1)
X are obtained from those of Q(1)

−X by changing the sign of k. A similar analysis for irrep 2

(but with 	
(A,2)
αn = −μα	(A,2)

αn

∗
) leads to the final result that 2z

	Qσ = M(2z) 	Qσ , with

Mσ (2z) = (−1)σ+1

⎡
⎢⎢⎢⎣

0 0 eikx/2 0

0 0 0 eikx/2

e−ikx/2 0 0 0

0 e−ikx/2 0 0

⎤
⎥⎥⎥⎦. (59)

F. Transformation by other operations

Here we record the result for translation. For instance, apply Eq. (14) to the magnetization when the transformation operator
is a translation T through a lattice vector:

[M(N + τ n)]′ = TSM([TR]−1[N + τ n]). (60)

This gives, for translation T,

[M(N + τ n)]′ = [M(N − T + τ n)] = eik·T[M(N + τ n)]. (61)
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When the translation T is through an integer number of lattice constants in the three lattice directions, Nx,Ny,Nz, we write

Mσ (TNx,Ny,Nz
) =

⎡
⎢⎢⎢⎣

ei(kxNx+kyNy ) 0 0 0

0 ei(kxNx−kyNy ) 0 0

0 0 ei(−kxNx−kyNy ) 0

0 0 0 ei(−kxNx+kyNy )

⎤
⎥⎥⎥⎦. (62)

G. Composition rules

If O(1) and O(2) are two operators, then we might write that

O(1)O(2)( 	Qσ )n ≡ O(1)[O(2)( 	Qσ )n]

= O(1)

[∑
m

(Mσ (O(2)))nm( 	Qσ )m

]

=
∑
m

∑
s

(Mσ (O(2)))nm(Mσ (O(1)))ms( 	Qσ )s

≡
∑

s

Mσ (O(1)O(2))ns( 	Qσ )s , (63)

from which we might conclude that

Mσ (O(1)O(2)) = Mσ (O(2))Mσ (O(1)). (64)

One reason this result is wrong is that the first equation of
Eq. (63) interprets O(1)O(2)( 	Qσ )n to mean O(1)[O(2)( 	Qσ )n],
whereas Eq. (64) interprets it to mean [O(1)O(2)]( 	Qσ )n.
Another problem is that up to now, the operators O(n) operate
on order parameters and not on each other. This situation is
discussed in detail by Wigner [24]. Instead we assert that

Mσ (O(1)O(2)) = Mσ (O(1))Mσ (O(2)). (65)

As an example of Eq. (65) consider the relation from Eq. (3)
that 2z = mymx �= mxmy . Then, according to Eq. (65) we
should have

Mσ (2z) = Mσ (my)Mσ (mx) �= Mσ (mx)Mσ (my), (66)

which the reader can verify using Eqs. (59), (45), and (54).

V. LANDAU FREE ENERGY

A. Minimal (uncoupled) model for order parameters

We start by describing the symmetry of the model when
the order parameters X1 and X3 at zero wave vector and
Q(σ )

X at wave vector kX are not coupled to one another.
We can imagine that ordering has developed via consecutive
continuous transitions, as might happen for a suitable set of
parameters having the same symmetry as MGO, but quite
different in detail. Although this is not the experimental
scenario, it will provide a correct description of the symmetries
of the phase. Thus we imagine X1 and X3 to be governed by a
free energy

F1,3 = a1(T − T1)X2
1 + u1X

4
1 + a3(T − T3)X2

3 + u3X
4
3, (67)

and similarly the incommensurate order parameters to be
governed by a free energy, the simplest form of which is

FX = aX,1(T − TX1)
(∣∣Q(1)

A

∣∣2 + ∣∣Q(1)
B

∣∣2)
+ aX,2(T − TX2)

(∣∣Q(2)
A

∣∣2 + ∣∣Q(2)
B

∣∣2) + O(|Q|4). (68)

We point out that within such a simple theory and barring an
unphysical accidental degeneracy, Q(σ=1)

X and Q(σ=2)
X would

not have the same wave vector [as Eq. (68) assumes] because
the exchange interactions are never exactly isotropic in an
orthorhombic crystal. However, if the equilibrium value of the
two wave vectors are almost equal in a simple approximation,
then there are terms in the Landau free energy which lock the
two wave vectors into equality [25], and we assume this to be
the case here. Then the nature of the ordered phase is dictated
by the form of the quartic and higher-order terms of the Landau
free energy. Consider, for example, the quartic terms. In the
space of QA and QB there are isotropic terms

�F =
∑

σ

uσ

[∣∣Q(σ )
A

∣∣2 + ∣∣Q(σ )
B

∣∣2]2
. (69)

This term would allow for an arbitrary superposition of both
wave vectors, kA and kB within a single domain. However, it
has been shown [13] that each domain contains only a single
wave vector. That indicates that the free energy includes the
term

�F =
∑
σσ ′

Bσσ ′
∣∣Q(σ )

A

∣∣2∣∣Q(σ ′)
B

∣∣2
, (70)

which strongly disfavors having two wave vectors simultane-
ously present when Bσσ ′ is large and positive. Finally, we point
out that we expect terms in the free energy to prevent irreps
from having the same phase. At positions where one irrep is
maximal, there is usually less phase space into which the other
irrep can condense. This argument is reflected by the term [25]

�F = A
∑

X+A,B

(
Q(1)

X

[
Q(2)

X

]∗ + [
Q(1)

X

]∗
Q(2)

X

)2
, (71)

with A > 0. This term is proportional to cos2(�φ), where
�φ is the phase difference between the complex-valued order
parameters of the two irreps. We expect A to be large and
positive, so that the cases �φ = ±π/2 are strongly but equally
favored. Thus we write

Q
(1)
X Q

(2)
X

∗ − Q
(1)
X

∗
Q

(2)
X = 2iζX

∣∣Q(1)
X Q

(2)
X

∣∣, (72)

where ζX = ±1 is the phase of Q
(1)
X relative to that of Q

(2)
X in

units of π/2. (This is the definition of the helicity ζ .)

B. Coupling terms in the free energy

Before proceeding to higher order we emphasize that we
only want to enumerate the lowest order terms which have
each possible allowed symmetry. To construct such higher
than quadratic order terms which are allowed by symmetry, we
formulate the following rules. Rule 1: we do not allow a term
which includes a factor which itself transforms like unity, such
as X2

n or |Q(σ )
X |2, because the term without this factor should
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TABLE VI. Symmetry of the building blocks.

Operator Transforms like

F1 = X1X3 mxmy

F2 = i
[
Q(1)

A Q(2)
A

∗ − Q(1)
A

∗
Q(2)

A − Q(1)
B Q(2)

B

∗ + Q(1)
B

∗
Q(2)

B

]
mz

F3 = i
[
Q(1)

A Q(2)
A

∗ − Q(1)
A

∗
Q(2)

A + Q(1)
B Q(2)

B

∗ − Q(1)
B

∗
Q(2)

B

]
mxmymz

F4 = ∣∣Q(1)
A

∣∣2 − ∣∣Q(1)
B

∣∣2
mxmy

F5 = ∣∣Q(2)
A

∣∣2 − ∣∣Q(2)
B

∣∣2
mxmy

F6 = Pz mz

already be in our list of allowed terms. Such terms do not lead
to a different symmetry. They only make a quantitative change
in the response of the system. Rule 2: Due to translational
invariance, an allowed term must conserve wave vector. In
view of rule 1, rule 2 implies that the incommensurate order
parameters can only occur in the combination Q(σ )

X [Q(σ ′)
X ]∗

[26]. Rule 3: due to time reversal invariance any term must
contain an even number of magnetic order parameters. In
view of the previous rules, X1 and X3 can only occur in the
product X1X3. To summarize: the allowed building blocks for
invariants are (a) X1X3, (b) i(Q(1)

X [Q(2)
X ]∗ − [Q(1)

X ]∗Q(2)
X ), (c)

|Q(σ )
A |2 − |Q(σ )

B |2, (d) components of the electric polarization
P or magnetization M. Similar terms in which P is replaced
by the applied electric field or M is replaced by the applied
magnetic field are also possible, but are not considered here.
Note that the term (Q(1)

X [Q(2)
X ]∗ + [Q(1)

X ]∗Q(2)
X ) is excluded by

the potential of Eq. (71). In Table VI we list the symmetry of
the various building blocks. To verify these results use
Eqs. (35), (45), and (54) to write

mxQ(1)
A Q(2)

A

∗ = Q(1)
B

∗
Q(2)

B , mxQ(1)
B Q(2)

B

∗ = Q(1)
A

∗
Q(2)

A ,

myQ(1)
A Q(2)

A

∗ = −Q(1)
B Q(2)

B

∗
, myQ(1)

B Q(2)
B

∗ = −Q(1)
A Q(2)

A

∗
,

mzQ
(1)
A Q(2)

A

∗ = −Q(1)
A Q(2)

A

∗
, mzQ

(1)
B Q(2)

B

∗ = −Q(1)
B Q(2)

B

∗
.

(73)

In Appendix C we consider the effect of introducing an
arbitrary choice of phase factors into either or both Eqs. (42)
and (43). There we show that these choices of phases do not
lead to a modification of Eq. (73). One can check that, in
agreement with Table VI,

mxF2 = myF2 = −mzF2 = F2,

mxF3 = myF3 = mzF3 = −F3. (74)

The simplest invariant is

U = aF2F6

= ia
[
Q(1)

A Q(2)
A

∗ − Q(1)
A

∗
Q(2)

A − Q(1)
B Q(2)

B

∗ + Q(1)
B

∗
Q(2)

B

]
Pz

= −2a
[∣∣Q(1)

A

∣∣∣∣Q(2)
A

∣∣ζAPz − ∣∣Q(1)
B

∣∣∣∣Q(2)
B

∣∣ζBPz

]
. (75)

This is the usual trilinear magnetoelectric interaction [5,6]
written in the last line in terms of the helicities ζX. Next we
have the invariants

V1 = b1F1F4 = b1X1X3
[∣∣Q(1)

A

∣∣2 − ∣∣Q(1)
B

∣∣2]
, (76)

V2 = b2F1F5 = b2X1X3
[∣∣Q(2)

A

∣∣2 − ∣∣Q(2)
B

∣∣2]
. (77)

In principle we could also list F4F5. But when each domain
only has a single wave vector, this term is not interesting.
Finally we have W ≡ F1F3F6:

W = icX1X3Pz

[
Q(1)

A Q(2)
A

∗ − Q(1)
A

∗
Q(2)

A

+ Q(1)
B Q(2)

B

∗ − Q(1)
B

∗
Q(2)

B

]
= −2cX1X3

[∣∣Q(1)
A

∣∣∣∣Q(2)
A

∣∣ζAPz + ∣∣Q(1)
B

∣∣Q(2)
B

∣∣ζBPz

]
. (78)

Again, we omit the terms F3F4F6 and F3F5F6 because when
each domain only has a single wave vector, these interactions
are not interesting. The consequences of the potentials U, V ,
and W for the switching behavior of MGO are discussed in
detail in Ref. [13].

We should also note the existence of the invariant

Y =
[
eX1X3 +

∑
σ

fσ

(∣∣Q(σ )
A

∣∣2 − ∣∣Q(σ )
B

∣∣2)]
PxPy

≡ [
χ−1

E

]
xy

PxPy, (79)

where χE is the electric susceptibility tensor. The question is
how does Y vary from one domain to the next? As explained
below Eq. (80), X1X3 is the same within all domains. However,
it is clear from Eq. (79) that domains of kA and those of kB will
have different values for Y . It is not clear that this difference
is large enough to be experimentally accessible.

C. Equilibrium phases

In this section we minimize the free energy including
coupling terms and thereby determine the various equilibrium
domains that are possible. This discussion is not equivalent
to discussing the switching between equilibrium states. To
illustrate the difference between these two analyses consider
the following two scenarios. In scenario I, one simply cools
into the lowest temperature phase and then asks if there is any
correlation between the orientation of the net magnetization
and that of the net ferroelectric polarization: i.e., in any
arbitrarily selected domain are these two collinear vectors
always parallel or always antiparallel to one another? The
experimental answer is “no” [15]: in some domains the two
vectors are parallel and in other domains they are antiparallel.
In scenario II, one asks a different question: if the magnetic
field is used to reverse the direction of the magnetization in a
domain, will that always cause the direction of the ferroelectric
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polarization in that domain to reverse? The experimental
answer to that question is “yes” [13].

Here we only consider the equilibrium properties and
we rely on the experimental observation that each domain
contains only one of the two possible wave vectors [13]. So
we have therefore two choices for domains: they have either
wave vector ±kA or wave vector ±kB . We assume that the
magnitudes of the order parameters Q(σ )

X are fixed by the terms
in the free energy which only depend on these variables,
and that domains A and B are related by |Q(σ )

A | = |Q(σ )
B |.

We assume that the magnitudes of X1 and X3 (but not
their algebraic signs) are similarly fixed and are the same
within all domains. For a domain of wave vector kX we now
determine the number of equilibrium domains consistent with
the minimization of the interaction free energy for a domain
of wave vector kX, which we write as

FX = U + V1 + V2 + W + ζ 2
XP 2

z

/
(2χE), (80)

where χE is the electric susceptibility and for later convenience
we included a factor ζ 2

X = 1. Note that X1 and X3 only appear
in V1, V2, and W and only in the combination X1X3. Since the
magnitudes of X1 and X3 are assumed fixed, it is clear that we
will only be able to determine η ≡ X1X3/|X1X3| in terms of
the parameters of FX. [This means that η depends on the
coefficients b1 and b2 in V1 and V2, as in Eq. (86), below.]
Accordingly, we will have domains in which the sign and
magnitude of X1X3 is determined so as to minimize the free
energy, but the algebraic sign of X3, the magnetization, can be
chosen arbitrarily while keeping the sign of the product X1X3

fixed. Similarly, since Pz and ζX only appear in U and W in
the combination PzζX, we can only determine the combination
CX = PzζX in terms of the parameters of FX. If we had only
the U term, the situation would be simple: CX would be
proportional to a: for a positive, positive helicity would give
rise to positive Pz in the kA domain and to negative Pz in the
kB domain. Here, we will include the presumably perturbative
effect of the W term [see Eq. (87), below]. As mentioned
above, for a given wave vector we have four possible domains
corresponding to the choices of signs of η = X1X3/|X1X3|
and of the helicity ζX (or, equivalently, of the sign of Pz).

For a domain of wave vector kX we have the following free
energy:

FX = U + V1 + V2 + W

=−2aτXCX|Q(1)Q(2)| + ητx[b1|Q(1)|2 + b2|Q(2)|2]|X1X3|
− 2cηCX|X1X3||Q(1)Q(2)| + 1

2χE

C2
x , (81)

where τA = −τB = 1 and we noted that |Q(σ )
A | = |Q(σ )

B | ≡
|Q(σ )|. First we minimize with respect to Pz, i.e., with respect
to CX = PzζX, which leads to

χ−1
E CX = 2(aτX + cη|X1X3|)|Q(1)Q(2)|, (82)

with η = ±1 in the correction term yet to be determined. The
equilibrium free energy as a function of η becomes (using
ζ 2
X = 1)

FX = −2χE(aτX + cη|X1X3|)2|Q(1)Q(2)|2
+ ητX[b1|Q(1)|2 + b2|Q(2)|2]|X1X3|. (83)

Finally, we now minimize this with respect to η. We write

FX = −2χE(a2 + c2|X1X3|2)|Q(1)Q(2)|2 + ητX|X1X3|R,

(84)

where

R = b1|Q(1)|2 + b2|Q(2)|2 − 4χEca|Q(1)Q(2)|2. (85)

Minimization with respect to η leads to

η = −τXR/|R|. (86)

Note that R is the same for all domains. Thus in a domain of
wave vector kX

χ−1
E CX ≡ χ−1

E PzζX

= 2τX(a − cR|X1X3/R|)|Q(1)Q(2)|. (87)

All domains have the same magnitude of Pz, but its sign varies
from domain to domain.

To summarize: minimization of FX = U + V1 + V2 + W

fixes (1) the value of PzζX and (2) the sign of X1X3 in terms of
the parameters of FX. But, in addition to the wave vector, the
variables X3 and Pz are broken symmetry variables whose
signs vary from one domain to the next. Each domain is
characterized by (1) the axis of the wave vector k̂A or k̂B , (2)
the sign of Pz [or equivalently according to Eq. (82), the sign
of the helicity ζX], and (3) the sign of the net magnetization X3

along ĉ. But all domains are symmetry related to one another.

VI. CONCLUSIONS

Many of our results for the system Mn2GeO4 (MGO) have
useful analogs for other noncollinear magnetic incommensu-
rate systems. For instance, note the way we simplified the out-
put of ISODISTORT in Appendix A. Second, the case of MGO
illustrates how one introduces order parameters as the ampli-
tudes of the magnetic “modes.” This formulation is reminiscent
of the description of lattice vibration in terms of normal-mode
amplitudes and the symmetry analysis that follows here
parallels that of phonon modes. A significant advantage of
introducing order parameters is that they conveniently carry
with them the symmetry properties of the modes. In Sec. IV
we use the known way the magnetization transforms to deduce
the way the order parameters transform under the various
symmetry operations. In the usual scenario involving magnetic
order parameters, the symmetry is trivial. Here in a more
complex setting, the analysis is more involved and one has to
keep track of what is called here the “wave function.” In Sec. V
the transformation properties of the order parameters are used
to construct the array of higher-order potentials which govern
the interaction between the various degrees of freedom which
result in having eight possible symmetry-related domains
involving choices of wave vector, electric polarization, and net
magnetic moment. These higher-order potentials have been
shown in Ref. [13] to explain the intricate switching which
takes place between these domains under suitable application
of electric or magnetic fields. To try explain this switching
without introducing order parameters, i.e., by arguing in terms
of magnetic wave functions, would be a nightmare.

An essentially equivalent version of this paper is at
arXiv:1701.04976 [29].
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TABLE VII. Structure of the six modes for k = kA ≡
(0.138,0.211,0) [14,27,28], irrep D(1), for ch sites τ 1−τ 4 from
ISODISTORT for space group Pnma = No. 62 in Ref. [22]. The
magnetic moment distribution is M(R + τ n) = e−ik·(R+τ n)m(τ n),
where the first column lists the real-valued amplitudes which give
m(τ n), where the m(τ n) are listed in the form (R,θ ) ≡ R exp(iθ ). An
arbitrary overall phase, the same for ch and pl sites, is not included
in these tables.

AMP mx my mz mx my mz

Y1 τ 1 (1, 0) (0, 0) (0, 0) τ 2 (1, 180) (0, 0) (0, 0)
Y2 τ 3 (1, 0) (0, 0) (0, 0) τ 4 (1, 180) (0, 0) (0, 0)
Y3 τ 1 (0, 0) (1, 0) (0, 0) τ 2 (0, 0) (1, 180) (0, 0)
Y4 τ 3 (0, 0) (1, 180)a (0, 0) τ 4 (0, 0) (1, 0)a (0, 0)
Y5 τ 1 (0, 0) (0, 0) (1, 0) τ 2 (0, 0) (0, 0) (1, 0)
Y6 τ 3 (0, 0) (0, 0) (1, 180)a τ 4 (0, 0) (0, 0) (1, 180)a

aWe will reparametrize Y6 → −Y6 and Y4 → −Y4, so that these
phases are regularized.
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APPENDIX A: MODES FOR kA

Modes for irreps D(1) and D(2)

In Tables VII and VIII we show the modes for irrep D(1)

for kA = (kx,ky,0). Tables IX and X give the analogous data
for irrep D(2). From these tables (taken from ISODISTORT)
we obtain the magnetization distribution throughout a domain
for irrep σ as

M(N + τ n) = m(σ )(τ n)eiχ−ik·(N+τ n) + c.c. (A1)

We allow the modes to have an arbitrary overall phase factor,
exp(iχ ), because the origin of the incommensurate excitation

TABLE IX. As Table VII. Mode structure for k =
(0.138,0.211,0) for irrep D(2).

AMP mx my mz mx my mz

Y1 τ 1 (1, 270) (0, 0) (0, 0) τ 2 (1, 270) (0, 0) (0, 0)
Y2 τ 3 (1, 270) (0, 0) (0, 0) τ 4 (1, 270) (0, 0) (0, 0)
Y3 τ 1 (0, 0) (1, 270) (0, 0) τ 2 (0, 0) (1, 270) (0, 0)
Y4 τ 3 (0, 0) (1, 90) (0, 0) τ 4 (0, 0) (1, 90) (0, 0)
Y5 τ 1 (0, 0) (0, 0) (1, 270) τ 2 (0, 0) (0, 0) (1, 90)
Y6 τ 3 (0, 0) (0, 0) (1, 90) τ 4 (0, 0) (0, 0) (1, 270)

is arbitrary. We now write the results of ISODISTORT given
in Tables VII and VIII in a simpler, but equivalent form. For
irrep D(1) for the ch (τ 1−τ 4) sites we make the cosmetic
replacement

m(1)
α (τ 1) = aα, m(1)

α (τ 2) = μαaα,

m(1)
α (τ 3) = bα, m(1)

α (τ 4) = μαbα, (A2)

where (μx,μy,μz) = (−1,−1,+1). For the pl sites, the situ-
ation is more complicated. Table VIII gives the terms from
ISODISTORT which depend on Z3 and Z4 as

m(1)
x (τ 5) = (Z3 − iZ4)eiφ, m(1)

x (τ 6) = −(Z3 − iZ4)eiφ,

m(1)
x (τ 7) = (Z3 + iZ4)e−iφ, m(1)

x (τ 8) = −(Z3 + iZ4)e−iφ.

(A3)

Note that this is a parametrization in terms of three
parameters. However, this is an overparametrization: if φ is
arbitrarily varied, mx can remain unchanged by a suitable
rotation in the complex (Z3,Z4) plane. Accordingly, we
reproduce these results via a two-parameter representation in
terms of the complex-valued variable zx = (Z3 − iZ4)eiφ , so
that

m(1)
x (τ 5) = zx, m(1)

x (τ 6) = −zx,

m(1)
x (τ 7) = z∗

x, m(1)
x (τ 8) = −z∗

x. (A4)

TABLE VIII. As Table VII. Mode structure for k = (0.138,0.211,0), irrep D(1), for pl sites. ISODISTORT sets φ = 327.55, but as we
discuss, this value has no significance.

AMP mx my mz mx my mz

Z1 τ 5 (0, 0) (1, φ) (0, 0) τ 6 (0, 0) (1, φ − 180) (0, 0)
τ 7 (0, 0) (1, 360 − φ) (0, 0) τ 8 (0, 0) (1, 540 − φ) (0, 0)

Z2 τ 5 (0, 0) (1, φ − 90) (0, 0) τ 6 (0, 0) (1, φ − 270) (0, 0)
τ 7 (0, 0) (1, 450 − φ) (0, 0) τ 8 (0, 0) (1, 630 − φ) (0, 0)

Z3 τ 5 (1, φ) (0, 0) (0, 0) τ 6 (1, φ − 180) (0, 0) (0, 0)
τ 7 (1, 360 − φ) (0, 0) (0, 0) τ 8 (1, 540 − φ) (0, 0) (0, 0)

Z4 τ 5 (1, φ − 90) (0, 0) (0, 0) τ 6 (1, φ − 270) (0, 0) (0, 0)
τ 7 (1, 450 − φ) (0, 0) (0, 0) τ 8 (1, 630 − φ) (0, 0) (0, 0)

Z5 τ 5 (0, 0) (0, 0) (1, φ) τ 6 (0, 0) (0, 0) (1, φ)
τ 7 (0, 0) (0, 0) (1, 360 − φ) τ 8 (0, 0) (0, 0) (1, 360 − φ)

Z6 τ 5 (0, 0) (0, 0) (1, φ − 90) τ 6 (0, 0) (0, 0) (1, φ − 90)
τ 7 (0, 0) (0, 0) (1, 450 − φ) τ 8 (0, 0) (0, 0) (1, 450 − φ)
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TABLE X. As Table VII. Mode structure for k = (0.138,0.211,0) for irrep D(2).

AMP mx my mz mx my mz

Z1 τ 5 (0, 0) (1, φ) (0, 0) τ 6 (0, 0) (1, φ) (0, 0)
τ 7 (0, 0) (1, 540 − φ) (0, 0) τ 8 (0, 0) (1, 540 − φ) (0, 0)

Z2 τ 5 (0, 0) (1, φ − 90) (0, 0) τ 6 (0, 0) (1, φ − 90) (0, 0)
τ 7 (0, 0) (1, 630 − φ) (0, 0) τ 8 (0, 0) (1, 630 − φ) (0, 0)

Z3 τ 5 (1, φ) (0, 0) (0, 0) τ 6 (1, φ) (0, 0) (0, 0)
τ 7 (1, 540 − φ) (0, 0) (0, 0) τ 8 (1, 540 − φ) (0, 0) (0, 0)

Z4 τ 5 (1, φ − 90) (0, 0) (0, 0) τ 6 (1, φ − 90) (0, 0) (0, 0)
τ 7 (1, 630 − φ) (0, 0) (0, 0) τ 8 (1, 630 − φ) (0, 0) (0, 0)

Z5 τ 5 (0, 0) (0, 0) (1, φ) τ 6 (0, 0) (0, 0) (1, φ) − 180
τ 7 (0, 0) (0, 0) (1, 540 − φ) τ 8 (0, 0) (0, 0) (1, 360 − φ)

Z6 τ 5 (0, 0) (0, 0) (1, φ − 90) τ 6 (0, 0) (0, 0) (1, φ − 270)
τ 7 (0, 0) (0, 0) (1, 630 − φ) τ 8 (0, 0) (0, 0) (1, 450 − φ)

Similarly, we can reproduce the results of Table VIII from
ISODISTORT for my on the pl sites by setting zy = (Z1 −
iZ2)eiφ in which case

m(1)
y (τ 5) = (Z1 − iZ2)eiφ = zy,

m(1)
y (τ 6) = −(Z1 − iZ2)eiφ = −zy,

(A5)
m(1)

y (τ 7) = (Z1 + iZ2)e−iφ = z∗
y,

m(1)
y (τ 8) = −(Z1 + iZ2)e−iφ = −z∗

y,

and for Mz on the pl sites by setting zz = (Z5 − iZ6)eiφ in
which case

m(1)
z (τ 5) = (Z5 − iZ6)eiφ = zz,

m(1)
z (τ 6) = (Z5 − iZ6)eiφ = zz,

(A6)
m(1)

z (τ 7) = (Z5 + iZ6)e−iφ = z∗
z ,

m(1)
z (τ 8) = (Z5 + iZ6)e−iφ = z∗

z ,

Similar identifications are made for irrep D(2) and we obtain
Eqs. (7) and (8).

APPENDIX B: TEMPERATURE DEPENDENCE OF MODES

Look at Eq. (6). There one sees that each mode involves 12
real parameters (four for each spin component). Thus, there
are actually 11 additional modes having the same symmetry
as the mode we focus upon. Accordingly, we introduce the
corresponding mode amplitudes Qn, with n = 1,12, where
the free energy at quadratic order due to the irrep in question
in the disordered phase is (with an > 0)

F =
12∑

n=1

an(T − Tn)|Qn|2, (B1)

where T1 is the largest Tn, so that the mode labeled “1” is the
one that first condenses as the temperature is lowered. To study
the mean-field temperature dependence for T just below T1 we
go to higher order:

F = −a1(T1 − T )|Q1|2 −
∑
n>1

(Tn − T )|Qn|2 + u|Q1|4 + V,

(B2)

where T1 < T, Tn > T for all n > 1, and u > 0. Thereby we
find the standard result: 〈Q1〉 = 0, for T > T1 and for T < T1,

|〈Q1〉| = [a1/(2u)]1/2[T1 − T ]1/2, (B3)

where 〈 〉 denotes an equilibrium value. In the present case, the
terms which modify the critical wave function associated with
Q1 are all even order in the order parameters. The quadratic
terms are diagonal by construction of the normal modes. So
the leading term which give corrections to the wave function
of the critical mode is of the form

V =
∑
n>1

|Q1|2[cnQ1Q
∗
n + c∗

nQ
∗
1Qn], (B4)

where cn need not be real valued. For T < T1 the effect of this
term is approximately the same as that of

V = 2
∑
n>1

|〈Q1〉|2[cnQ1Q
∗
n + c∗

nQ
∗
1Qn]. (B5)

Thus we see that at quartic order there is a mixing of modes
governed by the temperature-dependent prefactor proportional
to the equilibrium value, |〈Q1〉|2, which in mean-field theory
is proportional to T1 − T . Of course, this mixing only takes
place within the space of modes having the same symmetry
as Q1.

APPENDIX C: PHASE FACTORS

In this section we discuss how the definition of order
parameters is subject to inclusion of arbitrary phase factors.
As mentioned, this ambiguity is similar to that encountered
in a two-sublattice antiferromagnet where one defines the
staggered magnetization order parameter N in terms of the
sublattice magnetizations, either as N = M1 − M2 or as N =
M2 − M1. A macroscopic observable will not depend on the
sign of N. We now see how such a phase factor affects our
analysis. Equations (41) and (42) define the wave functions
	(B,σ )

αn . In principle we can introduce arbitrary phases exp(iφσ )
as prefactors in these definitions. It is not useful to go to
that level of generality. So we will modify these definitions
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by writing

	(B,1)
αn = ξ1λ

′
α	

(A,1)
αn = ξ1λ

′
α[μαbα,bα,μαaα,aα; zα,μαzα,z∗

α,μαz∗
α]n, (C1)

	(B,2)
αn = −ξ2λ

′
α	

(A,2)
αn = −ξ2λ

′
α[μαdα, − dα,μαcα, − cα; −wα,μαwα, − w∗

α,μαw∗
α]n. (C2)

with each ξσ = ±1. Then, in this version of the theory we have

Mσ (my) = (−1)σ+1

⎡
⎢⎢⎢⎣

0 ξ1e
iky/2 0 0

ξ2e
−iky/2 0 0 0

0 0 0 ξ1e
−iky/2

0 0 ξ2e
iky/2 0

⎤
⎥⎥⎥⎦. (C3)

These modifications do not affect Mσ (mz) or Mσ (2z) because mz and 2z transform wave functions into themselves. Similarly,
we now have the modified result

Mσ (mx) = (−1)σ+1

⎡
⎢⎢⎢⎣

0 0 0 ξ2e
i(kx+ky )/2

0 0 ξ1e
i(kx−ky/2) 0

0 ξ2e
−i(kx+ky )/2 0 0

ξ1e
−i(kx−ky )/2 0 0 0

⎤
⎥⎥⎥⎦. (C4)

One can verify that these choices of phase do not affect Eq. (73) and thus do not affect the results for the invariant potentials
U, Vn, and W .
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