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Analytical description of the mode hybridization in a restricted two-dimensional model for an
electromagnetic cavity containing a thin magnetized slab
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Analytical solutions to the problem of mode splitting caused by a thin plain magnetized slab placed in a
rectangular electromagnetic cavity are found in two special cases: an infinite slab between two ideal infinite plain
mirrors (1D model) and a 2D model of a cavity confined in the direction of permanent magnetization. Under
the resonance conditions, the time-dependent magnetization vectors inside the slab are strongly enhanced, with
opposite directions in the split modes. For realistic parameters, the frequency splitting does not depend on the
dielectric constant of the slab and the Landau-Lifshitz-Gilbert damping coefficient, whereas the loaded cavity
quality factor is not sensitive to the slab position.
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I. INTRODUCTION

Recently, hybridized modes in electromagnetic cavities
containing ferromagnetic samples attracted the attention of
many researchers [1–19]. This interest is explained, in par-
ticular, by possible applications to the problems of quantum
information, due to strong coupling of qubits (represented
by spin systems) to electromagnetic fields [20]. Reviews of
similar systems, such as exciton polaritons in semiconductor
microcavities or other hybrid devices, can be found in
Refs. [21–24].

Earlier, the effects of strong coupling between electro-
magnetic and magnetostatic modes were studied, e.g., in
Refs. [25,26]. Various geometries were considered up to
now. Spherical cavities with spherical samples displaced from
the cavity center were investigated theoretically in Ref. [1].
The authors of Refs. [2,6,17] performed experiments with
thin ferromagnetic films deposited on a superconducting
coplanar waveguide microwave resonator or similar structures.
Rectangular 3D cavities containing small spherical samples
were used in Refs. [3,4,13,18]. Re-entrant type cavities with
two cylindrical posts and a small spherical sample between
them were studied in Ref. [5], and multipost cavities were used
in Ref. [14]. Coaxial cables with small spherical samples were
used in Refs. [7,11]. Numerical simulations of multilayered
magnetic structures were performed in Ref. [8]. Experiments
with flat samples inside a rectangular cavity were reported in
Ref. [9]. The case of a thin film placed between two plane
semitransparent mirrors was studied theoretically in Ref. [10]
in the framework of the scattering approach. Experiments with
this geometry were reported in Ref. [12]. Cylindrical cavities
were used in Refs. [15] (with flat samples) and [16] (with a
spherical sample near the wall).

The aim of our study is to find analytical solutions for
the electromagnetic field in simplified models of rectangular
cavities containing thin flat magnetized slabs, in order to see
how the mode hybridization happens and what is essentially
different in the two split modes. The plan is as follows.
Section II contains basic equations. Section III is devoted
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to a simplified version of the problem studied in Ref. [10],
namely, a thin infinite plain slab between two ideal infinite
plain mirrors. A more realistic 2D model is studied in Sec. IV.
A brief discussion of results is given in Sec. V.

II. BASIC EQUATIONS

We consider a cavity containing a slab with a constant
dielectric permeability ε and a constant uniform saturated
magnetization vector M0 = (0,M0,0), whose direction is
chosen as the y axis. In addition, a constant uniform magnetic
field H0 = (0,H0,0) is directed along the same axis. The
geometry is shown in Fig. 1.

Our goal is to find the structure of possible weak monochro-
matic time-dependent electric and magnetic fields E(r,t) =
E(r)e−iωt and H(r,t) = H(r)e−iωt in the whole volume of
the cavity (both inside and outside the slab). The Maxwell
equations inside the slab have the form (we use the SI units)

rotH = ε0ε
∂E
∂t

, rotE = −μ0
∂

∂t
(H + M), (1)

where M(r,t) = M(r)e−iωt is the time-dependent part of the
magnetization vector inside the slab. Outside the slab one
should put ε = 1 and M = 0. The evolution of vector M is
governed by the Landau-Lifshitz-Gilbert equation [27–29]

∂M
∂t

= γ [Hef × M] + α

M0

[
M × ∂M

∂t

]
, (2)

where M = M0 + M is the total magnetization vector, γ is
the gyromagnetic ratio, and α is a small damping coefficient.
For the materials like yttrium iron garnet Y3Fe5O12 (YIG),
frequently used in experiments, γ /(2πμ0) ≈ 28 GHz/T and
the saturation magnetization μ0M0 ≈ 0.17 T [30]. The values
of the damping factor α for YIG, given in the available
literature, were α ∼ 10−3 [8,12] and α ≈ 3 × 10−4 [15], while
a much lower value α ≈ 7 × 10−5 was reported in Ref. [31].
The limiting relaxation mechanism is spin-lattice coupling
[32]. The effective magnetic field acting on the magnetization
vector has the form (if we neglect the anisotropy effects)

Hef = H0 + H + J∇2M, (3)

where J > 0 is the exchange parameter.
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FIG. 1. Geometry of the problem.

The time-independent amplitudes obey the equations

rotH = −iωε0εE, rotE = iωμ0(H + M). (4)

The first of these two equations can be written in the following
form, which will be used later:

E = i(ωε0ε)−1

⎛
⎝∂Hz/∂y − ∂Hy/∂z

∂Hx/∂z − ∂Hz/∂x

∂Hy/∂x − ∂Hx/∂y

⎞
⎠. (5)

The second order equation for the magnetic field vector inside
the slab reads

�H + ω2εε0μ0H = grad divH − ω2εε0μ0M. (6)

Outside the slab the right-hand side of this equation should be
replaced by zero.

We assume that |M| � |M0|, since M is induced by the
weak harmonic magnetic field with |H| � |H0|. Then we
can linearize Eq. (2), neglecting the term [H × M]. Under
these assumptions, the amplitude vectors of the harmonic
magnetization and magnetic field obey the equation (remember
that vectors H0 and M0 are parallel)

− iωM = γ [H0 × M] − γ [M0 × (H + J∇2M)]

−(iωα/M0)[M0 × M]. (7)

It is reasonable to suppose that ∇2M = −q2M for the
harmonic fields in a homogeneous slab, where the constant
factor q2 will be determined later. Then we have My = 0 and
the following equations for two other components of vector
M = (Mx,My,Mz):

iωMx = ωMHz − ω̃HMz, iωMz = ω̃HMx − ωMHx, (8)

where

ωH ≡ γH0, ωM ≡ γM0, ω̃H ≡ ωH − iωα + ωMJq2.

The solutions to Eqs. (8) are as follows,

Mx = ωM (ω̃HHx + iωHz)

ω̃2
H − ω2

, (9)

Mz = ωM (ω̃HHz − iωHx)

ω̃2
H − ω2

. (10)

Then Eq. (6) results in the following equations for the magnetic
field components inside the slab:

∂2Hx

∂y2
+ ∂2Hx

∂z2
− ∂2Hy

∂x∂y
− ∂2Hz

∂x∂z
= −k2ε[uHx + ivHz],

(11)

∂2Hz

∂y2
+ ∂2Hz

∂x2
− ∂2Hy

∂z∂y
− ∂2Hx

∂x∂z
= −k2ε[uHz − ivHx],

(12)

∂2Hy

∂x2
+ ∂2Hy

∂z2
− ∂2Hx

∂x∂y
− ∂2Hz

∂y∂z
= −k2εHy, (13)

where k2 = ω2ε0μ0,

u = ω̃H (ω̃H + ωM ) − ω2

ω̃2
H − ω2

, v = ωωM

ω̃2
H − ω2

. (14)

III. 1D MODEL

Let us consider first the idealized special case of very big
transverse spatial dimensions: Lx = Ly = ∞. Then we may
look for the solutions depending on the single space variable
z perpendicular to the slab surface. (There exist also solutions
describing the waveguide propagation along the infinite slab
[8,33,34], but we do not consider such propagating modes
here.) For these solutions, Eqs. (11)–(13) can be simplified as
follows,

d2Hx

dz2
+ k2ε[uHx + ivHz] = 0, (15)

uHz − ivHx = 0, (16)

d2Hy

dz2
+ k2εHy = 0. (17)

The consequence of (10) and (16) is Bz = Hz + Mz = 0, as
it must be due to the equation divB = dBz/dz = 0 in the
one-dimensional case under consideration. Using Eq. (16),
we can write Eq. (15) as

d2Hx

dz2
+ k2εg2Hx = 0, (18)

where

g2(ω) = (ω̃H + ωM )2 − ω2

ω̃H (ω̃H + ωM ) − ω2
. (19)

We see that Hx and Hy components are totally independent.
Moreover, the Hy component (directed along the constant
magnetic field and magnetization vectors) does not depend
on the magnetic parameters H0 and M0.

Let us suppose that the magnetized slab of thickness Ls

occupies the region 0 � zs < z < zs + Ls � L, where zs is
the position of the left boundary of the slab. Then the function
Hx(z) can be written as follows (its form in the empty part of
the cavity is determined by the boundary condition dHx/dz =
Ey = 0 at the ideal cavity walls):

Hx(z) =
⎧⎨
⎩

W cos(kz), 0 < z < zs

U cos(kg
√

ε z + ϕ), zs < z < zs + Ls

V cos[k(z − L)], zs + Ls < z < L

.
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The continuity conditions for Hx and Ey ∝ ε−1dHx/dz at the
slab surfaces z = zs and z = zs + Ls result in two equations:

g tan(kg
√

ε zs + ϕ) = √
ε tan(kzs), (20)

g tan[kg
√

ε (zs + Ls) + ϕ] = √
ε tan[k(zs + Ls − L)]. (21)

Excluding the phase ϕ we arrive at the equation

tan[k(zs+Ls−L)] = g tan(kg
√

ε Ls)/
√

ε + tan(kzs)

1 − √
ε tan(kzs) tan(kg

√
ε Ls)/g

. (22)

For a thin slab, satisfying the condition kLs � 1, the de-
nominator in Eq. (22) can be replaced by unity (unless
| tan(kzs)| 
 1, but these regions, close to the nodes of the
magnetic field in the empty cavity, are not interesting from the
point of view of the hybridization phenomena), and we have a
simplified equation

g√
ε

tan(kg
√

ε Ls) = tan[k(zs + Ls − L)] − tan(kzs). (23)

For the totally empty cavity (Ls = zs = 0) we have the well
known solutions

kn = ωn/c = nπ/L, n = 1,2,3, . . . , (24)

where c ≡ (ε0μ0)−1/2 is the light velocity in vacuum.
To find solutions to Eq. (23) for nonzero (but small enough)

values of the slab thickness Ls � L (the criterion of smallness
will be given below), we replace the tangent function in the
left-hand side of Eq. (23) with its argument and neglect the
term kLs in the right-hand side of this equation. Then, writing
k = kn + δk (with |δk|L = |δω|L/c � 1) and neglecting the
second order corrections, we use the chain of relations

tan[k(zs − L)] − tan(kzs) = tan(kzs − Lδk) − tan(kzs)

≈ −(Lδω/c)/ cos2(kzs) ≈ −(Lδω/c)/ cos2(nπzs/L).

In this way, we transform Eq. (23) to the following one:

δω = −Rωng
2(ωn + δω), R ≡ Ls

L
cos2

(
nπ

zs

L

)
. (25)

Consequently, the maximal influence of the slab on the
frequency shift can be observed at those points zs where the
magnetic field amplitude takes maximal values in the empty
cavity: cos2 (nπzs/L) = 1.

A. Neglecting damping and exchange effects

Let us begin the analysis of Eq. (25) with the simplest
case of α = J = 0. For a small ratio |δω|/ωn � 1 we can
write ω2 ≈ ω2

n + 2ωnδω in the denominator of function (19),
neglecting the term δω2. At the same time, we put ω = ωn

in the numerator of this function, taking into account that it
is multiplied by the small parameter R � 1 in the right-hand
side of Eq. (25). Thus we arrive at the quadratic equation

2(δω)2 − χδω − Rη = 0, (26)

where

χ ≡ [
ωH (ωH + ωM ) − ω2

n

]/
ωn, η ≡ (ωH + ωM )2 − ω2

n.

Two solutions of Eq. (26)

δω± = χ/4 ±
√

χ2/16 + Rη/2 (27)
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FIG. 2. The dimensionless frequency shift f ≡ δω/ωn versus the
dimensionless magnetic field h ≡ ωH /ωM = H/M0 in the case of
ωn = ωM and R = 10−4.

provide the analytical description of the hybridization effect,
illustrated in Fig. 2. This effect is mostly pronounced under
the resonance condition χ = 0, i.e.,

ωH (ωH + ωM ) = ω2
n, ωres

H =
√

ω2
n + ω2

M/4 − ωM/2. (28)

The frequency splitting � = δω+ − δω− in the resonance case
(it can be treated also as the avoided-crossing frequency or the
Rabi frequency) equals

� = (
RωM

[√
ω2

M + 4ω2
n + ωM

])1/2
. (29)

This dependence is illustrated in Fig. 3.
The hybridization region corresponds to χ2 < 8Rη:

∣∣ωH − ωres
H

∣∣ <
ωn�√

ω2
n + ω2

M/4
. (30)

Outside this region we have separate photon and magnon
modes. The photon mode (horizontal line in Fig. 2) has the
frequency close to ωn (it almost does not depend on the static
magnetic field H0), whereas the frequency of magnon mode
is close to

√
ωH (ωH + ωM ), in accordance with Ref. [35] for

the plain slab.
Now we can evaluate the realm of validity of the approx-

imations made above. The manipulations with the right-hand
side of Eq. (23) are justified provided ωnLs � Lδω. In view
of (29) we obtain the condition

Ls

L
� M0

H0
cos2 (nπzs/L). (31)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02
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m

FIG. 3. The dimensionless Rabi frequency S ≡ �/ωn versus the
ratio m ≡ ωM/ωn for R = 10−4.
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FIG. 4. The imaginary parts of dimensionless frequency shifts
f ≡ δω±/ωn versus the dimensionless magnetic field h ≡ H/M0 for
α = 10−3, ωn = ωM , and R = 10−4.

The simplification of the left-hand side of Eq. (23) is justified
provided

Ls

L
�

[
H0 cos2 (nπzs/L)

M0ε2

]1/3

. (32)

Consequently, simple approximations do not work in the
regions with small amplitudes of the magnetic field, where
| cos (nπzs/L)| � 1. But these regions are not interesting, if
the goal is to obtain a maximal frequency splitting. Outside
these regions, the assumption Ls � L is sufficient, if M0 ∼ H0

and ε is not too big.

B. Account of damping

If α > 0 (but J = 0), then the denominator of function
g2(ωn + δω) can be approximated as

ω̃H (ω̃H + ωM ) − ω2 ≈ ωnχ − 2ωnδω − iωnα(2ωH + ωM ),

where the higher-order terms δω2, αδω, and α2 are neglected.
Instead of (26) we have now the equation (neglecting the
higher-order terms Rα,Rδω, and so on)

2(δω)2 + (iαξ − χ )δω − Rη = 0, ξ ≡ 2ωH + ωM.

(33)

Its two solutions are as follows,

δω± = (χ − iαξ )/4 ±
√

(χ − iαξ )2/16 + Rη/2. (34)

For small values of α (remember that α < 10−3 for the
materials like YIG), real parts of δω± are practically the
same as that discussed in the preceding subsection. A typical
behavior of the imaginary parts of functions (34) is shown in
Fig. 4.

The two curves intersect at the point of resonance with
χ = 0, where Im(δωres

± ) = −(iα/4)
√

4ω2
n + ω2

M . Note that this
value (which is much smaller than the frequency splitting �)
does not depend on the slab thickness Ls and its position zs .
The quality factor of the cavity with ideal walls at the resonance
equals

Qres = ω

2|Imδωres| ≈ ωn

α

√
ω2

n + ω2
M/4

. (35)

For a nonideal cavity with high unloaded quality factor Q0 one
can use the formula Q−1

tot = Q−1
0 + Q−1

res .

C. Account of exchange effects

To evaluate the contribution of exchange effects, let us
suppose that J > 0 but α = 0. Since the magnetization
vector components are proportional to the magnetic field
components inside the slab, the following consistency con-
dition must be satisfied: q2 = k2εg2. Comparing this equality
with Eq. (25) and taking k ≈ kn, we arrive at the relation
Jq2 ≈ −δωεJk2

n/(Rωn). Therefore the contribution of terms
proportional to J in the denominator of function g2(ω) has the
following order of magnitude for ωM ∼ ωH ∼ ωn (neglecting
the second order corrections):

(2ωH + ωM )ωMJq2 ∼ −ωnδωεJk2
n/R.

Since J ≈ 3 × 10−16 m2 and ε ≈ 15 for typical magnetic
materials used in experiments (YIG) [30], the dimensionless
parameter εJk2

n is very small for the low frequency modes in
cavities with L > 1 cm (when kn ∼ π/L): εJk2

n < 10−9. On
the other hand, R > 10−4 for slabs of thickness Ls > 1 μm
(in the regions of maximal magnetic field of the field mode).
Consequently, the exchange effects are negligible in the case
concerned.

D. What is different for the two hybridized modes?

For small frequency changes, |δω±| � ωn, the changes of
the wave number k are also small. Therefore the Hx component
of the magnetic field (parallel to the slab) is close to its values
in the empty cavity outside the slab. Moreover, due to the
continuity of Hx at the slab surfaces, this field component
almost does not change inside the slab as well. Then, what
is significantly different for the hybridized modes with the
frequencies ω± = ωn + δω±?

The answer is given by Eq. (16), relating the magnetic field
components inside the slab. For |δω±| � ωn it can be written
as (we neglect here the damping corrections)

Hz = iωM

χ − 2δω
Hx. (36)

Consequently, at the resonance χ = 0 the magnetic field
component Hz inside the slab (it is perpendicular to the slab
surface) becomes much stronger than Hx , and it has opposite
signs for the ω+ and ω− modes:

H res
z = − iωM

2δω
Hx = −M res

z . (37)

Moreover, the x component of the magnetization vector M also
becomes big, and the directions of the time-dependent parts of
the magnetization vector are opposite for the split modes:

M res
x = − ωnωM

2ωH δω
Hx. (38)

IV. 2D MODELS

Real cavities have finite extensions in all three dimensions.
The main difficulty of solving equations in this case is the
necessity to take into account the boundary conditions not
only at the surfaces with z = const , but also at the boundaries
described by the equations x = const and y = const . In the
following subsections we show that for some restricted 2D
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models analytical solutions still can be obtained, although this
seems to be impossible in the generic case.

A. Confinement in the direction of external magnetic field

Let us consider a cavity having a finite extension in
the direction of external constant magnetic field, so that
−Ly/2 < y < Ly/2 (but −∞ < x < ∞). Then the magnetic
field vector must depend on two variables, z and y. In this case
Eqs. (11)–(13) become

∂2Hx

∂y2
+ ∂2Hx

∂z2
+ k2ε[uHx + ivHz] = 0, (39)

∂2Hz

∂y2
− ∂2Hy

∂z∂y
+ k2ε[uHz − ivHx] = 0, (40)

∂2Hy

∂z2
− ∂2Hz

∂y∂z
+ k2εHy = 0. (41)

One can check that the split solutions of the preceding section
with Hy = ∂Hx/∂y = ∂Hz/∂y = 0 hold in the new case, as
well (as soon as the only nonzero component of the electric
field is Ey). On the other hand, we have no more the solution
with Hx = Hz = 0 but Hy �= 0 (which did not depend on the
slab magnetization), because the boundary condition Ex = 0
at y = ±Ly/2 cannot be satisfied in view of Eq. (40).

We look for the factorized solutions with Hy �= 0:

Hx = ψ(z)β(y), Hz = γ (z)δ(y), Hy = μ(z)ν(y). (42)

Such a factorization is possible for Eq. (39) provided

β ′′ = −r2β(y), δ(y) = ξβ(y), r,ξ = const. (43)

(Hereafter the primes mean derivatives of functions with
respect to their arguments.) Without any loss of generality we
may take ξ = 1 [otherwise we can simply redefine function
γ (z)]. Then we arrive at the equation

ψ ′′ + (k2εu − r2)ψ(z) + ik2εvγ (z) = 0. (44)

Equation (40) with functions (42) assumes the form

β(y)[(k2εu − r2)γ (z) − ik2εvψ(z)] = μ′(z)ν ′(y). (45)

It is factorized if β(y) = ζν ′(y) with ζ = const . Choosing
ζ = 1 [redefining if necessary function μ(z)] we arrive at the
equation

μ′(z) = (k2εu − r2)γ (z) − ik2εvψ(z). (46)

Equation (41) becomes

μ′′ + k2εμ(z) = −ρ2γ ′(z) (47)

if

ν ′′ + ρ2ν(y) = 0, ρ = const. (48)

The equation divB = div(H + M) = 0 can be factorized pro-
vided

ν ′(y)[μ(z) + uγ ′(z) − ivψ ′(z)] = 0. (49)

This condition is satisfied automatically if ν ′(y) ≡ 0. But for
the finite cavity length in the y direction, we must satisfy the
boundary conditions Ex = Ez = 0 at the surfaces y = ±Ly/2.

The electric field vector (5) assumes the following form in the
factorized case:

E = i(ωε0ε)−1

⎛
⎝−ν(y)[ρ2γ (z) + μ′(z)]

ν ′(y)ψ ′(z)
ρ2ν(y)ψ(z)

⎞
⎠. (50)

Consequently, the condition ν(y) = 0 at y = ±Ly/2 deter-
mines the solutions to Eq. (48) in the form

ν(y) = cos (ρmy), ρm = (1 + 2m)π/Ly, m = 0,1, . . . .

Then we have r = ρm and

β(y) = δ(y) = ν ′(y) = −ρm sin (ρmy).

Consequently, in the limit Ly → ∞ we have ν(y) = 1 and
Hx = Hz = 0. But for Ly < ∞ the nonzero component Hy is
accompanied with nonzero components Hx and Hz.

It is easy to verify with the aid of Eq. (49), that outside the
slab (where ε = u = 1 and v = 0) equations for the functions
ψ(z) and μ(z) become identical:

ψ ′′ + (k2 − r2)ψ(z) = 0, μ′′ + (k2 − r2)μ(z) = 0.

Inside the slab we use the standard procedure, looking for
solutions in the form

ψ(z) = ψ0e
iqz, γ (z) = γ0e

iqz, μ(z) = μ0e
iqz.

Thus we arrive at the matrix equation⎛
⎝k2εu − r2 − q2 ik2εv 0

−ik2εv k2εu − r2 −iq

0 iqr2 k2ε − q2

⎞
⎠

⎛
⎝ψ0

γ0

μ0

⎞
⎠ = 0.

The corresponding characteristic equation can be reduced to
the form

uq4 − [(k2εu − r2)(u + 1) − k2εv2]q2

+(k2εu − r2)2 − (k2εv)2 = 0. (51)

Its solutions are

q2 = (2u)−1{(k2εu − r2)(u + 1) − k2εv2

±
√

[(k2εu − r2)(u − 1) − k2εv2]2 + 4r2k2εv2}.
(52)

Hereafter the solutions corresponding to the negative sign
before the square root will be marked as q2

b , whereas solutions
with the positive sign will be marked as q2

s . This is explained
by the observation that in the resonance case, when parameter
u is small,

u ≈ ωn

ωHωM

(2δω − χ + iαξ ), v ≈ −ωn/ωH , (53)

q2
b is “big”, whereas q2

s is relatively “small”:

q2
b ≈ − r2 + k2εv2

u
, q2

s ≈ (k2εv)2 − r4

k2εv2 + r2
. (54)

Let us suppose, for the sake of simplicity, that the slab occupies
the region 0 < z < Ls � L. The solutions outside the slab,
satisfying the conditions Ex = Ey = 0 at z = L, have the
following form, according to Eq. (50):

ψ(z) = �0 cos[a(z − L)], μ(z) = M0 cos[a(z − L)],

γ (z) = −M0 sin[a(z − L)]/a, a2 ≡ k2 − r2.
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The solutions inside the slab can be written as follows:

ψ(z) =
∑
λ=b,s

(�λ+eiqλz + �λ−e−iqλz), (55)

γ (z) =
∑
λ=b,s

�λ(�λ+eiqλz + �λ−e−iqλz), (56)

μ(z) =
∑
λ=b,s

Mλ(�λ+eiqλz − �λ−e−iqλz), (57)

where

�λ = q2
λ + r2 − k2εu

ik2εv
, Mλ = iqλr

2

q2
λ − k2ε

�λ. (58)

Note that Eq. (49) is satisfied automatically for these solutions,
since it appears coinciding with Eq. (51).

The conditions Ex = Ey = 0 at z = 0 impose the following
restrictions on coefficients �λ±:

Gb�b+ + Gs�s+ = 0, qb�b− + qs�s− = 0, (59)

where

Gλ = r2�λ + iqλMλ, �λ± = �λ+ ± �λ−.

Four other equations follow from the continuity conditions for
functions Hx,Ex,Hy , and Ey at z = Ls :∑

λ=b,s

(�λ+eiqλLs + �λ−e−iqλLs ) = �0 cos φ,

∑
λ=b,s

Gλ(�λ+eiqλLs + �λ−e−iqλLs ) = −M0 sin φ
k2ε

a
,

∑
λ=b,s

Mλ(�λ+eiqλLs − �λ−e−iqλLs ) = M0 cos φ,

∑
λ=b,s

iqλ(�λ+eiqλLs − �λ−e−iqλLs ) = −�0aε sin φ,

where φ ≡ a(Ls − L).
For Ls � L, we can approximate the exponential functions

in the left-hand sides of these four equations as exp (iqλLs) ≈
1 + iqλLs . Then, taking into account Eq. (59), we arrive at
simplified equations, containing the same coefficients �λ±:

�b+ + �s+ = �0 cos φ, (60)

iLs(qbGb�b− + qsGs�s−) = −M0 sin φk2ε/a, (61)

Mb�b− + Ms�s− + iLs(qbMb�b+ + qsMs�s+)

= M0 cos φ, (62)

Ls

(
q2

b�b+ + q2
s �s+

) = �0aε sin φ. (63)

The exact characteristic equation for the set of equations
(59)–(63) is factorized as follows:

[iLsqbqs(Gb − Gs) cos φ + (k2ε/a)(Mbqs − Msqb) sin φ]

× [
Ls

(
Gbq

2
s − Gsq

2
b

)
cos φ − (Gb − Gs)aε sin φ

] = 0.

Therefore we arrive at two equations, which can be written
after some algebra as follows:

tan φ = iaLsqbqs(Gs − Gb)

k2ε(Mbqs − Msqb)
= Lsa, (64)

tan φ = Ls

Gbq
2
s − Gsq

2
b

aε(Gb − Gs)
. (65)

Equation (64) does not contain any magnetic parameter. It
describes a small frequency shift in the mode with the main
polarization of variable magnetic field (Hy) directed along the
imposed constant one.

The explicit form of Eq. (65) is rather involved in the
general case. But it can be simplified significantly in the most
interesting special case of strong hybridization, when |u| � 1.
Then, using Eq. (54) and remembering that L 
 Ls , one can
arrive at the equation

tan(L
√

(ω/c)2 − r2) = Ls(ω/c)2v2

u
√

(ω/c)2 − r2
. (66)

If Ls = 0, then ω = ωn = c
√

(nπ/L)2 + r2. For 0 < Ls � L

we put ω = ωn + δω, neglecting terms proportional to (δω)2

on both sides of Eq. (66). Following the same procedures as
in Secs. III A and III B, we can transform Eq. (66) in the
vicinity of resonance to the same quadratic equation (33),
with R = Ls/L and η = ηres = ω2

nωM/ωH . Consequently,
there is no influence of the transverse cavity length Ly

(in the direction of applied constant magnetic field) on the
strength of frequency splitting. [Although the unperturbed
cavity eigenfrequency ωn depends on Ly through the quantity
r = ρm = (1 + 2m)π/Ly .]

B. Difficulties in the case of confinement in the direction
perpendicular to the external field

If Ly = ∞, but −Lx/2 < x < Lx/2, then equations for the
magnetic field H(x,z) take the form

∂2Hx

∂z2
− ∂2Hz

∂x∂z
+ k2ε[uHx + ivHz] = 0, (67)

∂2Hz

∂x2
− ∂2Hx

∂x∂z
+ k2ε[uHz − ivHx] = 0, (68)

∂2Hy

∂x2
+ ∂2Hy

∂z2
+ k2εHy = 0. (69)

Then the Hy component is totally independent of Hx and Hz.
Moreover, this mode does not feel the presence of the slab
magnetization and the constant magnetic field. Therefore there
is no frequency splitting in this mode.

The situation is different for the Hx-Hz polarizations. It
is easy to verify that for v = 0, Eqs. (67) and (68), together
with the boundary condition Ey = 0 at x = ±Lx/2, permit for
solutions in the factorized form

Hx = ψ(z) sin (rmx + φm), Hz = γ (z) cos (rmx + φm),

where

rm = mπ/Lx, φm = mπ/2, m = 1,2,3, . . . . (70)
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But such a factorization is impossible for v �= 0, i.e., in the
presence of a magnetized slab. In this case we have to look for
solutions in the form of superpositions

Hx =
∞∑

m=1

ψm(z) sin (rmx + φm), (71)

Hz =
∞∑

m=1

γm(z) cos (rmx + φm). (72)

Then Eqs. (67) and (68) assume the form
∞∑

m=1

sin (αm)[ψ ′′
m(z) + rmγ ′

m(z) + k2εuψm(z)]

+ ivk2ε

∞∑
m=1

cos (αm)γm(z) = 0, (73)

∞∑
m=1

cos (αm)
[(

k2εu − r2
m

)
γm(z) − rmψ ′

m(z)
]

− ivk2ε

∞∑
m=1

sin (αm)ψm(z) = 0, (74)

where αm = rmx + φm. To obtain the equations for functions
ψm(z) and γm(z), one can multiply Eq. (73) by sin (αn), Eq. (74)
by cos (αn), and integrate over dx from −Lx/2 to Lx/2. Using
the formulas (with l ≡ Lx/2)∫ l

−l

sin αm sin αndx =
∫ l

−l

cos αm cos αndx = lδmn,

∫ l

−l

cos αm sin αndx = 1 − (−1)m+n

2(rn + rm)
+ 1 − (−1)m−n

2(rn − rm)
,

one can arrive at the following set of coupled equations:

ψ ′′
n + rnγ

′
n + k2εuψn = 4i

π
k2εv

∞∑
m=n+odd

nγm(z)

m2 − n2
,

(
k2εu − r2

m

)
γm = rmψ ′

m + 4i

π
k2εv

∞∑
j=m+odd

jψj (z)

j 2 − m2
,

where the infinite sums should be taken over all those values
of summation indexes, whose difference from n or m is an odd
number (note that these sums do not depend on parameter Lx ,
as soon as rm = mπ/Lx). But it is unclear, how to solve these
equations. Obviously, closing the cavity also in the y direction
will make the problem even more complicated.

V. DISCUSSION

We have obtained simple analytical expressions for the
frequency splitting and enhanced magnetization in the frame-
works of a one-dimensional model. The main consequences

of this model are as follows. The frequency splitting happens
for the mode, where the time-dependent magnetic vector
is perpendicular to the constant uniform magnetization and
external magnetic field vectors. The orthogonal component
of the time-dependent magnetic field (parallel to the constant
magnetization vector) does not feel the slab magnetization.
The real part of the frequency splitting does not depend on
the magnetic damping coefficient (unless the slab thickness is
extremely small). The change of the cavity quality factor does
not depend on the position and thickness of the slab (unless
it is too thin or too thick). The magnetic field distribution
outside the slab is almost the same for the two split modes,
even under the resonance condition. At the same time, the
time-dependent magnetization vectors inside the slab have
opposite directions in the split modes. The amplitudes of
these vectors are strongly enhanced at the resonance, both
in the parallel and perpendicular directions with respect to the
slab surface (but perpendicular to the constant magnetization
vector). The enhancement factor is proportional to the ratio
(L/Ls)1/2. Of course, these results are valid for weakly excited
modes, when the linearization of the Landau-Lifshitz-Gilbert
equation (2) can be justified.

We have succeeded also in obtaining analytical solutions
for the restricted 2D model, when the cavity is confined
in the direction of external constant magnetic field but not
confined in the perpendicular direction in the slab plane. It
is interesting that the final result concerning the frequency
splitting is the same as in the 1D case, with the only difference
that the 1D empty cavity eigenfrequency ωn = nπc/L should
be replaced by the 2D eigenfrequency ωnm = (ω2

n + c2r2
m)

1/2
.

However, adding the confinement in the third direction leads
to complicated equations, which probably do not permit
analytical solutions.

Probably, it could be interesting to verify experimentally
in real 3D cavities the following qualitative results of the
simple 1D and 2D models. (1) That the change of the cavity
quality factor does not depend on the position of magnetized
sample (far from the nodes of the variable magnetic field)
and its thickness. (2) That the frequency splitting varies with
the change of the sample position in the same way as the
amplitude of cavity magnetic field in the selected mode. (3)
That the frequency splitting does not depend on the magnetic
damping coefficient.
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