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Using large-scale quantum Monte Carlo simulations we show that a spin- 1
2 XXZ model on a two-dimensional

anisotropic kagome lattice exhibits a tripartite entangled plaquette state that preserves all of the Hamiltonian
symmetries. It is connected via phase boundaries to a ferromagnet and a valence-bond solid that break U (1)
and lattice translation symmetries, respectively. We study the phase diagram of the model in detail, in particular
the transitions to the tripartite entangled plaquette state, which are consistent with conventional order-disorder
transitions. Our results can be interpreted as a description of the charge sector dynamics of a Hubbard model
applied to the spin liquid candidate LiZn2Mo3O8, as well as a model of strongly correlated bosonic atoms loaded
onto highly tunable trimerized optical kagome lattices.
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I. INTRODUCTION

Frustration in the context of magnetism refers to the
phenomena where interactions between magnetic moments
compete at the microscopic level, usually due to a combination
of antiferromagnetic exchange and lattice geometry. Unlike
unfrustrated systems, where symmetry breaking in the ground
state prevails, the inability of frustrated magnets to satisfy each
and every microscopic interaction can lead to the emergence of
exotic ground state phases, such as valence bond solids [1–4],
spin liquids [5–8], classical [9] and quantum spin ices [10,11],
among many others.

Geometric frustration typically arises in magnetic moments
that are localized on single ions, through their spatial
arrangement and that of their exchange interactions. However,
moments on ionic crystal lattices are often susceptible to
structural distortions, orbital couplings, or mixing between
magnetic and nonmagnetic layers. These and other pertur-
bations may disrupt the formation of delicate exotic phases,
leading in many cases to conventional ordering. This difficulty
may be alleviated in the recently discovered geometrically
frustrated antiferromagnets where the magnetic moments are
localized on small transition-metal clusters, rather than being
localized on a single ion [12]. These materials have been
shown to avoid the key limitations of ion-localized moments
mentioned above, making them natural candidates to search
for exotic states of matter [12–17]. In a recent development,
Sheckelton et al. [12–14] found that the molecular magnet
on the triangular lattice LiZn2Mo3O8 exhibits spin liquid
behavior with low-energy spin correlations consistent with
the highly coveted resonating valence-bond solid state [18].
Similarly, evidence of strong quantum fluctuations and
spin liquid behavior was found in a related cluster magnet
Li2ScMo3O8, while the isomorphic compound Li2InMo3O8

was found to develop long-range 120◦ magnetic order [15].

*jcarrasquilla@dwavesystems.com

Attempts to elucidate the microscopic origin of the experi-
mental observations in LiZn2Mo3O8 have included a model
of lattice distortions leading to an emergent honeycomb
lattice where the spins form a quantum spin liquid [19], as
well as a purely electronic description based on a 1/6-filled
extended Hubbard model with nearest-neighbor repulsion on
a trimerized kagome lattice [17]. The later work suggested
that the ground state of LiZn2Mo3O8 may be a U (1) spin
liquid with plaquette charge order and a spinon Fermi surface,
whose finite-temperature properties may explain the two
surprising Curie-Weiss regimes observed in the experimental
data [17].

The U (1) spin liquid state arises from a generic procedure
where a mean-field decoupling of the charge and spin degrees
of freedom in terms of a slave-rotor representation of the
electron operators [20] is performed. In such an approach,
an electronic system is mapped onto a spinon Hamiltonian
coupled to a bosonic lattice model of the charge sector via
mean-field parameters. The intuition behind such an approach
is in the observation that in certain strongly coupled electron
systems, the dynamics of the spin and charge degrees of
freedom is markedly different. Therefore, the electron may be
better understood as being composed of separate charge and
spin variables. To determine the fate the ground state of the
overall fermionic system, both spinon and bosonic Hamilto-
nians have to be solved simultaneously. Since the resulting
bosonic Hamiltonian associated with the charge sector is
generically strongly interacting, such a problem can be solved,
for instance, via a standard mean-field decoupling. However,
other approaches that include some spatial correlations, e.g.,
quantum Monte Carlo (QMC), exact diagonalization, or
density-matrix renormalization group methods, are desirable
and are expected to improve the quality of the description of
the many-body electron problem under study [21].

In this work we use large-scale QMC simulations to show
that a two-dimensional spin- 1

2 model on an anisotropic kagome
lattice—proposed as the description of the charge sector of
an extended Hubbard model applied to the cluster magnet
LiZn2Mo3O8—exhibits three different phases: a ferromagnet
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FIG. 1. (a) Ground state phase diagram of the Hamiltonian in Eq. (1) on the trimerized kagome lattice as a function of Jz1/J± and Jz2/J±
at fixed magnetization m = −1/6. (b) Our simulations are defined on periodic tori of size V = Ns × 3 spanned by the primitive vectors a1

and a2, where ‖a1‖ = ‖a2‖ = 2. Ns is the number of sites of the underlying triangular lattice of the kagome lattice. The system contains three
phases: a ferromagnet (FM), a valence-bond solid (VBS), and a tripartite entangled plaquette state (W). In the hardcore-boson language,
the FM phase corresponds to a superfluid (SF), while the W phases correspond to fractionally filled Mott insulators. The red circles illustrate
the subset of hexagons where spins resonantly flip in the VBS phase. The index t = 1,2 indicates the different up (1, shaded with solid lines)
and down (2, white with dashed lines) triangles forming the kagome lattice.

(FM), a fractionally filled tripartite entangled plaquette state
(W), and a valence-bond solid (VBS). These phases are
arranged in the phase diagram presented in Fig. 1(a). The FM
phase is characterized by long-range in-plane magnetic order
with wave vector q = 0, finite superfluid stiffness ρs > 0, and
uniform susceptibility χz > 0. The VBS has been studied in
great detail in Ref. [22]: it is a gapped, translationally broken
threefold degenerate [23] phase, where spins resonantly flip
in each hexagon marked by red circles in Fig. 1(b). The
remaining spins order along the z direction and their wave
vector is q = K = (2π/3,0) [22]. In the VBS, the average
magnetization is mz = ±1/6 and the uniform susceptibility
is χz = 0. Initially studied in the context of ultracold atoms
trapped in trimerized optical lattices [24–26], the W states
preserve all the symmetries of the Hamiltonian and they
are adiabatically connected to product states defined on the
triangular plaquettes of the kagome lattice where the spins
form tripartite entangled three-qubit W states [24–26]. We
find that the FM-to-W insulator transition is continuous and
belongs to the three-dimensional O(2) universality class if
the magnetization is kept constant across the transition [27];
instead, if the magnetization varies, the transition is generically
mean field [27]. We also find evidence indicating that the
transition between the W state and the VBS, up to the system
sizes accessible with QMC, appears to be consistent with a
first-order phase transition, in agreement with the theoretical
expectation that it belongs to the three-dimensional three-state
clock universality [28]. Finally, we reexamine the transition
between the FM and the VBS in terms of a recently proposed
scenario of quantum criticality with two length scales [29].
We find that the presence of irregular system-size dependent
oscillations in the observables prevents us from drawing a
firm conclusion about the applicability of this scenario to the
FM-to-VBS transition.

II. MODEL AND QUANTUM MONTE CARLO
SIMULATIONS

We begin by motivating a Hamiltonian for the charge sector
of the cluster magnet LiZn2Mo3O8. This material is formed by
small triangular Mo3O13 units, where each triangular plaquette
accommodates one unpaired electron. The small Mo3O13

triangular units are located on the sites of a triangular lattice
shown in Fig. 1(b). Thus the Mo atoms can be thought of
as forming a trimerized kagome lattice. Following Ref. [17],
we consider the electrons hopping on the kagome lattice as
described by an extended Hubbard model at 1/6-electron
filling. In this model, both the on-site and the nearest-neighbor
Coulomb interactions are included in addition to the electron
hopping. The authors of Ref. [17] employ a standard slave-
rotor representation of the constituent fermions [20]. The
electron operator is reformulated as the product of a U (1)
charge rotor variable and a fermionic spinon c

†
rσ = eiθrf

†
rσ ,

where the bosonic rotor eiθr (the fermionic spinon f
†
rσ ) creates

an electron charge (a spinon with spin σ ) at lattice site
r. Since the Hilbert space has been enlarged, one has to
introduce a constraint to get back to the physical Hilbert space
through an angular momentum variable: Sz

r = ∑
σ f

†
rσ frσ −

1/2. The local electron Hilbert space is thus represented
as |0〉c = |0〉f |Sz = −1/2〉θ , |↑〉c = |↑〉f |Sz = 1/2〉θ , |↓〉c =
|↓〉f |Sz = 1/2〉θ , and |↑↓〉c = |↑↓〉f |Sz = 3/2〉θ . When the
on-site Coulomb interaction is dominant, the double electron
occupancy on a single site is forbidden and the operator Sz

describes an effective spin- 1
2 angular momentum operator that

is conjugate to the charge rotor variable, i.e., [θr,S
z
r′] = iδr,r′ .

Thus the rotor operators can be identified as the spin ladder
operators S±

r = e±iθr . Using a mean-field decoupling, the
original Hubbard model is transformed into two Hamiltonians
for the spinon and charge sectors coupled via mean-field
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parameters. Under the slave-rotor reformulation, the charge
sector of the extended Hubbard model is now described by an
effective spin- 1

2 model on an anisotropic kagome lattice with

Hc =
∑

〈rr′〉,t=1,2

[
JztS

z
rS

z
r′ − J±t

2
(S+

r S−
r′ + H.c.)

]

−heff

∑
r

Sz
r , (1)

where the Ising exchange interaction (transverse exchange
interaction) accounts for the nearest-neighbor Coulomb in-
teraction (electron tunneling). The index t = 1,2 indicates the
different up (1, shaded with solid lines) and down (2, white
with dashed lines) triangles forming the kagome lattice, as
shown in Fig. 1(b). The anisotropy of the lattice is encoded in
the coupling constants J±t , Jzt , whereas the effective magnetic
field heff controls the average effective magnetization. We will
consider systems at both strictly conserved magnetization as
well as at fixed magnetic fields. We set J±1 = J±2 = J± as
the reference energy scale of the problem. This model can
also be thought of as one describing hardcore bosons [30]
loaded on a trimerized kagome lattice. In the hardcore-boson
language, the FM phase corresponds to a superfluid (SF), while
the W phases correspond to fractionally filled Mott insulators
where hardcore bosons are localized on the triangles with the
largest Jz. Such a system of hardcore bosons on trimerized
lattice geometry can be realized using superlattice techniques
in ultracold gases [24].

The Hamiltonian in Eq. (1) cannot be solved analytically,
but large-scale QMC simulations are allowed in the sign-
problem free regime where J±t > 0. This is the natural choice
if we interpret Eq. (1) as a system of hardcore bosons. We
develop a finite-temperature stochastic series expansion (SSE)
[31–33] QMC algorithm with directed loop updates. We map
out the phase diagram of the model through measurements
such as magnetization mz = 〈m̂〉 = 〈 1

V

∑
r Sz

r 〉, uniform spin
susceptibility χz = V

T
(〈m̂2〉 − 〈m̂〉2), spin stiffness ρs [34], and

a set of diagonal [31] and off-diagonal [35] spin structure
factors. The spin stiffness in a QMC setup is obtained
from the fluctuations of the winding numbers along the
different spatial dimensions and can be pictorially understood
as a measurement of how the spins diffuse in imaginary
time. Figure 1(a) shows the QMC phase diagram for the
model of Eq. (1) extracted from the finite temperature and
the finite-size scaling of the superfluid stiffness and the
diagonal structure factor, performed up to lattice sizes of
V = L × L × 3 = 60 × 60 × 3 and inverse temperature of up
to β = J±/T = 60. The phase diagram presented in Fig. 1(a)
is obtained at strictly enforced fixed magnetization mz = −1/6
that corresponds to the 1/6-electron filling in LiZn2Mo3O8. To
do this efficiently, we first tune the magnetic field heff such that
the average magnetization is as close as possible to the desired
magnetization sector. We subsequently run simulations that are
still grand canonical but whose measurements are taken only
at configurations that are in the desired magnetization sector.

III. THE TRIPARTITE ENTANGLED PLAQUETTE STATE

The gapped, tripartite entangled plaquette states W preserve
all the symmetries of the Hamiltonian and are not present

in the isotropic Jz1 = Jz2 case [22]. We find that, in the
strong triangle limit, the W states reduce to simple product
states where the three spins on the strong triangle (up W	 if
Jz1 
 Jz2 or down W� if Jz2 
 Jz1) form tripartite entangled
three-qubit W states [24–26]. The three-qubit states are given
by |W〉 = (|↑↓↓〉 + |↓↑↓〉 + |↓↓↑〉)/√3. Note that, due to
quantum fluctuations at finite anisotropy, the state found in
our phase diagram is not strictly a product state. The W state
at finite anisotropy, however, is adiabatically connected to the
plaquette product state in the strongly anisotropic limit.

To understand the properties of the W phases and the phase
transitions to the nearby FM and VBS phases, we consider
several correlation functions. We measure the diagonal spin
structure factor Sab

q /Ns = 〈Sa
qSb

−q〉 − 〈Sa
q〉〈Sb

−q〉, where

Sa
q = 1

Ns

∑
ri

eiq·(ri+a)Sz
ri+a, (2)

and Ns is the total number of unit cells. Here ri points to the
sites of the underlying triangular Bravais lattice and the vector
a refers to the position of each site within the unit cell with
respect to the vector ri . Its purpose is to detect long-range
diagonal order: if the system magnetically orders then Sq =∑

a Saa
q will scale with system size for at least one value of q.

We also consider the off-diagonal spin structure factor [35]

nab
q = 1

Ns

∑
rirj

eiq·[(ri+a)−(rj +b)]
〈
S+

ri+aS
−
rj +b

〉
. (3)

Using this quantity, we also study the equivalent of the
condensate fraction in Bose systems [36,37], defined as the
ratio of the “zero-momentum occupation” to the volume of
the system f0 = n0/V = ∑

a naa
0 /V . Finally, we consider

the bond-bond structure factor using a four-point correlation
function

BBαβ
q = 1

Ns

∑
rirj

eiq(ri−rj )
〈
Bα

ri
Bβ

ri

〉
, (4)

where Bα
ri

= S+
liα

S−
kiα

+ S−
liα

S+
kiα

. Nearest neighbor sites liα and
kiα belong to one of six bonds α in a unit cell located at position
ri . If bond order develops then BBq = ∑

α BBαα
q should scale

with system size for at least one value of q, with which we
define Bq = BBq/V .

The spin structure factors of the W� phase are presented in
Fig. 2. We find that none of the structure factors [off-diagonal
nq Fig. 2(a), diagonal Sq Fig. 2(b), and bond BBq Fig. 2(c)]
displays peaks that signal translational symmetry breaking.
This is confirmed in the corresponding size scaling of selected
peaks in Figs. 2(d) through 2(e). For instance, SK/Ns and
BK, which signal symmetry breaking in the VBS phase,
quickly go to zero in the W� phase, within the precision of
our calculations. We have removed the zero-momentum peak
of the bond-bond structure factor since B0 remains finite as
V → ∞ in all phases.

A a closer look at the different sublattice BB
αβ

0 could reveal
a potential rotational symmetry breaking in the unit cell of the
kagome lattice. In Fig. 3 we present results for the finite-size
scaling of BB

αβ

0 for the different bonds in the unit cell and
their extrapolations to the thermodynamic limit. In the inset
the extrapolations to the thermodynamic limit reveal that there
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FIG. 2. Off-diagonal nq (a), diagonal Sq (b), and bond BBq (c) structure factors for the W	 for a system with Ns = 24 × 24, Jz2/J± = 4.5,
Jz1/J± = 2, and T = J±/24. In each panel, the color scale represents the intensity of the structure factor. The corresponding finite-size scaling
of select q values in the structure factors n0 (d) (red hexagons), S0 and SK (e) (red triangles and green, respectively), and BK (f) (red squares).
Linear fits to the data in (d), (e), and (f) are represented as blue dashed and black solid lines. The zero-momentum peak of BB0 in (c) has been
removed.

is no symmetry breaking in the unit cell within the error bars
of our simulation. Note that, even though the extrapolated
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FIG. 3. The finite-size data for different sublattice BB
αβ

0 as
a function of 1/V in the featureless W� phase at Jz2/J± =
4.5, Jz1/J± = 2. The insets show the extrapolated values
limV →∞ BBαα

0 /V to the thermodynamic limit (table) and how this
information translates into a real-space pattern shown in the kagome
unit cell (drawing). The thickness of the lines in the real-space
pattern are proportional to the values of the extrapolated bond-bond
correlations BB

αβ

0 on each of the depicted bonds.

values for some of the bond correlations are small, they are
statistically significant, since the error bars are well below the
values of the correlations themselves. We also expect that these
bond correlations will strengthen upon a further increase of the
triangle anisotropy.

In the hardcore boson language, the real-space pattern
extracted from the extrapolations limV →∞ BB

αβ

0 /V (inset in
Fig. 3) shows that the bosons are predominantly delocalized
along the three sites of the strong triangles (one boson per down
triangle, in this case). This pattern can be understood as the real
space distribution of the square of the average kinetic energy
along the bonds in the unit cell. Inter bond-bond correlations
extrapolated to the thermodynamic limit are presented in
Appendix A. From the real-space pattern drawn from the
bond-bond correlations, we infer that charge fluctuations in
the weak triangle are larger than in the strong one. We quantify
these fluctuations through a “local” uniform susceptibility

χt = 3β

⎡
⎣〈(

1

3

∑
i∈t

ni

)2〉
−

〈(
1

3

∑
i∈t

ni

)〉2
⎤
⎦, (5)

where ni = Sz
i + 1/2. In particular, in the W� phase for

Jz2/J± = 4.5, Jz1/J± = 2, β = J±/60, and V = 60 × 60 × 3
we find that χ� = 0.855 ± 0.001, whereas a significantly more
fluctuating weak triangle χ	 = 7.386 ± 0.002 is found.

Lastly, we examine the chiral-chiral correlation function
〈EtEt ′ 〉, where Et = Si1 (Si2 × Si3 ) (i1,i2,i3 ∈ t). Although
time reversal symmetry is explicitly broken by the finite
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magnetization in the model, chiral order may still potentially
develop. In the limit where Jz2 
 Jz1, spin chirality may
develop by correlating the fluctuations of the spins on the
strong triangles as a way to offset the diagonal energy terms
on the weak triangle. We find, however, that the chiral
correlations are only enhanced as the W� is approached, but
the correlations still decay exponentially fast, as in the FM
phase. In Appendix B we demonstrate how to measure the
chiral-chiral correlations in SSE.

IV. PHASE TRANSITIONS

A. FM-to-W phase transition

The phase diagram presented in Fig. 1(a) exhibits three
types of phase boundaries: FM-to-W, FM-to-VBS, and W-
to-VBS phase transitions. We first examine the transition
between the W and the FM phase. Since the tripartite
entangled plaquette state W is fully symmetric, then such
a quantum critical line is expected to be a conventional
(d + 1)-dimensional order-disorder transition (with d = 2).
We consider two situations. First, the W phase is approached
at strictly conserved magnetization. Second, the W phase is
approached at a fixed magnetic field heff. The transition at fixed
magnetization is anticipated to be of the (d + 1)-dimensional
O(2) vector model type [27]. If the W phase is approached
at a fixed heff, the transition corresponds to the appearance of
a dilute fluid of excess quasiparticles or holes on top of the
W states where the magnetization deviates from m = −1/6,
and is generically Gaussian [27]. For these types of continuous
critical points in two dimensions, the superfluid stiffness scales
as ρsL

z = Fρs
[L1/ν(J − Jc),β/Lz] [27,38,39], where FρS

is a
scaling function, z is the dynamical critical exponent, ν is
the correlation length exponent, and J − Jc is the distance
to the critical point in terms of the control parameter J . In
Fig. 4 we scrutinize the finite-size scaling of the superfluid
stiffness at the transition between the FM and the W� as
a function of Jz1/J± at fixed Jz2/J± = 2, m = −1/6, and
β/L = 1. To produce the plots in Fig. 4 we have used the
critical exponents of (d + 1)-dimensional O(2) vector model,
i.e., z = 1, ν = 0.6717 ± 0.0001, and η = 0.0381 ± 0.0002
[40]. In Fig. 4(a) we show the rescaled superfluid stiffness
ρsL as a function of Jz1/J±, which becomes system-size
independent at the critical point Jz1c/J± = 3.3325 ± 0.0001,
as implied by the scaling relation. We numerically extract Fρs

by plotting the ρsL as a function of (Jz1/J± − Jz1c/J±)L1/ν ,
where a clear collapse is seen in Fig. 4(b). Finally, in the inset in
Fig. 4(b), we analyze the size scaling of the condensate fraction
f0, which vanishes as f0 ∼ L−(η+1) at the critical point [41].
We find that our data for f0 are well described by a straight
line when plot as a function of L−(η+1) with the η obtained in
Ref. [40]. Our results are consistent with a transition described
by the (d + 1)-dimensional O(2) vector model.

Similarly, we investigate the generic transition at fixed
heff/J± = −2.935, Jz2/J± = 2, and β/Lz = 0.1. The crit-
ical exponents that characterize this transition are z = 2,
η = 0.0, ν = 0.5 [27], which we use in the following to
locate the generic critical point. In Fig. 5(a) we show the
rescaled superfluid stiffness ρsL

2 as a function of Jz1/J±,
which becomes system-size independent at the critical point
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FIG. 4. Finite-size scaling of the superfluid stiffness across
the FM-to-W transition at fixed magnetization m = −1/6.
(a) The rescaled superfluid stiffness ρsL as a function of Jz1/J±.
(b) The rescaled ρsL as a function of (Jz1/J± − Jz1c/J±)L1/ν . The
inset displays the condensate fraction f0 as a function of L−(η+1). The
blue line is a fit of the data to a straight line. To produce all three plots
we have used the critical exponents z = 1, ν = 0.6717 ± 0.0001,
and η = 0.0381 ± 0.0002 obtained in Ref. [40]. We notice that the
data in the inset are not produced with a canonical algorithm, but
we emphasize that the average magnetization has been tuned to the
canonical value within less than 0.1 percent error at the critical point.

Jz1c/J± = 3.9428 ± 0.0004. In Fig. 5(b) we extract the scaling
function Fρs

across the Gaussian critical point, where we
observe again a clear collapse to a unique curve.

In summary, the phase transitions from the FM toward
the W states are consistent with the picture of (d + 1)-
dimensional order-disorder transitions and with the picture
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FIG. 5. Finite-size scaling of the superfluid stiffness across
the FM-to-W transition at fixed magnetic field heff/J± = −2.935,
Jz2/J± = 2, and β/Lz = 0.1. (a) The rescaled superfluid stiffness
ρsL

2 as a function of Jz1/J±. (b) The rescaled ρsL
2 as a function of

(Jz1/J± − Jz1c/J±)L1/ν . To produce these two plots we have used the
critical exponents z = 2, ν = 0.5, and Jz1c/J± = 3.9428 ± 0.0004.
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we have described in Sec. III, namely, that the W states are
insulators adiabatically connected to product states of tripartite
entangled plaquette states.

B. FM-to-VBS transition

We now turn our attention to the FM-to-VBS quantum
phase transition. This transition has been numerically studied
in Refs. [22,42] using grand-canonical SSE Monte Carlo. The
authors in Ref. [42] reported evidence of a continuous phase
transition based on data for the Binder cumulant and the
superfluid stiffness, consistent with a non-Ginzburg-Landau
deconfined critical point, but did not rule out the possibility
of a weak first-order phase transition. On the other hand,
Ref. [22] reported finite-size scaling of the superfluid stiffness,
structure factor, and kinetic energy histograms on larger
system sizes. The authors found evidence of a first-order
quantum phase transition. Their strongest evidence in favor of a
first-order transition was based on extremely low-temperature
histograms of the kinetic energy which exhibited a double
peak structure signaling coexistence at the critical point. Here
we revisit this critical point using canonical measurements
of the superfluid stiffness and structure factor supplemented
with several finite-size scaling analyses. First, we examine the
superfluid stiffness. Assuming a continuous phase transition
where z = 1, we compute the rescaled superfluid stiffness ρsL

as a function of Jz2/J± = Jz1/J± = Jz/J± with β/L = 1 and
explore two finite-size scaling scenarios. First, we consider a
conventional scaling scenario described by a divergent length
scale ξ ∝ δ−ν , where δ = Jz − Jzc controls the distance to
the quantum critical point and ν is the correlation length
exponent. Assuming a dynamical exponent z = 1, for a system
of linear size L close to δ = 0 the superfluid stiffness is
singular and scales as ρs(δ,L) = L−zFρs

(δL1/ν,L−ω), where
ω is a correction-to-scaling exponent. This relation means that
at the critical point ρsL = a + bL−ω (with a and b constants),
and that ρsL − bL−ω becomes system-size independent. We
justify the inclusion of corrections to scaling by noting that
that the crossing point of ρsL ≡ ρc

s L between two subsequent
system sizes tends to move slowly toward lower values of
Jz/J± and the value of ρc

s L at which they cross tends
to increase with system size. This means that significant
corrections to scaling are present in the system and we
include them in our analysis below. In Fig. 6(a) we plot the
relation ρsL − bL−ω vs Jz/J± for our numerical estimates
of ρs , which become approximately system-size independent
around Jz/J± = 3.845 ± 0.004. A more detailed picture arises
by considering the size scaling around the critical point: in
Fig. 6(b) we plot ρsL vs linear system size L for different
values of Jz/J± near the critical point. On increasing Jz/J±,
we notice the development of strong system-size dependent
oscillations in the superfluid stiffness which become stronger
as the VBS phase is approached. The period of the oscillations
can be traced back to the translational symmetry breaking
of the VBS phase since the minima of the ρs oscillations
appear at system sizes that exactly accommodate the wave
vector of the VBS pattern, i.e., q = K = (2π/3,0) [see thin
vertical lines in Fig. 6(b)]. Because of the oscillations, fitting
the data (to either all the data or to just the local minima
or maxima) to the scaling form ρsL = a + bL−ω produce

estimates for a, b, and ω with error bars in the first significant
digits. Apart from the conventional possibilities discussed
above, the slow divergence of the stiffness near the critical
point opens up the possibility for yet another scenario, i.e.,
a continuous transition with two diverging length scales, as
recently proposed in Ref. [29]. A prediction from the two-
length scale scenario is that in the presence of a second large-L
scale limit controlled by δL1/ν ′

, the superfluid stiffness behaves
as ρsL = L1−ν/ν ′

(a + bL−ω) at the critical point [29], which
we now test. In Fig. 6(c) we display ρsL

zν/ν ′ − b/Lω, which,
once again, becomes approximately system-size independent
near the critical point Jz/J± = 3.845 ± 0.004. The parameters
used in Fig. 6(c) are obtained from fitting our data for
ρs(L,Jz/J±) to the form predicted by the two-length scale
scenario ρsL = L1−ν/ν ′

(a + bL−ω) presented in Fig. 6(d). We
find that ν/ν ′ ≈ 0.4 ± 0.2, while ω ≈ 2 ± 2. Even though
the quality of the fits to the two-length scaling forms is
notably better than the conventional continuous scaling, the
significance of some of the fitting parameters we obtain is
again compromised by the large error bars resulting from the
oscillations in the data.

We also discuss the finite-size scaling of the structure
factor Sq at momentum q = K = (2π/3,0), which scales to
a finite value in the thermodynamic limit inside the VBS
phase and to zero in the FM phase. Assuming a continuous
phase transition, the structure factor scales as SKLz+η−2 =
FS[(J − Jc)L1/ν,β/Lz] [22]. In Fig. 7 we analyze numerical
data for SK using size scaling. Assuming z = 1, Fig. 7(a)
displays the rescaled SKLz+η−2 vs Jz/J±, while in Fig. 7(b)
we attempt at numerically obtaining the scaling function FS

by plotting SKLz+η−2 vs (Jz/J± − Jzc/J±)L1/ν . To produce
the collapse in Fig. 7(b) we find that η = 0.10 ± 0.01 and
ν = 0.40 ± 0.02. Even though the collapse looks compellingly
consistent with criticality, the absence of a crossing in Fig. 7(a)
and the rapid growth of SKLz+η−2 with system size near the
critical region, suggest that the transition may indeed be first
order. We finalize our analysis by mentioning that we have also
performed simulations (not shown) for the same transition
across the Jz2/J± = Jz1/J± − 0.18 line reaching the same
conclusions.

To conclude this section, we have reexamined the FM-to-
VBS transition using a canonical algorithm with which we
obtain data for the superfluid stiffness and structure factor
near the critical point. Apart from the conventional scenarios,
and since this transition may potentially exhibit nonclassical
behavior with the presence of fractionalized excitations, we
have also explored the possibility of a scaling with two length
scales, which has been recently introduced in Ref. [29] in
the context of a J -Q model exhibiting such phenomenon.
Although our data seem consistent with that scenario, the
large error bars associated with fitting numerical data to
such predictions highlight the complications inherent to the
application of this type of analysis to models like ours [Eq. (1)].
Furthermore, the scaling of the structure factor, which shows
drifting crossings between system sizes, is perhaps consistent
with the idea that this transition is first order as suggested in
Ref. [22]. Our numerical estimate for the critical point based
on the canonical measurements Jzc/J± = 3.845 ± 0.004 is
slightly below the previous grand-canonical results [22]
Jzc/J± = 3.898 ± 0.001.
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FIG. 6. Finite-size scaling of the superfluid stiffness across the FM-to-VBS transition at fixed magnetization mz = −1/6 and β/L = 1. A
conventional continuous scaling is presented in (a) and (b). (a) The rescaled superfluid stiffness ρsL − bL−ω as a function of Jz/J± for different
system sizes. (b) The scaled superfluid stiffness ρsL as a function of the system size L for several values of Jz/J± near the critical point (solid
lines). Fits to the scaling form ρsL = a + bL−ω (dashed lines). The fits are obtained using only observations following the values of L which
accommodate the wave vectors q = (2π/3,0) (displayed with larger symbols and signaled by thin vertical lines). A two-length scale scenario
is explored in (c) and (d). (c) The rescaled superfluid stiffness ρsL

ν/ν′ − bL−ω as a function of Jz/J± for different system sizes. (d) The scaled
superfluid stiffness ρsL as a function of the system size L for several values of Jz/J± near the critical point (solid lines). Fits to the scaling
form ρsL = L1−ν/ν′

(a + bL−ω) (dashed lines). The fits are obtained using only observations following the values of L which accommodate
the wave vectors q = (2π/3,0).

C. VBS-to-W transition

The phase diagram presented in Fig. 1(a) features a VBS-
to-W-state quantum phase transition which we now inspect.
The VBS present in our model is characterized by a threefold
degenerate ground state where translational symmetry is
broken and signaled by the formation of Bragg peaks in the
diagonal and bond structure factors at q = K = (2π/3,0). We
thus expect that the related (d + 1) classical model showing
the same universality class is the three-dimensional three-state,
Z3, clock model, which is equivalent to the three-dimensional
three-state Potts model [43,44]. This model is known to exhibit
a first-order phase transition [28,43]. Thus we anticipate that
the VBS-to-W transition is first order. In Fig. 8 we show
finite-size scaling of the diagonal structure factor SK across
the VBS-to-W transition. Assuming z = 1, in Fig. 8(a) we
examine the rescaled SKLz+η−2 as a function of Jz2/J± at
fixed Jz1/J± = 4.5, β/L = 1, and mz = −1/6. In Fig. 8(b)
we attempt at obtaining the the scaling function FS by plotting
SKLz+η−2 vs (Jz2/J± − Jz2c/J±)L1/ν . In order to produce
Fig. 8 we have used η = −0.30 ± 0.01 and ν = 0.50 ± 0.04.

Even though the data collapse may appear consistent with
criticality, we argue that the absence of a clear crossing in
Fig. 8(a) and the unusual negative value of η suggests that the
transition is instead first order, in agreement with the expected
three-dimensional three-state Potts model. Furthermore, we
consider histograms of the order parameter SK, the total energy,
and the kinetic energy at the critical point. We find that the
histograms of the total energy and order parameter are not
bimodal for all system sizes accessible in our simulations (not
shown). Instead, in Fig. 9 we show histograms of the kinetic
energy

K/J± =
〈 ∑

〈rr′〉,t=1,2

[
−J±t

2
(S+

r S−
r′ + H.c.)

]〉
(6)

for system sizes L = 60 [ Fig. 9(a)] and L = 66 [Fig. 9(b)]
where we find that for the largest system we could simulate
(L = 66) the kinetic energy starts developing a two-peak
histogram with a dominant beside a small, albeit statistically
robust, peak suggesting the onset of phase coexistence. While
this signal seems rather stable, definitive evidence in favor
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FIG. 7. Finite-size scaling of the structure factor SK across the
FM-to-VBS transition as a function of Jz/J± at fixed magnetization
mz = −1/6 and β/L = 1. (a) The rescaled structure factor SKLz+η−2

as a function of Jz/J±. (b) The structure factor SK as a function of
the resulting (Jz/J± − Jzc/J±)L1/ν across the phase transition.

of a first-order phase transition requires verifying that the
double-peak histograms remain stable for larger system sizes
unavailable in our simulation setup.

V. CONCLUSION

Inspired by various molybdenum-based cluster magnets
[12–17], we have studied the phase diagram of a generic XXZ

spin model on the anisotropic kagome lattice using large-scale
SSE quantum Monte Carlo simulations. We have found a
remarkable tripartite entangled plaquette state surrounded by
a valence-bond solid state and a ferromagnet state, and studied
the respective transitions between these phases. We find that
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FIG. 9. Kinetic energy histograms for system sizes L = 60 (a)
and L = 66 (b) near the critical point. The inset zooms in the smaller
peak for L = 66.

all the transitions toward the tripartite entangled plaquette state
are conventional order-disorder transitions, either continuous
(FM-W) or first order (VBS-W), which supports the idea that
the W phase is a featureless symmetric state.

We have reexamined the FM-to-VBS transition using a
canonical algorithm in the light of a recently proposed scaling
analysis with two length scales [29]. While our data seem
consistent with that scenario, the large error bars associated
with fitting numerical data to the predictions of the two-
length scaling analysis prevented us from drawing a firm
conclusion about the applicability of such a scenario to our
data. Furthermore, the scaling of the structure factor, which
shows drifting crossings between system sizes, is perhaps
consistent with the idea that this transition is first order as
suggested in Ref. [22].

As we described in Sec. II, the XXZ spin model in our
work describes the charge sector physics of the cluster magnet,
and, as such, one expects a one-to-one mapping between the
phases in our generic phase diagram (Fig. 1) and the phases
of the extended Hubbard model used in their description. In
particular, the FM phase in our phase diagram corresponds
to the Fermi liquid phase, the tripartite entangled plaquette
state W corresponds to the cluster Mott insulator with one
electron localized on every strong triangle, and the VBS phase
corresponds to the plaquette charge ordered state.

Besides the relevance to cluster magnets, our results directly
apply to other areas outside of condensed matter. In particular,
strongly correlated bosonic atoms can be loaded onto highly
tunable trimerized optical kagome lattices [24,25,45]. Such
systems are realizations of the XXZ model discussed here via
the mapping between spin- 1

2 and hardcore boson models [30].
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APPENDIX A

In Table I we report the inter bond-bond correlations. This
table verifies, for instance, the expectation that the extrapolated
values of BB33

0 /V (see inset in Fig. 3) are approximately equal
to correlations BB34

0 /V BB36
0 /V , BB46

0 /V . Also it makes it
clear that intertriangle correlations are always small and equal
to each other, i.e., BB14

0 /V is approximately equal to BB16
0 /V

and BB35
0 /V . These results confirm that the bond-related

symmetries of the W state are not broken.

APPENDIX B

In this Appendix we briefly detail the procedure to measure
chiral-chiral correlation functions in SSE quantum Monte
Carlo simulations. Measurements of chiral-chiral correl-
ation functions defined as 〈EtEt ′ 〉, where Et = Si1 (Si2 × Si3 )
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FIG. 10. The 〈Sz
i S

+
j S−

k Sz
l S

+
mS−

n 〉 correlation as a function of
the inverse temperature βJ± on a V = 2 × 2 × 3 lattice with
periodic boundary conditions at heff/J± = −2.935, Jz2/J± = 2,
and Jz1/J± = 4.2 using quantum Monte Carlo (QMC) and exact
diagonalization (ED).

(i1,i2,i3 ∈ t) are possible within SSE whenever the ba-
sic Hamiltonian breakup contains the triangles defined
by the different indices (i1,i2,i3 ∈ t) in the correlators.
Since the Hamiltonian breakup we have used in our study
uses the underlying corner-sharing triangles [33] defining the
kagome lattice, chiral-chiral correlations defined over those
triangles can be naturally obtained within our simulations
efficiently. By expanding the vector products in the correlator
〈EtEt ′ 〉, the SSE measurements are simplified to a combination
of terms of the form 〈Sz

i S
+
j S−

k Sz
i ′S

+
j ′ S

−
k′ 〉 where i,j,k ∈ t and

i ′,j ′,k′ ∈ t ′. Terms of the form above can be measured through
the estimator

〈Sz
i S

+
j S−

k Sz
i ′S

+
j ′ S

−
k′ 〉

= 4

(βJ±)2

〈
(n − 1)

∑
t

Sz
i [t]Sz

i ′[tnext]

〉
, (B1)

where the sum runs for ordered subsequences and the operators
S+

j S−
k appear at imaginary-time slice t followed by a S+

j ′ S
−
k′

at tnext in the operator sequence Sn, and n is the expansion
order [31,33]. We have implemented the estimator in Eq. (B1)
for each of the terms appearing in the chiral-chiral correlation
function. To test the validity of our approach, in Fig. 10 we
benchmark SSE estimates of one term, 〈Sz

i S
+
j S−

k Sz
l S

+
mS−

n 〉,
on a small V = 2 × 2 × 3 cluster with periodic boundary
conditions against exact diagonalization (ED) calculations.
The sites i,j,k and l,m,n are depicted in the inset. The
agreement of our SSE calculations with the ED results
validates our approach.

[1] M. Tamura, A. Nakao, and R. Kato, J. Phys. Soc. Jpn. 75, 093701
(2006).

[2] K. Matan, T. Ono, Y. Fukumoto, T. J. Sato, J. Yamaura, M. Yano,
K. Morita, and H. Tanaka, Nat. Phys. 6, 865 (2010).

[3] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, UK, 1999).

[4] A. N. Vasiliev, O. S. Volkova, E. A. Zvereva, A. V. Koshelev,
V. S. Urusov, D. A. Chareev, V. I. Petkov, M. V. Sukhanov,

054405-9

https://doi.org/10.1143/JPSJ.75.093701
https://doi.org/10.1143/JPSJ.75.093701
https://doi.org/10.1143/JPSJ.75.093701
https://doi.org/10.1143/JPSJ.75.093701
https://doi.org/10.1038/nphys1761
https://doi.org/10.1038/nphys1761
https://doi.org/10.1038/nphys1761
https://doi.org/10.1038/nphys1761


JUAN CARRASQUILLA, GANG CHEN, AND ROGER G. MELKO PHYSICAL REVIEW B 96, 054405 (2017)

B. Rahaman, and T. Saha-Dasgupta, Phys. Rev. B 91, 144406
(2015).

[5] F. L. Pratt, P. J. Baker, S. J. Blundell, T. Lancaster, S. Ohira-
Kawamura, C. Baines, Y. Shimizu, K. Kanoda, I. Watanabe, and
G. Saito, Nature (London) 471, 612 (2011).

[6] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-
Rivera, C. Broholm, and Y. S. Lee, Nature (London) 492, 406
(2012).

[7] L. Balents, Nature (London) 464, 199 (2010).
[8] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[9] S. T. Bramwell and M. J. P. Gingras, Science 294, 1495 (2001).

[10] M. J. P. Gingras and P. A. McClarty, Rep. Prog. Phys. 77, 056501
(2014).

[11] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys. Rev.
X 1, 021002 (2011).

[12] J. P. Sheckelton, J. R. Neilson, D. G. Soltan, and T. M. McQueen,
Nat. Mater. 11, 493 (2012).

[13] M. Mourigal, W. T. Fuhrman, J. P. Sheckelton, A. Wartelle,
J. A. Rodriguez-Rivera, D. L. Abernathy, T. M. McQueen, and
C. L. Broholm, Phys. Rev. Lett. 112, 027202 (2014).

[14] J. P. Sheckelton, F. R. Foronda, L. D. Pan, C. Moir, R. D.
McDonald, T. Lancaster, P. J. Baker, N. P. Armitage, T. Imai,
S. J. Blundell, and T. M. McQueen, Phys. Rev. B 89, 064407
(2014).

[15] Y. Haraguchi, C. Michioka, M. Imai, H. Ueda, and K.
Yoshimura, Phys. Rev. B 92, 014409 (2015).

[16] G. Chen, H.-Y. Kee, and Y. B. Kim, arXiv:1408.1963.
[17] G. Chen, H.-Y. Kee, and Y. B. Kim, Phys. Rev. B 93, 245134

(2016).
[18] P. W. Anderson, Science 235, 1196 (1987).
[19] R. Flint and P. A. Lee, Phys. Rev. Lett. 111, 217201 (2013).
[20] S. Florens and A. Georges, Phys. Rev. B 70, 035114 (2004).
[21] E. Zhao and A. Paramekanti, Phys. Rev. B 76, 195101

(2007).

[22] S. V. Isakov, S. Wessel, R. G. Melko, K. Sengupta, and Y. B.
Kim, Phys. Rev. Lett. 97, 147202 (2006).
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