
PHYSICAL REVIEW B 96, 054408 (2017)

Effect of magnetic fields on spin glass dynamics
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The effects of a magnetic field on spin glass dynamics are explored for a Cu0.887Mn0.113 thin film of thickness
L = 20 nm in a multilayer configuration. An experimental protocol removes uncertainties associated with the
time dependence of the field-cooled magnetization MFC(t,T ). Activated dynamics is exhibited after the spin glass
correlation length ξ (t,T ) has reached L, creating a quasiequilibrium state. The activation energy depends upon
the strength of the magnetic field H . The magnitude of the activation energy diminishes as H 2, the coefficient
of which is proportional to the number of correlated spins. A quantitative fit requires a “pancakelike” correlated
region, associated with the T = 0 phase transition for a spin glass in D = 2 dimensions.
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I. INTRODUCTION

The effect of a magnetic field on spin glass dynamics has
been an issue of dispute for nearly 30 years. The Parisi mean-
field solution [1] of the infinite range Sherring-Kirkpatrick
model [2] predicts a phase transition at a “glass temperature”
Tg(H ) that depends upon the magnitude of the magnetic field
[3]. The “droplet model”, formulated by Fisher and Huse, finds
“...the ordered phase is unstable to a uniform (or random)
magnetic field and no long-range spin-glass ordering occurs
in the presence of a magnetic field” [4]. An explicit test of
these divergent perspectives was performed by Lefloch et al.
[5]. They measured the properties of the CdCr1.7In0.3S4 spin
glass in a magnetic field. Their experiments displayed a field-
temperature phase diagram “...reminiscent of the mean field re-
sult for the infinite range model with finite anisotropy...”. Their
study concluded with the following observation: “Thus, even if
the spin glass does not exist in a magnetic field, at least it looks
the same as in zero field, as far as we experimentalists can see”.

The purpose of this paper is to explore the effects of mag-
netic fields on the dynamics of the canonical spin glass CuMn.
Previous work reported similar experiments on an amorphous
GeMn thin film [6]. The present investigation extends their
study to a more conventional spin glass, and provides a
quantitative analysis of the nature of the correlated region
(see below). In addition, it extends the experimental protocol
of Ref. [6] to the case where the field-cooled magnetization
MFC(t,T ) is time dependent, as it is for CuMn thin films.

The concept of the growth of a spin glass correlation
function with time t at temperature T , ξ (t,T ), is common
to both of the conflicting models for spin glass dynamics. It
is assumed that the spin glass is quenched from a temperature
above the spin glass transition temperature Tg to a temperature
T < Tg . Upon the quench, spin glass order is nucleated at a
given site, and grows with time. Numerical simulations [7]
find a power law growth,

ξ (t,T ) = c1a0

(
t

τ0

)c2(T/Tg )

, (1)
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where c1 and c2 are constants of order unity and 0.1,
respectively, a0 is an average distance between the moments
making up the spin glass material, and τ0 is an exchange time of
the order of h̄/kBTg . As ξ (t,T ) grows, there are ever increasing
free-energy barriers encountered, with heights �(t,T ) given
by [8]

�(t,T )

kBTg

= 1

c2

[
ln

(
ξ (t,T )

a0

)
− ln c1

]
. (2)

The droplet model [4] assumes activated growth and finds

ξ (t,T ) = αa0

[(
T

Tg

)
ln

(
t

τ0

)]1/ψ

, (3)

where α is a constant of order unity, and ψ is a critical
exponent. Similar to power law growth, there are ever
increasing free-energy barriers encountered, with height,

�(t,T )

kBTg

=
(

ξ (t,T )

αa0

)ψ

. (4)

For experiments on bulk samples, ξ (t,T ) grows indefinitely,
so that any measurement over a time interval is “chasing” an
ever increasing correlation length, and concomitantly, ever
increasing free-energy barrier heights. The beauty of working
with thin films at the “mesoscale” is that the growth of ξ (t,T )
perpendicular to the plane of the film stops when ξ⊥(t,T ) = L.
At this point in time, the spin glass system crosses over from
D = 3 to D = 2 dimensions. As known theoretically [9] and
shown experimentally [10], the lower critical dimension for
spin glasses 2 < d� < 3 (a recent theoretical value [11] finds
d� = 2.5). This results in Tg = 0 for the spin glass, with
critical fluctuations at temperature T leading to an equilibrium
D = 2 parallel correlation length of ξ‖ ≈ a0T

−ν2d . Recent
calculations [12] for Ising spin glasses have established
ν2d = 3.53. Previously, Kawamura and Yonehara [13] found
for a Heisenberg spin glass ν2d = 0.9 ± 0.2 for the spin cor-
relation length, and ν2d = 2.1 ± 0.3 for the chiral correlation
length. While CuMn normally is regarded as a Heisenberg
spin glass, sufficient anisotropy can mimic Ising-like behavior
[14]. It will turn out (see below) that our final result will be
relatively insensitive to the precise value of ν2d .

It would be tempting to set quantitatively an equilibrium
value for ξ‖ = a0(Tg/T )ν2d . However, this would ignore the
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spin glass correlations that have been built up while ξ (t,T )
has been growing to reach L. One can intuitively think of
a “renormalization” of the length scale for the correlated
spins from a0 to L. This would then lead to a multiplicative
relationship for the equilibrium value of the parallel correlation
length ξ‖(t,T ), first suggested by Young [15] and amplified by
Martin-Mayor [16], changing ξ‖ = a0(Tg/T )ν2d to

ξ‖(T ) = k(T )L = b

(
Tg

T

)ν2d

L, (5)

where b is a scaling coefficient of order unity. An unresolved
issue is the time dependence of the growth of ξ‖(t,T ) to its
equilibrium value. We have no way of assessing this time scale,
but the magnetic field effect on the dynamics when ξ⊥(t,T )
has reached L (see below) appears to be independent of time.
This suggests that the growth of ξ‖(t,T ) is sufficiently rapid
that it has reached its equilibrium value when ξ⊥(t,T ) has
reached L.

With these assumptions, we can define a “crossover time”
tco by the relationship

ξ⊥(tco,T ) = L. (6)

Both models then suggest that there is a maximum free-energy
barrier height �max(L) that governs the dynamics for t > tco.
It is tempting to extract the maximum free-energy barrier from
Eqs. (2) and (4) by simply substituting L for ξ (tco,T ) in the
respective equations. However, both are derived assuming a
spherical correlated volume which, as we shall show below, is
not the case given that ξ‖(T ) > ξ⊥(tco,T ). In our subsequent
analysis, we shall extract the value of �max(L) as a function
of magnetic field H from the time decay of the measured
magnetizations. The proportionality will turn out to depend
upon H 2. The coefficient of H 2 will be the number of spins
correlated in the spin glass state for times greater than tco, times
the measured susceptibility per spin. Experiments will favor
their containment in a “pancakelike” volume of perpendicular
height L and parallel radius ξ‖(T ).

The effects of magnetic fields on spin glass dynamics will
be outlined in the next section. The sample preparation and
experimental protocol will be described in Sec. III. The latter
will be different from that used in our previous investigation
[6,17], because the field-cooled magnetization in CuMn thin
films is time dependent, as noted in previous work [18],
complicating the extraction of the irreversible magnetization.
The experimental results will be presented in Sec. IV, and
their analysis in Sec. V. Section VI contains the summary and
conclusions.

II. EFFECTS OF A MAGNETIC FIELD
ON SPIN GLASS DYNAMICS

Earlier work [6,8,19,20] has shown that an applied magnetic
field reduces the barrier heights in a spin glass according to the
strength of the Zeeman interaction upon the correlated states
EZ . Simply stated,

�max(H,L) → �max(L) − EZ. (7)

There is a dispute in the literature about the magnitude for
EZ , and its dependence upon magnetic field strength. A “trap
model” [19] postulates the reduction of the depth of an effective

trap by a Zeeman energy arising from fluctuations in the
number of correlated spins, proportional to

√
Nc and linear

in H , where Nc is the number of correlated spins. A barrier
model [8] takes the Zeeman energy to be equal to the magnetic
susceptibility per spin MFC/Ns times Nc and H 2, where MFC is
the field-cooled magnetization of the sample, and Ns the total
number of spins in the sample. Reference [6] shows that, for
the strengths of magnetic fields used in these experiments, the
latter dominates the former by almost two orders of magnitude.
For that reason, we set

EZ = NcχFCH 2, (8)

where χFC is the measured magnetic susceptibility per spin.
As will be discussed in Sec. V, there is also a contribution
from the diamagnetism of the Cu in the multilayer sample.
This is shown to be two orders of magnitude smaller than the
contribution from the Mn moments in the spin glass state.

Experimentally, if upon quenching the temperature to
T < Tg , one waits for times greater than tco, the correlation
lengths will be pinned at ξ⊥ = L and ξ‖(T ) from Eq. (5). The
dynamics is determined by the largest barrier height in both
models, so that, with the correlation length pinned, �max(L)
in Eq. (7) is a constant. This leads to activated dynamics, with
the activation energy now a function of magnetic field as a
consequence of Eqs. (7) and (8). Thus, by observing activated
magnetization dynamics for t > tco as a function of magnetic
field, one can extract EZ and hence both the power of H and
its coefficient. The latter will be proportional to the number
of correlated spins Nc, allowing a quantitative estimate for EZ

from Eqs. (5) and (6).

III. SAMPLE PREPARATION AND EXPERIMENTAL
PROTOCOL

The CuMn thin film multilayer sample was prepared
at the University of Minnesota by dc sputtering 99.9%
CuMn/99.999% Cu multilayers at an argon pressure of
2 mTorr. The multilayers have an alternating structure of
20 nm CuMn and 60 nm Cu, in order to achieve amplification
of the signal magnitude, and to decouple the spin glass
moments between layers. Two 1-μm-thick CuMn films from
separate targets were synthesized, yielding a “bulk” glass
transition temperature Tg of 54 ± 1 and 52 ± 1 K, respectively.
The nominal Mn concentration of the CuMn target was
13.5 at. %. Scaling with respect to Tg [21,22] translates the
Mn concentration in the multilayers to ≈11.7 at. %.

The measurements of the zero-field-cooled magnetization
MZFC(t,T ) for the 20.0 nm CuMn multilayer would normally
have followed the protocol [6] developed in a previous paper.
The introduction of a protocol different from conventional
measurements of MZFC(t,T ) is a consequence of the time
dependence of the field-cooled magnetization MFC(t,T ) for
mesoscale CuMn films. Whereas in bulk, MFC(t,T ) varies
little, and, if anything, slightly diminishes with increasing
measurement time [23], at the mesoscale it increases rather
substantially with increasing measurement time [17]. We
believe this is a consequence of glassy dynamics. As shown
previously, irreversibility sets in below a freezing temperature
Tf for thin film spin glasses well below the bulk spin glass
transition temperature Tg . As shown in Ref. [17], this is
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because of a largest barrier height �max(L) in mesoscopic
spin glasses. A finite experimental time scale τexpt. sets Tf by
the relationship

1

τexpt.
≈ 1

τ0
exp(−�max/kBTf ), (9)

where τ0 is an exchange time of the order of h̄/kBTg .
This relationship suggests that the longer the experimental
time scale, the lower is the value of Tf , but for T > Tf ,
the magnetization is increasing as T is lowered (i.e., along the
Curie-Weiss trajectory). Hence, at a longer measurement time
scale, Tf is lower, and the irreversible magnetization is larger
at the lower temperature, but the magnetization at the onset of
irreversibility is just the field-cooled magnetization MFC(t,T ).
The increase of MFC(t,T ) with time is not an intrinsic behavior,
but rather arises from the glassy dynamics of mesoscopic spin
glasses.

Because the irreversible magnetization is the difference
between between MZFC(t,T ) and MFC(t,T ), both must be
measured over the same time and temperature profile when
the latter is time dependent. Previous work was performed at a
fixed magnetic field. Measuring the magnetic field dependence
of �max(H ) requires multiple measurements at different fields.
The previous protocol proved to be too cumbersome to be
practical.

Instead, we developed a protocol in which MFC(t,T )
cancels out. Two symmetrical magnetization decays, the
zero-field-cooled magnetization MZFC(t,T ) and the thermore-
manent magnetization MTRM(t,T ), were performed in the
presence of a magnetic field. The irreversible magnetization is
derived from both procedures,

MIRR(t,T ) = MFC(t,T ) − MZFC(t,T ), (10)

a standard relationship. Also,

MIRR(t,T ) = MTRM(t,T ) − MFC(t,T ), (11)

which is required if the decay takes place in a magnetic field,
where MFC(t,T ) is time dependent. The protocol is as follows.

The “MZFC(t,T )” is measured by quenching the sample
from above Tg to a temperature T in a magnetic field H − δH .
As soon as the temperature stabilizes, the magnetic field is
increased abruptly to H and the “new” zero-field magneti-
zation is measured as a function of time. Concomitantly, the
sample is warmed up above Tg , and a magnetic field H + δH

is applied. The sample temperature is then quenched in the
presence of this field to a temperature T . After temperature
stabilization, the magnetic field is reduced to H and a “new”
thermoremanent magnetization is measured as a function of
time. The important point of these procedures is that both
the zero-field-cooled and thermoremanent magnetizations are
measured in the same magnetic field H . From Eqs. (10)
and (11), this means that MFC(t,T ) is the same for both
measurements. Hence, adding Eqs. (10) and (11) cancels
the time-dependent field-cooled magnetization. We have,
therefore,

MIRR(t,T ) = 1
2 [MTRM(t,T ) − MZFC(t,T )]. (12)

We use this protocol in the following section to extract the
magnetic field dependence of the maximum barrier height
�max(H,L).

IV. EXPERIMENTAL RESULTS

The protocol described in the previous section was carried
out for the 20 nm CuMn multilayered sample described therein.
The incremental field δH was set at 20 G, and measurement
fields H were applied over a range from 30 � H � 144 G.
MIRR(t,T ), defined in Eq. (12), was then measured over a
large time range. The value of �max(H,L) was extracted
by measuring the slope of the ln MIRR(t,T ) vs t for times
t > tco. A difficulty arises from the relationship between the
crossover time tco and the field-dependent maximum barrier
height �max(H,L),

tco = τ0 exp[�max(H,L)/kBT ]. (13)

The variation of tco, as a consequence of the change in
�max(H,T ) for different values of H , is sufficient to require
that the extraction of MIRR(t,T ) be carried out at different
temperatures. Previous work [6] has shown that �max(L) is
independent of temperature.

Representative experimental data are exhibited in Fig. 1.
The crossover time is indicated by an arrow, and the solid line
a fit to activated decay with activation energy �max(H,L).
Looking at the data, it may not seem obvious where to
identify the activated region. Noting the dependence of tco

on �max(H,L) from Eq. (13), one sees that there is a coupling
between tco and the slope. The two are adjusted until they
are consistent. This minimizes the error in the evaluation of
�max(H,L). The values extracted in this manner are listed in
Table I.

Now that the values of �max(H,L) have been determined,
they can be plotted against H 2 to determine the validity of
Eq. (8). Figure 2 is a plot of the data contained in Table I, with
a least-squares fit line displaying the proportionality to H 2.
One finds

�max(H,L)/kB = �max(0,L)/kB − αH 2, (14)

with α lying between 3.21 × 10−3 and 6.02 × 10−3, with
a most probable value of 4.61 × 10−3. The magnitude of
α, proportional to the number of correlated spins, will be
examined in the next section.

V. ANALYSIS OF EXPERIMENTAL RESULTS

The reduction of �max(H,L) in the presence of a magnetic
field, as given in Eq. (14), has the form

αH 2 = NcχsH
2/kB, (15)

where Nc is the number of correlated spins (i.e., encased in the
correlated volume), and χs is the magnetic susceptibility per
spin. The total magnetization of the sample is the sum of the
Mn spin glass moment plus the diamagnetic magnetization of
the Cu, from both in the CuMn films and in the intervening
layers. Designating the component from the Mn spin glass as
Msg and that from the Cu as MCu, we have

χs = Msg

HV�λ/Vs

, (16)

where V� is the volume of a given layer of CuMn, λ is the
number of CuMn layers, and Vs is the volume/spin. The
number of correlated spins Nc = Vc/Vs , where Vc is the
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FIG. 1. (a)–(c) The measured magnetizations MTRM(t,T ) and MZFC(t,T ) plotted against time for a 20 nm CuMn multilayer thin film at
representative fields. Initially, for very short times, MTRM(t,T ) does decay as it would normally in a bulk material. However, because of the
growth of MFC(t,T ) with time, MTRM(t,T ) increases for times beyond the short initial decay time. This can be seen if one looks closely near
the zero of time in the (a)–(c) plots. (d)–(f) 2MIRR = MTRM(t,T ) − MZFC(t,T ) and its fit to activated dynamics. (a), (d) At 42 K in 40 Oe, (b),
(e) at 41 K in 100 Oe, and (c), (f) at 40 K in 141 Oe.

volume containing the correlated spins. Then α is given by

α = Nsχs/kB = Vc

Vs

Msg

(HV�λ/Vs)kB

= 1

kB

Msg

H

Vc

V�λ
. (17)

The measured magnetization is the sum of Msg and that from
the Cu. The latter is given by [24]

χCu =
(

−0.093 + 0.023

T

)
× 10−6 cm3 g−1. (18)

At our measuring temperature range, T ≈ 40 K, χCu =
−0.0824 × 10−6 cm3/g. The Cu magnetization is then given
by MCu = χCuVCuρH , where VCu is the total volume of Cu in
the multilayer, and ρ is the Cu mass density.

The relative contributions of the Mn moments in the spin
glass state to that of the Cu are calculated for a magnetic

TABLE I. �max(H,L)/kB extracted at different fields for the
20 nm CuMn thin film.

H (Oe) T (K) �max(H,L)/kB (K)

30 42 1732 ± 21
40 42 1715 ± 8
55 42 1710 ± 10
80 41.5 1700 ± 30
100 41 1668 ± 17
122.5 41 1670 ± 24
144 40 1631 ± 18

field of H = 141 G. The cross-section dimension of the
multilayer is approximately 2.3 cm × 2.3 cm. Putting in all
the relevant dimensions, we calculate a total Cu magnetization
MCu = −1.70 × 10−7 emu. The measured magnetization is
Mtot = 7.61 × 10−5 emu. Hence, the Cu diamagnetism is two
orders of magnitude smaller than the measured magnetization.
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K
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FIG. 2. A plot of the extracted values for �max(H,L)/kB

as a function of H 2 and its least-squares fit in the form of
�max(H,L)/kB = �max(0,L)/kB − αH 2, for α ≈ 4.61 × 10−3.
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We wish to find the correlated volume Vc in order to find the
number of correlated spins from the measured magnetization
using Eq. (16). There are two possibilities: either a spherical
volume (no further growth in the parallel direction once
the perpendicular correlation length has reached L), or a
pancakelike shape allowing for an equilibrium multiplicative
growth in the parallel direction.

For a spherical correlated volume,

Vc = 4

3
π

(L
2

)3

. (19)

Putting in the quantities in Eq. (17), we find α = 3.9 × 10−5,
about two orders of magnitude less than the measured value.

For the pancake shape, the correlated volume from Eqs. (5)
and (6) is given by

Vc = πb2L3

(
Tg

T

)2ν2d

. (20)

Inserting this expression for Vc into Eq. (17), and using the
value of α = 4.61 × 10−3 from experiments (taking Tg =
53 K), generates an expression for the scaling coefficient b that
depends upon the choice of exponent ν2d . Using the values
associated with Ising, Heisenberg spin, or chiral correlation
lengths, we find b = 1.6, 3.45, or 2.46, respectively. For a
coefficient b “of order of unity” it would appear that Ising-like
growth is present, but clearly Heisenberg or chiral correlation
length growth cannot be ruled out. In our case, it seems
clear that our experimental results are best satisfied with a
pancakelike correlated structure as a consequence of D = 2
spin glass dynamics.

As a final note, we have assumed compact growth for the
number Nc of correlated spins in Eqs. (19) and (20). As pointed
out in Ref. [20], the correlated space is in fact fractal, with a
dimensionality exponent of ∼2.81 instead of 3. This has the
effect of replacing L3 in Eqs. (19) and (20) by L2.81, thereby
increasing b concomitantly for the pancakelike correlated
structure. For Ising, Heisenberg spin, or chiral correlation
length growth, we find b = 2.73, 5.71, or 4.08, respectively,
again favoring Ising-like growth, but with Heisenberg spin or
chiral still a possibility. A direct test of compact versus fractal
growth would be a set of experiments similar to those contained
in this paper, but with differing thin film thicknesses. By
varying L, and measuring the coefficient of the H 2 reduction
in �max(H,L), one can uniquely detect the difference between

compact and fractal growth through the measured exponent
of L in Eq. (20). The relatively small value of the changes
in �max(H,L)/kB exhibited in Table I make this a somewhat
daunting, but still possible, task.

VI. SUMMARY AND CONCLUSIONS

We have measured the effects of magnetic fields upon the
dynamics of the canonical spin glass CuMn. By using thin films
of thickness 20 nm, contained in a multilayer structure with
intervening Cu layers for interlayer decoupling, we have been
able to “freeze” the growth of the spin glass correlation length
ξ (t,T ). This has enabled a direct measure of the reduction of
the free-energy barrier heights with increasing magnetic field.
We have been able to extract a quantitative estimate of this
effect, and compared it with calculations of the number of
correlated spins participating in the dynamics.

Comparing the consequences of the growth of ξ (t,T ) in
the perpendicular and parallel directions, we have been able
to exhibit the importance of fluctuations associated with a
T = 0 transition temperature for a spin glass in D = 2.
With a reasonable value for the scaling factor, we have
shown the stable shape of the correlated region to have a
“pancakelike” shape, with the perpendicular dimension L
of the film thickness, and a parallel dimension exhibiting
a multiplicative correlation appropriate to the equilibrium
value of the D = 2 correlation function at the measurement
temperature.

Future measurements on CuMn films of different thick-
nesses will test further properties of the growth of ξ (t,T ). For
example, is the growth of the correlated regions compact or
fractal [20]? Now that the scaling factor b has been fixed, it
should be possible to compare the number of correlated spins
as a function of film thickness L, and in that way determine
the nature of the growth of ξ (t,T ). It would also be interesting
to explore other spin glass systems to test for the universality
of these results.
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