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Scattering of a composite quasiparticle by an impurity on a lattice
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We study scattering of a composite quasiparticle, which possesses a degree of freedom corresponding to
relative separation between two bound excitations, by a δ-like impurity potential on a one-dimensional discrete
lattice. First, we show that, due to specific properties of their dispersion, lattice excitations bind to impurities
with both negative and positive potentials. We demonstrate that the finite size of the composite excitation leads
to formation of multiple excitation-impurity bound states. The number and the degree of localization of these
bound states depend on the signs and relative magnitudes of the impurity potential and the binding strength of
two quasiparticles. We also report the existence of excitation-impurity bound states whose energies are located
in the continuum band. Secondly, we study a change in the entanglement between the center of mass and relative
coordinate degrees of freedom of a biexciton wave packet during single impurity scattering and decoherence
caused by it. For a composite quasiparticle on a lattice, the entanglement between its relative and center of mass
coordinate degrees of freedom arises naturally due to inseparability of the two-particle Hamiltonian. One of the
main focuses of our study is to investigate how this inseparability affects the creation of the biexciton-impurity
bound states and the entanglement dynamics.
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I. INTRODUCTION

Interference of composite objects is an important problem
with applications in many areas of physics [1–3]. A composite
object possesses internal degrees of freedom, which are
often entangled with each other and with external degrees
of freedom. This entanglement may act as a source of deco-
herence in one of the degrees of freedom. Interplay between
various degrees of freedom becomes crucial when a composite
object—a wave packet with several entangled internal degrees
of freedom—is split into distinct components by mirrors or
other equipment in order to create its spatial superposition
state. An important question is how the entanglement among
the degrees of freedom changes in the process of wave packet
splitting, as it allows one to collect the which-way information
on one of the degrees of freedom through measurement of the
adjacent degrees of freedom [4].

Another important problem is tunneling of composite
objects through barriers [5], with applications in nuclear fusion
[6], induced decay of false vacuum [7], and tunneling of
Cooper pairs in superconductors and Wannier-Mott excitons in
semiconductor heterostructures [8]. It had been shown that the
probability of tunneling of an object possessing an internal
degree of freedom—for example, a diatomic molecule—
through a barrier may greatly exceed that of a structureless
object with similar properties due to appearance of quasibound
states in the combined scattering and molecular binding
potentials [5–7]. Furthermore, interaction of a molecule with
the external potential can induce transitions between molecular
states due to coupling between relative and center of mass
(c.m.) coordinate degrees of freedom [9,10].
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Most existing literature study free-space composite objects,
e.g., looking at two- or many-photon transport through an
impurity [11,12] or impurities [13], and extended scattering
potentials [5–7]. Recently, a free-space model with a δ

potential has been addressed in [14], where the authors
considered a diatomic molecule scattered by infinitely narrow
mirror. The long-lived scattering resonances and the increase
of the entanglement among internal degrees of freedom
of the system caused by scattering were reported. While
realizing an interaction between a diatomic molecule and
a semitransparent infinitesimally thin mirror is technically
demanding in free space, its lattice analog is available in
molecular crystals, where an impurity acts as a δ potential,
which scatters collective many-atom excitations—Frenkel
excitons [15]. Scattering of a single exciton by an impurity
has been studied in literature [16]. For a two-exciton bound
state (biexciton) the problem is more complicated, as recent
numerical studies have shown [17]. Scattering of composite
objects in the lattice configuration can be studied also with
the help of cold optical systems. Major success in trapping
ultracold atoms [18] and molecules [19] in optical lattices
allows for creation of controllable periodic ensembles in many
ways similar to natural crystals, which support rotational
Frenkel excitons [20,21]. The exciton-exciton interactions can
be controlled by applying external electric field, and under
certain conditions a biexciton is formed [22]. Perturbing
the ideal translational invariance of the lattice ensemble by
replacing one of the molecules by a molecule of a different
kind simulates an impurity in a natural crystal [20].

The interaction of two-particle states on a lattice with a
defect has been studied previously for the Hubbard [23–25]
and Su-Schrieffer-Heeger [26] models, with the focus on the
possible overlap of a bound state with the continuum and edge
bound states.

Here we study scattering of a Frenkel biexciton by an
impurity in a one-dimensional (1D) lattice. In our model
the on-site interaction for excitations is not a free parameter
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but corresponds to an infinite repulsion, as one molecule
cannot be excited twice. In addition, we have a two-particle
interaction between the excitations and we use periodic
boundary conditions which impose additional symmetry on
the wave function. Some of the continuum models and their
results can be obtained from the corresponding lattice model
by taking a limiting procedure (e.g., the lattice constant a → 0,
the number of lattice sites N → ∞) with the excitation hop-
ping strength J ∝ 1/a2. However, although many continuum
models of two particles interacting via the potential depending
only on their relative distance are separable in the relative and
c.m. coordinates, it is often the case that the corresponding
lattice Hamiltonian and its eigenstates are no longer separable
in those coordinates due to discreteness (Sec. II). As a result,
the entanglement between relative and c.m. coordinate degrees
of freedom can naturally arise for a composite quasiparticle
on a lattice, and indeed we will observe that the width of a
biexciton wave function in the relative coordinate depends on
the c.m. wave vector K . Moreover, the lattice models have
energy bands which are bound both from above and below,
that allows the creation of bound states with both attractive
and repulsive interactions (Sec. III). In the continuum models
the energy is bound from below but has no upper bound, and the
bound states are only associated with attractive interactions.
An important objective of our study is to investigate how
inseparability of relative and c.m. coordinates and finiteness
of the energy band of a composite quasiparticle on a lattice
affects creation of the biexciton-impurity bound states and the
entanglement dynamics.

The paper is organized as follows. In Sec. II, we derive
biexciton states analytically in an ideal 1D lattice with periodic
boundary conditions. We use them as a basis for the following
discussion. In Sec. III we study and contrast the eigenstates
of an exciton and a biexciton in a 1D lattice with an impurity.
We find that the free-space intuition cannot be directly applied
to a lattice setup: in particular, binding between the impurity
and lattice excitations occurs at both signs of the impurity
potential. For an exciton the exact solution is reported. For a
biexciton we show numerically that the extra (relative) degree
of freedom results in formation of multiple biexciton-impurity
bound states—in contrast to one exciton, which always has one
bound state near a δ-like potential. The number of bound states
and the degree of their localization are determined by the
signs and relative values of the exciton-exciton and biexciton-
impurity interactions. The bound states are also studied
analytically by looking at the poles of the scattering amplitude
for exciton and biexciton. Furthermore, we report that our
model with the impurity can be approximately solved and there
exist bound states in the continuum [27] in which two excitons
are mutually bound and bound to the impurity and the energies
of the states are located in the continuum band. In Sec. IV, we
study scattering of a biexciton wave packet by an impurity, and
a change in the entanglement between its relative and c.m. co-
ordinate degrees of freedom. In Sec. V we present our conclu-
sions and discuss further applications of the obtained results.

II. BIEXCITON STATES

We consider a 1D lattice of molecules or any other two-level
objects with periodic boundary conditions with the lattice

constant equal to 1, and study the excitation transfer between
the molecules. The Hamiltonian in the nearest-neighbor
approximation is

Ĥ0 =
N/2∑

n=−N/2+1

(E0â
†
nân + J (â†

n+1ân + â
†
n−1ân)

+Dâ
†
n+1ân+1â

†
nân + Lâ†

nânâ
†
nân), (1)

where n labels the sites of a 1D lattice, N is the total number
of lattice sites, and n + N is taken to be just a different label
for the site n for arbitrary n. While N could be arbitrary, we
take N to be even. The analysis for odd N is possible, but
more complicated than for even N . Operators â

†
n, ân describe

excitation and deexcitation of nth molecule, J describes the
excitation hopping strength between molecules in sites n and
n ± 1, while D denotes a two-particle interaction strength
between the excitations, and E0 is the one-particle excitation
energy. L → ∞ accounts for the hard-core constraint, i.e.,
to the fact that one molecule can accommodate at most one
excitation. The number operator N̂ = ∑

n â
†
nân commutes

with the Hamiltonian and the number of the excitations is
conserved.

A single exciton [15] can be represented by the eigenstates
of the first two terms of Hamiltonian (1) when the total
number of excitations in the lattice is one. Here we consider
Hamiltonian acting on two-exciton subspace; then the basis
can be written as |m,n〉 = â

†
mâ

†
n|0〉 ∈ Hm ⊗ Hn, meaning that

mth and nth sites are excited. Then |m,n〉 ≡ |m,n + N〉 and
|m,n〉 ≡ |m + N,n〉. In addition we have indistinguishability
of excitations |n,m〉 ≡ |m,n〉 and |n,n〉 does not exist by
the hard-core constraint. We now define r = n + m (r/2
is the center-of-mass coordinate) and relative coordinate of
two excitations s = n − m on a lattice. Since the model
is integrable for two excitations [28], we derive biexciton
states analytically in this section. The variables r and s

are not independent: they must be both even or odd. This
indicates r + s should be even for physical states. However,
we extend the space of states to all r and s for simplicity,
i.e., Hilbert space Hm ⊗ Hn is a subspace of Hr ⊗ Hs . If we
take −N/2 + 1 � m,n � N/2, then −N + 1 � r � N and
−N + 1 � s � N . We define |r,s〉 ∈ Hr ⊗ Hs and introduce
the unitary transformations R̂ = ∑

r,s |r + 1,s〉〈r,s| and Ŝ =∑
r,s |r,s + 1〉〈r,s|. The symmetries of m,n translate to |r,s〉 ≡

|r + 2N,s〉 ≡ |r,s + 2N〉 ≡ |r + N,s + N〉 for arbitrary r,s.
The constraint that |n,m〉 ≡ |m,n〉 becomes that |r,s〉≡|r,−s〉
so everything can be taken as defined only for positive s. Then,
Eq. (1) acting on two-exciton subspace is equivalent to

Ĥ0 = 2E0

∑
r,s

|r,s〉〈r,s| + J (R̂ + R̂†)(Ŝ + Ŝ†)

+D
∑
r,s

δ(|s| − 1)|r,s〉〈r,s| + L
∑
r,s

δ(s)|r,s〉〈r,s|.

(2)

Note that the Hamiltonian only couples even r + s states
with each other, and odd r + s states with each other. So one
can always project the solutions back onto the |m,n〉 set of
states.
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We consider the wave function �(r,s) such that the state is

|�〉 =
∑
r,s

�(r,s)|r,s〉 (3)

and �(r,s = 0) = 0 arises from the limit of finite energy when
L → ∞.

The periodic boundary conditions and indistinguishability
of excitations impose the following symmetry requirements:1

�(r,s) ≡ �(r + 2N,s) ≡ �(r,s + 2N )

≡ �(r + N,s ± N ) ≡ �(r, − s). (4)

The Hamiltonian commutes with R̂ and we can simultane-
ously diagonalize R̂ and Ĥ0. The eigenvalues of R̂ must be
pure phases. Since R̂2N = R̂, they can be written as eiK with
the eigenstates

�(r,s) = eiKrφK (s), K = 2πlK

2N
, (5)

where lK ∈ [−N + 1,N ] is an integer. The last two symmetry
requirements in (4) indicate

φK (s) = (−1)lK φK (N − |s|), (6)

which means that the relative coordinate wave function φK (s)
is even or odd about s = ±N/2 (as we assume N is even, N/2
is an integer) according to the parity of lK :

φK (N/2 + |s|) = (−1)lK φK (N/2 − |s|). (7)

Projecting the eigenvalue equation Ĥ0|�〉 = E|�〉 onto
〈r,s| away from s = 0, ± 1, we get

2J cos K(φK (s − 1) + φK (s + 1)) = (E − 2E0)φK (s),

(8)

which yields

φK (s) =
{

cos k(N/2 − |s|), if lK is even,

sin k(N/2 − |s|), if lK is odd, (9)

up to normalization. The corresponding energy eigenvalue is
given by

E = 2E0 + 4J cos K cos k. (10)

The eigenvalue equation at s = 1 gives

2J cos KφK (2) + DφK (1) = 4J cos K cos kφK (1). (11)

Then substituting (9) into (11), we have

D

2J cos K
= cos kN/2

cos k(N/2 − 1)
, if lK is even,

D

2J cos K
= sin kN/2

sin k(N/2 − 1)
, if lK is odd. (12)

In this paper, we are interested in the bound two-exciton
complex, biexciton [22,29,30], which appears as a result of
the exciton-exciton interactions given by the D and by the L

1We have (2N )2 states in Hr ⊗ Hs . �(r + N,s ± N ) ≡ �(r,s)
divides it by 2, eliminating s = 0 subtracts 2N , �(r,s) ≡ �(r, − s)
divides it by 2, and even r + s divides it by 2. This process gives
N (N − 1)/2 states, which is the number of states in Hm ⊗ Hn.

terms in the Hamiltonian. For biexciton, the wave function of
the relative coordinate decays exponentially with the growth
of separation and k is complex, i.e., k = kr + iki . As the
two-particle energies are proportional to cos k, we conclude
that kr = 0 or π to keep the biexciton energy real. Now a
transformation K → K ± π and k → k ± π gives

eiKr cos k(N/2 − |s|) → ei(K±π)r cos(k ± π )(N/2 − |s|)
= (−1)reiKr cos(k(N/2 − |s|) ± π (N/2 − |s|))
= (−1)reiKr (cos k(N/2 − |s|) cos π (N/2 − |s|)

∓ sin k(N/2 − |s|) sin π (N/2 − |s|))
= (−1)r+seiKr cos k(N/2 − |s|) (13)

when lK and N are even. When lK is odd and
N is even, similarly we obtain eiKr sin k(N/2 − |s|) →
(−1)r+seiKr sin k(N/2 − |s|).

Furthermore, it can be confirmed that if K , k obey Eq. (12),
then K ± π , k ± π also do. Note that these arguments are
valid for both real and complex k, i.e., they are valid for the
biexciton states as well as for continuum two-exciton states.
For even N , the wave function for K ± π , k ± π is the same as
that for K , k up to the factor (−1)r+s which is equal to 1 on the
even r + s sublattice. When N is odd, these transformations
become more complicated, and it is for this reason that we
chose N to be even throughout this paper. Equation (12) with
complex k shows that the condition for biexciton to appear
is |D| � |2J cos K|. When |D/2J | > 1, one has a biexciton
solution for each value of K . If we choose |D/2J | > 1 and
large N , then the equation can be simplified to

D

2J cos K
≈ e−i(kr+i|ki |), kr = 0 or π. (14)

Here the choice of kr correlates with the sign of
D/2J cos K . In particular, if sgn(J ) = sgn(D), the solution of
(14) exists if (1a) kr = 0, −π/2 � K � π/2 or (1b) kr = π ,
π/2 � |K| � π . Similarly, if sgn(J ) �= sgn(D), the solution
exists if (2a) kr = 0, π/2 � |K| � π or (2b) kr = π , −π/2 �
K � π/2. However, as discussed above, we have �K±π (r,s) =
(−1)r+s�K (r,s) for even N and linearly dependent states can
be summed as 1

2 (|�K〉 + |�K±π 〉) = 1
2 (1 + (−1)r+s)|�K〉,

which is zero for odd r + s states and |�K〉 for even r + s

states. In the following sections we use these states setting
sgn(J ) = sgn(D), kr = 0, and K ∈ (−π/2,π/2].2

Equation (14) gives

ki ≈ |ln |αK || with αK = 2J cos K

D
. (15)

Substituting ki into (10), we can write the biexciton energy as

Eb(K) ≈ 2E0 + D
(
1 + α2

K

)
. (16)

2For sgn(J ) �= sgn(D), either the K domain or the value of kr

should be modified.
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The biexciton wave function can now be written as3

|�K〉 =
√

2

N

∑
r,s

eiKrφK (s)|r,s〉 (17)

and

φK (s) = 1

Ne

cosh ki(N/2 − |s|), lK even,

φK (s) = 1

No

sinh ki(N/2 − |s|), lK odd, (18)

where the normalization constants are Ne,o =√
N − 1 ± sinh ki(N − 1)/ sinh ki (upper sign for Ne,

lower for No). Since ki is related to K by (15), the biexciton
wave function can be expressed just in terms of K .

We note that ki goes to infinity as K → π/2. Since (18)
is maximum at |s| = 1, N − 1, all values except those are
infinitely smaller. Then, after normalization, biexciton wave
function is represented by δ functions at K = π/2:

φK=π/2(s) = 1
2 (δ(|s| − 1) + (−1)lK δ(N − |s| − 1)). (19)

Note that φK (s) is defined on 0 < s < N and extended to
other values by applying the symmetries (4). In the above
expressions and the corresponding normalizations, we already
extended φK (s) to −N < s < N with the symmetry φK (s) =
φK (−s). Also we have φK (s = 0) = 0.

We use the biexciton wave function derived here as a basis
in the following sections.

III. INTERACTION OF EXCITONS AND BIEXCITONS
WITH IMPURITY

We now assume that an impurity is located at the origin
of the lattice. In this section we study the biexciton-impurity
bound state(s), and Sec. IV discusses scattering of a biexciton
wave packet by an impurity potential. Note that, in both
sections, we assume a biexciton is tightly bound in its relative
coordinate with |D/2J | � 1, and transitions from biexciton
states to continuum two-exciton states and vice versa are not
considered.

A. Exciton-impurity interaction: Single bound state

As a benchmark, let us consider interaction of a single
exciton with an impurity. This problem was addressed in [16]
with a parabolic approximation for the exciton dispersion. Here
we show that the account of the convex-concave dispersion of
the exciton leads to qualitatively new behavior of exciton-
impurity binding.

In the nearest-neighbor approximation, the Hamiltonian is

Ĥ = J
∑

n

(|n〉〈n − 1| + |n − 1〉〈n|) + V0

∑
n

δ(n)|n〉〈n|

+E0

∑
n

|n〉〈n|, (20)

3For even r + s sublattice, the sum can be taken over {r,s} having the
same parity, and s �= 0 and positive:

∑
{r,s} = ∑N−1

s=−N+1

∑N−|s|
r=−N+2+|s|

with step 2 in the sum over r .

where |n〉 = â
†
n|0〉 and V0 is the impurity strength, which is

equal to the difference in the excitation energies of the impurity
and the host molecules.

For the periodic boundary conditions, exciton states without
an impurity can be written as

|ϕ(k)〉 = 1√
N

∑
n

ϕk(n)|n〉, ϕk(n) = eikn, (21)

where k = 2πν/N is the wave vector and ν ∈ [−N/2 +
1,N/2] is an integer.

The eigenstates for an exciton interacting with an impurity
in a 1D lattice can be found exactly. Using (21), we divide the
eigenstates into antisymmetric and symmetric ones:

|ϕa(ka)〉 =
√

2

N

∑
n

sin kan|n〉,

|ϕs(ks)〉 = 1√
N

∑
n

(cos ksn + α sin ks |n|)|n〉, (22)

where α is a yet unknown constant to be determined from the
boundary conditions.

The projection of the eigenvalue equation Ĥ |ϕa/s〉 =
E|ϕa/s〉 onto a state 〈n| gives for arbitrary n �= 0

Ee(k) = E0 + 2J cos k. (23)

The antisymmetric states |φa(ka)〉 vanish at the impurity
location n = 0, so they are impurity-free states; ka = 2πνa/N

and νa is an integer in the interval [−N/2 + 1,N/2]. The states
|φs(ks)〉, in contrast, interact with the impurity. The projection
of the eigenvalue equation onto the state 〈n = N/2| with the
account of the periodicity requirement N/2 + 1 → −N/2 + 1
gives the equation, which connects α and ks :

α = tan
ksN

2
, (24)

and the projection of the eigenvalue equation onto the state
〈n = 0| gives the remaining equation relating α and ks

with V0:

α sin ks = −V0/2J. (25)

From (24) and (25) we conclude that the wave vectors ks

obey the following equation:

tan
ksN

2
sin ks = − V0

2J
. (26)

Its solutions tend to ks = 2πns/N when V0 → 0, and the
parameter V0/2J determines their shifts from the impurity-free
values. All solutions but one are real values corresponding
to exciton-impurity scattering states. The energies of the
scattering states Ee(ks,a) are plotted in Fig. 1(a) as function
of the wave vector for J > 0 (red solid line) and J < 0 (blue
dashed line); E0/|J | = 1000 and |V0|/|J | = 2.5.

One solution of (26), k = kb ≡ k′ + ik′′ with Re(k) = k′,
Im(k) = k′′ is complex, and describes exciton bound to the
impurity. Interestingly, the structure of kb is determined by
the relative signs of V0 and J . As the energy is real, cos kb =
cos k′ cosh k′′ − i sin k′ sinh k′′ must be real as well, which
means that k′ equals to either zero or π . As follows from (26),
the first case is realized when V0/2J > 0 and the second when
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FIG. 1. Single exciton interacting with impurity: single bound
state. (a) Energy spectrum for various combinations of J and V0.
J > 0: continuum states (red solid line) and bound states (i) or (ii);
J < 0: continuum states (blue dashed line) and bound states (iii) or
(iv). (b) Wave function corresponding to bound states (i)–(iv).

V0/2J < 0. For large N we can write the wave vector for the
bound state as the simplified form:

sgn(V0) = sgn(J ) : k′ = 0, k′′ = arsinh
V0

2J
,

sgn(V0) �= sgn(J ) : k′ = π, k′′ = −arsinh
V0

2J
. (27)

Therefore, the spectrum always possesses a single bound
state with the energy Ee(kb). For a given sign of J , it forms both
for negative and positive impurity potentials. In the first case
the bound state splits downwards and in the second upwards
from the continuum band. If the signs of J and V0 coincide,
the state is described by purely imaginary wave vector [cases
(i) and (iii) in Fig. 1(a)]. If the signs of J and V0 are different,
its wave vector has a real part π [cases (ii) and (iv)]. The
wave function of the bound states looks the same for all four
situations (i–iv) [Fig. 1(b)], as if a bound state forms under
repulsive forces exactly as it does for attractive forces. In fact,
bound complexes “forming under repulsive forces” in a lattice
geometry have recently been in the focus of attention [31,32].
As we show below, this equivalence between attractive and
repulsive potentials allows for a simple interpretation in terms
of the effective mass m−1

eff = (∂2Ee(k)/∂k2)/h̄2 of the exciton.
Indeed, the effective masses defined in the center [Re(k) ∼

0] and at the edge [Re(k) ∼ π ) of the exciton energy band
have different signs, owing to the convex-concave dispersion
of the exciton. Due to the structure of the Schrödinger equa-
tion, Ĥ → −h̄2
/(2meff) + V̂ (n), a particle with negative
effective mass “sees” an attractive potential as repulsive and
repulsive as attractive [33]. For concreteness of the following
discussion, assume J > 0. Then mcentre

eff < 0, and m
edge
eff > 0

(for J < 0 it will be the other way around). Then V0 > 0 will
be felt as an attractive potential by the states with k ≈ 0, while
V0 < 0 will be felt as an attractive potential by the states with
k ≈ π ; see Fig. 1(a). This interpretation is confirmed by the
location of the states at the (k,E) plane obtained analytically;
see (27). Similar logic works for J < 0, with the flipping of
the sign of V0. We conclude that states (ii) and (iii) correspond

FIG. 2. Biexciton interacting with an impurity: multiple bound
states. (a) Biexciton scattering states for D > 0 (red solid line) and
D < 0 (blue dashed line), bound biexciton-impurity states [dots (i,ii)
for D > 0 and (iii,iv) for D < 0], and two-exciton unbound states
(gray shaded region). Right panels zoom the regions (i) and (iii) with
multiple states. (b) The probability distributions of the bound states
(i,iii) and (c) of the bound states (ii,iv).

to attraction of a positive-mass particle by a negative potential
and the states (i) and (iv) to attraction of a negative-mass
particle by a positive potential.

B. Biexciton-impurity interaction: Multiple bound states

Here we turn to biexciton scattering by an impurity,
and find numerically the eigenstates of time-independent
Schrödinger equation Ĥ |�〉 = E|�〉, where Ĥ = Ĥ0 + V̂

with V̂ = V0
∑

r,s(δ(r + s) + δ(r − s))|r,s〉〈r,s|.4 Note that
the impurity potential V̂ also obeys periodic boundary condi-
tions of |r,s〉. We expand |�〉 in the basis of the free-biexciton
wave functions as |�μ〉 = ∑

K uμ(K)|�K〉, where μ is the
state index and the biexciton wave function |�K〉 is given in
(17). By choosing just the biexciton states as a basis, our results
are approximate, which should be good as long as |D/2J | � 1
(i.e., the energy of the biexciton states is much larger than any
of the unbound states). We have∑

K ′
〈�K |V̂ |�K ′ 〉uμ(K ′) = (Eμ − Eb(K))uμ(K), (28)

where 〈�K |V̂ |�K ′ 〉 = VKK ′ is written as

VKK ′ = 4V0

N

∑
s �= 0

(r + s even)

φ∗
K (s)φK ′(s)ei(K ′−K)s . (29)

The eigenvalues of biexciton-impurity bound states can
be obtained by numerical diagonalization of the matrix
MKK ′ = Eb(K)δKK ′ + VKK ′ and they are shown in Fig. 2(a)

4V̂ = V0
∑

m,n (δ(n) + δ(m))|m,n〉〈m,n| = V0
∑

r,s(δ(r+s) +
δ(r − s))|r,s〉〈r,s| shows that only even r + s states interact with an
impurity.
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for N = 40, E0/|J | = 1000, |V0|/|J | = 4, and |D|/|J | = 4.1
as blue and red dots. All combinations of signs of D and
V0 are considered. As follows from (16), the effective mass
of biexciton is defined by the sign of D, and the sign of
J is irrelevant, so we set sgn(J ) = sgn(D). For reference,
thick solid lines show the impurity-free biexciton dispersion,
the gray shade shows two-exciton unbound states, and the
isolated points show the biexciton-impurity bound states. Their
positions on the Re(K) axis [near Re(K) = 0 for cases (i) and
(iii) and near Re(K) = π/2 for cases (ii) and (iv)] is justified
by the analogy with the exciton case, and will be proved
analytically below; see (33). Note that although K is not a
good quantum number in the interaction region, we can use
it as a quantum number in the asymptotic region, i.e., it is a
good quantum number in the region away from the scattering
center.

Near Re(K) ∼ 0 we see four—marked as a,b,c,d—
isolated eigenvalues of the type (i) for D > 0,V0 > 0 (at-
traction of a negative-mass quasiparticle by a positive po-
tential) and of type (iii) for D < 0,V0 < 0 (attraction of
a positive-mass quasiparticle by a negative potential). The
bound character of these states is confirmed by the decaying
shape of their probability distribution in r coordinate at s = 1
[Fig. 2(b)]; at larger s the wave functions have the same
behavior. States a and b are well split from the continuum
and are strongly localized near the impurity. The states c and
d lie very close to the continuum and are loosely bound to
the impurity. In turn, near Re(K) ∼ π/2 we see two isolated
eigenvalues—they are marked by e and f —of the type (ii)
for D > 0,V0 < 0 (attraction of a positive-mass quasiparticle
by a negative potential) and of type (iv) for D < 0,V0 > 0
(attraction of a negative-mass quasiparticle by a positive
potential). Their probability distribution in r coordinate at
s = 1 is shown in Fig. 2(c). We conclude that the interplay
between the biexciton binding and impurity potential leads
to formation of multiple bound states with various degree of
excitation localization.

The appearance of additional bound states and the variation
in their number for different combinations of sgn(D/V0)
can be explained by averaging of the scattering potential by
the relative coordinate of two bound excitons. We draw the
analogy with the work [34], which examines the averaging
of the interface roughness potential in semiconductor het-
erostructures by electron-hole relative coordinate in a Wannier-
Mott exciton. As a result of a composite structure of this
exciton, the correlation length of the effective potential acting
on the exciton center of mass greatly exceeds a typical scale of
the initial disorder potential, being of the order of the electron-
hole mean separation. In a similar way, Eq. (29) shows that
the relative coordinate of two excitations, which is described
by φK (s), acts onto the c.m. coordinate of the biexciton as an
effective potential V eff

KK ′ (s) = V0φ
∗
K (s)φK ′(s). This can be seen

by analogy with the problem of one structureless particle in an
extended potential V̂ = ∑

m V∗(m)|m〉〈m|, whose matrix ele-
ment in the wave vector space is Vkk′ = 1

N

∑
m V∗(m)ei(k−k′)m.

The spatial extent of the effective potential is determined by
the spread of involved φK (s) and φK ′(s). We checked that
for small values of D the wave function φK∼π/2(s) is much
narrower than φK∼0(s). Then, near Re(K) ∼ 0, the averaging
is effective and the potential is similar to a well of finite width,
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FIG. 3. Number of biexciton-impurity bound states as function
of parameters. All energies are in units of |J |. The number of states
depends on the width of φK (s). The bottom plots show the wave
functions of relative coordinate for three values of parameters; “case
(i)” and “case (ii)” refer to the notations of Fig. 2(a). First and last
bottom plots illustrate the difference in the width of φK (s) at K = 0
and K = π/2 for same values of all other parameters.

while near Re(K) ∼ π/2 the effective potential is close to
the underlying δ function. For large D the wave function
φK∼0(s) narrows due to stronger exciton-exciton binding.
Accordingly, for parameters (D,V0) and (D, − V0) we expect
strong asymmetry in the number of bound states for small D,
and the same number of bound states when D is large.

This is confirmed by examining the number of bound states
as function of (D/J,V0/J ) summarized in Fig. 3. The obtained
numbers of bound states are marked as red italic numbers near
each plateau in the (V0,D) plane. The state was considered
as bound if its energy fell out of the impurity-free biexciton
energy band and its amplitude was a decaying function of r .
The averaging of the potential by the relative coordinate is
illustrated by showing the profiles of three wave functions:
φK=π/2(s) for D = 2.1J , φK=0(s) for D = 4.1J , and φK=0(s)
for D = 2.1J . Each plot is associated with the corresponding
point in the (D,V0) plane by an arrow. The left graph is for V0 =
−5|J |; the middle and the right are for V0 = 5|J |. Indeed, large
numbers of bound states are achieved only with |D| � 2.1|J |
and sgn(D) = sgn(V0), when the biexciton is weakly bound
and the bound state forms near Re(K) = 0. However, at small
values of D biexciton is resonant with the continuum two-
exciton states, and the scattering of biexciton into two-exciton
continuum and into the states with one free exciton, and one
exciton bound to the impurity may become important.

C. Poles of the reflection amplitude

The bound states can be examined analytically as the
poles of the scattering amplitude with complex momentum
which can be derived from the Lippmann-Schwinger equation
[35]. In this section, we compare the poles of the scattering
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amplitude derived from Lippmann-Schwinger equation with
the assumption N → ∞, and numerical results for (28).
Treating k = k′ + ik′′, we find that the scattering amplitude
of an exciton with the dispersion Ee(k) = E0 + 2J cos k

scattered by an impurity can be calculated (Appendix A) as

Re(k) = V0[(2J cos k′ sinh |k′′| − V0)

− 2iJ sin k′ cosh |k′′|]−1. (30)

Note that the exact solution of the problem without the
assumption of N → ∞ is already given in Sec. III A and the
poles of (30) appear at specific values of k given by (27).

For biexciton the Lippmann-Schwinger equation |�〉 =
|�K〉 + Ĝ0V̂ |�〉 is more complicated, as the potential for
the interaction between the impurity and biexciton is non-
separable. We solve it approximately using the method of
continued fractions [36] in the first order (see Appendix B).
The scattering amplitude with complex K = K ′ + iK ′′ is
found as (see Appendix B)

Rb(K) = 2DV0S(K ′,|K ′′|)[(J 2 cos(2K ′) sinh(2|K ′′|)
− 2DV0S(K ′,|K ′′|)) − iJ 2 sin(2K ′)

× cosh(2|K ′′|)]−1, (31)

where

S(K) =
N/2∑

s=−N/2+1

e−2|K ′′ |sφK ′−i|K ′′ |(s)φK ′+i|K ′′ |(s). (32)

The factor V0S(K) accounts for averaging of the potential by
the wave function of relative coordinate, φK (s). The scattering
amplitude (31) has poles for K ′ = 0 and π/2, with the
corresponding equation for K ′′ being

sinh(2|K ′′
pole|) = 2DV0S(K ′

pole,|K ′′|pole)

J 2 cos(2K ′
pole)

,

K ′
pole = 0,

π

2
. (33)

This shows that the small parameter of the perturbative
expansion is 2DV0/J

2. The first-order approximation allows
us to confirm the above picture of potential averaged by the
wave function of relative coordinate. It also reproduces the
same effect as for a single exciton: when D and V0 have same
signs, the bound state appears near K ′ = 0, while when D

and V0 have opposite signs, the bound state appears near K ′ =
π/2. The physical meaning of this effect, as can be seen from
Fig. 2(a), again lays in the different signs of the effective mass
of the biexciton at Re(K) ∼ 0 and at Re(K) ∼ π/2. We remark
that the numerical studies of Ref. [17] report anomalously
high transmission at Re(K) = π/2 (in our notations, which
corresponds to Re(K) = π in the notations of Ref. [17]), and
attribute it to existence of a two-body resonant localized state.
The authors considered negative J and D and positive V0.
Our results confirm this interpretation. Comparison of (33)
and (27) reveals that the bound states at Re(K) = π/2 are a
general property of a restricted (cosine) energy band, rather
than being due to the composite character of the scattered
biexciton.

In Fig. 4 we show the scattering amplitudes: for an exciton
as a function of k′′ (30) and for a biexciton as a function of
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FIG. 4. Scattering amplitude of a single exciton (a) and biexciton
in the perturbative limit (b) as function of complex momentum. The
insets show the continuum spectrum (red stripe) and the single bound
state (red dot) calculated numerically, and the arrow indicates the
analytical estimates (see text).

K ′′ (31) with the following parameters: V0 = ±2.5J for panel
(a) and D = 4J and V0 = ±0.25J (so that we remain in the
perturbative limit) for panel (b). Both scattering amplitudes
show a single pole, Re at k′′ given by (27), and Rb at K ′′
given by (33). The insets show numerically calculated energy
bands, with the bound states shown as dots above or below
the continuum. The arrows indicate, respectively, the position
of Ee(k′

pole + ik′′
pole) and Eb(K ′

pole + iK ′′
pole). For exciton the

agreement is perfect and for biexciton approximate.

D. Bound states in the continuum

In the previous section, we focused on biexciton-impurity
bound states whose energies are located outside the continuum
band. In this section, we show that our model can also have
bound states in the continuum in which two excitons are
mutually bound and bound to the impurity and the energies
of the states are located in the continuum band. Although
an impurity destroys integrability of the model [37], it was
observed that the Bose-Hubbard model with a particle-particle
interaction and an impurity potential in the two-particle sector
is semi-integrable in some cases [23–25]. Our model has
L → ∞ that accounts for the hard-core constraint; therefore,
m, n translations do not commute with the Hamiltonian even
if a two-particle interaction D and an impurity potential V0

are zero. However, the model can be approximately solved as
follows.

We assume that the strength of a two-particle interaction
D and that of an impurity potential V0 are not similar, i.e.,
either |V0| � |D| or |V0| � |D| (the condition |D| > 2|J |
for biexciton formation is always assumed). Under each of
these conditions, potentials in the c.m. and relative coordinate
decouple, and the two-particle wave function looks as if D

and V0 independently create bound states in the relative and
the c.m. coordinate, respectively. When they are similar, i.e.,
|V0| ∼ |D|, often each exciton individually forms a bound
state with a combined potential of D and V0 in m and n

coordinates, respectively, rather than in the relative and the c.m.
coordinates. For simplicity, we do not consider this situation
and derive only an approximate solution under the assumption
that the strong exciton-exciton interaction (D) creates a bound
state in the relative coordinate and weak exciton-impurity
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interaction (V0 � D) perturbatively bounds biexciton to the
impurity. Alternatively, each of two excitons strongly bounds
to the impurity and weak exciton-exciton interaction (D � V0)
forms a biexciton.

Then an ansatz for a two-exciton state with a two-particle
interaction D and an impurity potential V0 can be approxi-
mately written as

∣∣�a
K

〉 ≈ 2√
N

∑
r,s

sin(Kar)φKa
(s)|r,s〉. (34)

Here we write the ansatz as a product of wave-functions in the
c.m. and in the relative coordinate since we assume that these
two degrees of freedom decouple because of incomparable
scales for V0 and D. The wave vector K bears index a

as we will consider states which are antisymmetric under
the replacement r → −r . The problem involving the states
which are symmetric under this transformation becomes more
complicated as in the case of [23–25]. Given that φK (s) is
symmetric under s → −s, |�a

K〉 is antisymmetric under the
transformation (r,s) → (−r, − s).

Now we consider the eigenvalue equations. We have four
cases: (i) for |r| �= |s| and s �= 0, ± 1 where neither V0 nor
D appears, (ii) for |r| �= |s| and s = ±1 where D appears
but V0 does not, (iii) for |r| = |s| and s �= 0, ± 1 where V0

appears but D does not, and (iv) for |r| = |s| and s = ±1
where both D and V0 appear. The eigenvalue equations
corresponding to (i) and (ii) are already given in (8) and (11),
respectively.

For (iv), we project the eigenvalue equation Ĥ |�a
K〉 ≈

E|�a
K〉 onto 〈r,s| at r = s = 1:

2J cos KaφK (2) + (D + V0)φKa
(1)

≈ 4J cos Ka cos kφKa
(1). (35)

Ideally we look for the state that satisfies all equations
corresponding to cases (i), (ii), (iii), and (iv). However, Eq. (35)
reduces to (11) when |D| � |V0|, and it reduces to the
eigenvalue equation corresponding to (iii) which is shown
below when |V0| � |D|. Therefore, in either of these two
limits, we only derive the state that satisfies three equations
corresponding to (i), (ii), and (iii). Equations (8) and (11) are
already solved in Sec. II, and it was found that k satisfies
(15) when the state is bound in the relative coordinate due
to a two-particle interaction D. Then the only thing left is to
evaluate complex Ka that gives the bound state in the c.m.
coordinate due to the impurity potential V0.

For (iii), we project the eigenvalue equation Ĥ |�a
K〉 ≈

E|�a
K〉 onto 〈r,s| at r = s (here we choose r = s = N/2 − 1),

which leads to

V0 ≈ 2J

(
cos Ka − sin Ka

tan Ka(N/2 − 1)

)
cos k, (36)

where Ka is complex for the bound state in the c.m. coordinate.
When we have Ka = iK ′′

a or Ka = π/2 + iK ′′
a and large

N , Eq. (36) reduces to

V0/2J ≈ ±e−K ′′
a cosh ki, Ka = iK ′′

a ,

−V0/2J ≈ ±eK ′′
a cosh ki, Ka = π

2
+ iK ′′

a , (37)

where we have + sign and − sign on the right hand side when
k = iki and k = π + iki respectively. Here we substituted
complex k given by (15) obtained from (11) so that the
state is bound in both c.m. coordinate with complex K and
in relative coordinate with complex k, respectively. When
Ka = iK ′′

a , the equation with + sign corresponds to the
case where sgn(J ) = sgn(D) = sgn(V0), and that with − sign
corresponds to the case where sgn(J ) �= sgn(D) = sgn(V0).
On the other hand, when Ka = π/2 + iK ′′

a , the equation with
+ sign corresponds to the case where sgn(J ) = sgn(D) �=
sgn(V0), while that with − sign corresponds to the case where
sgn(J ) = sgn(V0) �= sgn(D). Substituting Ka obtained by (37)
into (10) gives

Eb1 = DV0(D + V0 −
√

4J 2 + (D − V0)2)

2(DV0 − J 2)
,

Eb2 = DV0(D + V0 +
√

4J 2 + (D − V0)2)

2(DV0 − J 2)
, (38)

where both equations in (37) give the same result and 2E0

should be added if E0 is not set to equal to zero.
We find that Eb1 can fall into the continuum band that covers

the interval [2E0 − 4J, 2E0 + 4J ], while Eb2 falls outside of
the band when D,V0 > 0. On the other hand, Eb2 can fall
into the continuum band and Eb1 falls outside of it when
D,V0 < 0. Therefore, one of them corresponds to the type
of bound states which we discussed in the previous section,
while the other is a bound state in the continuum similar to
that obtained in [23,24].

We have also studied numerical solutions of the
Schrödinger equations in the full basis, which included all
continuum states as well biexciton states discussed in previous
sections. We find four distinct types of bound states: the first
type is the biexciton state where two particles are bound in the
relative coordinate with complex k but the biexciton complex
is not bound by the impurity (free biexciton). The second type
corresponds to two particles whose c.m. position is bound by
the impurity with complex K but they are not bound in the
relative position (two excitons whose c.m. position is bound
to the impurity). The third type of bound states corresponds
to the case where one particle is bound by the impurity (the
wave vector of one particle is complex) but the other is not.
Finally, the fourth type of bound states corresponds to two
particles mutually bound and bound to the impurity. In this
fourth case, the energies of the bound states are approximately
given by Eq. (38) and one of them falls into the continuum.
Figure 5 shows an example of a bound state in the continuum
of the fourth type. In the limit D � V0, we found almost
exact agreement between Eb1 in (38) and the eigenvalue of
the state obtained by numerical diagonalization. Indeed we
see the probability distribution of the state demonstrates clear
decoupling between r and s [Fig. 5(a)], which indicates that
the ansatz (34) written as a product of wave functions in the
c.m. and in the relative coordinate works well. Meanwhile,
in the limit D � V0, we found that the formula for Eb1

works only approximately, and the probability distribution
shows that full decoupling between r and s is not achieved
[Fig. 5(b)].
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FIG. 5. Bound states in the continuum. (a) D = 4.1J ; V0 = 8J . (b) D = 4.1J ; V0 = J .

IV. DECOHERENCE BY INTERNAL DEGREES
OF FREEDOM

In this section we study the change in the entanglement
between the c.m. motion and the internal degree of freedom s

via scattering by an impurity. We consider a single scattering
of a narrow biexciton wave packet

∑
K uK |�K〉 with the

expansion coefficients uK by an impurity. Let W (r,s) =∑
K uKfK (r)φK (s) where fK (r) = eiKr and φK (s) is given

in (18) denote its real-space projection onto a state |r,s〉. The
reduced density matrix of ρ(r,s; r ′,s ′) = W (r,s)W ∗(r ′,s ′) is

ρcm(r,r ′) =
∑

s

ρ(r,s; r ′,s)

=
∑
K,K ′

u∗
K ′uKf ∗

K ′(r ′)fK (r)
∑

s

φ∗
K ′(s)φK (s) (39)

Therefore, tracing over the relative coordinate degrees of
freedom suppresses the contribution of the pairs of components
with different |K|; the less similar φK and φK ′ functions are,
the stronger the suppression. In a sense, the relative coordinate
degrees of freedom acts as a source of decoherence. To quantify
this decoherence, we consider a thought experiment, in which
the two ends of a lattice are connected (ring geometry). A
wave packet propagates towards the impurity and is split by it
into transmitted and reflected parts. The two parts propagate
away from the impurity, meet at the opposite side of the ring
and interfere. The off-diagonal elements of ρcm describing this
interference of the wave packet with itself quantify the degree
of decoherence.

We solve the time-dependent Schrödinger equation,
ih̄ ∂

∂t
|�(t)〉 = Ĥ |�(t)〉, where Ĥ = Ĥ0 + V̂ as in the previous

section. In the basis set of static impurity-free biexciton wave
functions (17), |�(t)〉 = ∑

K uK (t)|�K〉, the time-dependent
expansion coefficients uK (t) of the wave vector K obey
equations of motions given by

ih̄
∂uK (t)

∂t
=

∑
K ′

〈�K |Ĥ |�K ′ 〉uK ′(t), (40)

where 〈�K |Ĥ |�K ′ 〉 = MKK ′ = Eb(K)δKK ′ + VKK ′ is given
in (29).

Here we project the Hamiltonian onto the biexciton set
of states, but ignore two-exciton continuum states. This
simplification is only possible when the biexciton state is

well split from the two-exciton continuum with |D| > 4|J |
and the impurity potential V0 is not large compared to D, i.e.,
not |V0| � |D|. However, when |D| ∼ 2|J |, a scattering by an
impurity can destroy biexciton states and make them decay into
two-exciton continuum states. In this paper, we do not study
such physical processes, but show only one simple example in
which a biexciton wave packet scatters by an impurity without
the transitions between biexciton and two-exciton continuum
states.

We consider an initial wave packet of the form

|�0〉 = 1

N
∑
K

uK (0)|�K〉, (41)

where N is the normalization factor, and

uK (0) = e− 1
2 (K−K0)2/(
K0)2

. (42)

We solve a matrix differential equation (40) numerically
with an initial condition (42). We choose the parameters as
K0 = 3π/8, 
K0 = π/24, D/J = 4.5, and |V0/J | ∼ |D/J |
such that half of the wave packet is transmitted and half of it
is reflected in the c.m. coordinate. Here D/J and V0/J have
opposite signs. The calculations are done with the number of
molecules N = 40 and 2E0 chosen as a reference point for
energy. We measure time in units of 1/|J |. The wave packet
shown in Fig. 6(a) starts at t = −30 and is split by the impurity
at around t = 0 into reflected and transmitted parts [Fig. 6(b)].
Finally, two parts meet at the opposite side of the ring and
interfere with each other [t = 54, Fig. 6(c), shows the moment
of maximal overlap).

The von Neumann entropy [38], that measures the entan-
glement between c.m. and relative coordinate degrees of free-
dom, is defined as S(t) = − tr[ρc.m.(r,r ′; t) log2 ρc.m.(r,r ′; t)]
and ρc.m.(r,r ′; t) = ∑

s �(r,s; t)�∗(r ′,s; t), where �(r,s; t) =∑
K uK (t)fK (r)φK (s). We diagonalize ρc.m.(r,r ′; t) as ρc.m. =∑
r ηr |r〉〈r| and evaluate S = −∑

r ηr log2 ηr . The entropy
for the initial biexciton wave packet [(41) and Fig. 6(a)]
is calculated as S = 0.18. In contrast to the case of the
free-space composite object [14], the lattice Hamiltonian (1)
is not separable into relative and c.m. coordinates. As a result,
the r − s entanglement of a state changes when it propagates.
Careful choice of the wave packet parameters can make this
change negligibly small for long enough propagation times.
For our parameters 
S ∼ 10−2 from t = −30 to around
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Initial wave packet (t = − 30) After scattering (t = 35) Two parts interfere (t = 54)

(a) transmitted

reflected

(b) (c)

FIG. 6. Time evolution of the biexciton wave packet (41) interacting with the impurity. Shown is the probability distribution ρ(r,s; r,s; t),
with N = 40, r ∈ (−N,N ), and s ∈ (−N,N ).

t = 0. However, when the wave packet is scattered by the
impurity at t ∼ 0, the interplay between the exciton-exciton
interaction and the impurity potential changes the entropy
rapidly to S = 0.38. Note that it is likely that a larger change
in the entropy can be observed when the transitions between
biexciton and two-exciton continuum states occur.

The off-diagonal elements of the reduced density matrix
ρc.m.(r,r ′) are indicators of the degree of decoherence present
in the system. To quantify the contrast between diagonal and
off-diagonal elements, we introduce the function

C(r,r ′) = |ρc.m.(r,r ′)|
1
2 |ρc.m.(r,r) + ρc.m.(r ′,r ′)| (43)

and plot it after scattering (t = 35) in Fig. 7(a). The diagonal
elements are equal to 1, and many of the off-diagonal elements
are only 10%–20% smaller than the diagonal ones, indicating
a large degree of coherence still present in the system.
Finally, coherence is manifested in the interference pattern
when the reflected and transmitted wave packets meet at
the opposite side of the ring. Figure 7(b) shows the interference
pattern at the moment of maximal overlap, t = 54; the relative
coordinate degrees of freedom are traced out. The middle of the
plot (r = ±40) corresponds to the point on the ring opposite to
the impurity, where the reflected and transmitted wave packets
meet. The bottom panel shows the same data as a density plot,

simulating the interference picture observed in experiment.
The interference fringe loses ∼15% of its maximal visibility.
For comparison, Fig. 7(c) shows a similar calculation done
for a single exciton scattered by the impurity. We consider an
exciton wave packet with the same shape function uk(0) as
in (41) scattered by an impurity, which provides half-to-half
splitting of the wave packet. Plotted is the density matrix
ρe(x,x) of exciton at the moment of the maximal overlap. The
amplitude of fringe oscillations vanishes in the interference
minima at panel (c), confirming that the flattening of contrast
in panel (b) is due to the entanglement between relative and
c.m. coordinates of the biexciton wave packet.

Finally, Fig. 7(d) shows the mode distribution over K states
in the initial wave packet (at t = −30), and after scattering (at
t = 35). In [14], decoherence due to the excitation of internal
degrees of freedom was observed. In our approximation where
we only look at the biexciton states, there is only one internal
state for each K , namely one biexciton state. If one starts out
with a wave packet with narrow distribution in K then the
internal states for different K have a large overlap. However,
due to scattering by an impurity, the overlap gets smaller as
the states spread out and decoherence occurs. In the example
of Figs. 6 and 7, the transmitted wave packet has more modes
excited near K ∼ π/2 than the reflected one has, and therefore
there is some measurement of K or s that has some possibility
of differentiating them.
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FIG. 7. (a) Comparison of diagonal and off-diagonal matrix elements for the reduced density matrix after scattering, C(r,r ′) at t = 35.
(b) Interference pattern produced by the reduced density matrix in the c.m. coordinate at the moment of maximal overlap, ρcm(r,r; t = 54).
(c) Similar calculation for single exciton (see text). (d) Mode distribution before and after scattering. Expectation of energy 〈Eb〉 = −4.7 is the
same before and after scattering.
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V. DISCUSSION

We have discussed two phenomena relevant to interaction
of a composite particle on a lattice with a point defect. First, in
contrast with the case of a single exciton having only one
bound state near an impurity, for biexcitons the interplay
between exciton-exciton interaction and the impurity potential
leads to formation of additional bound states. This can be
viewed as if these two interactions introduce a finite-scale
effective potential for the c.m. coordinate. At the same
impurity strength, the number of bound states is larger when
sgn(V0) = sgn(D), and the bound states form out of the
scattering states near K ∼ 0. We have also demonstrated,
both analytically and numerically, the existence of bound
states in the continuum for our model. Secondly, we have
studied a change of the entanglement in a biexciton wave
packet via one scattering event. We have observed that the
entropy increases as a result of scattering. Still, we expect
that the decrease of the entropy can in principle also be
observed. When an initial wave packet is nearly a pure state,
generally the increase of the entanglement due to a scattering
event would be observed, as we saw in the previous section.
However, if the initial wave packet had high entanglement
of the c.m. motion with the internal degrees of freedom, it
may drop as a result of scattering. For a free-space particle
of Ref. [14] with a quadratic dispersion, Hamiltonian can be
separated into the c.m. and relative coordinates. In contrast,
for a biexciton on a lattice possessing cosine dispersion and
subject to periodic boundary conditions, the c.m. and relative
coordinate wave functions depend on one and the same wave
number K , as can be seen from (17). As a result, a wave packet
constructed as a sum of eigenmodes is normally entangled in
an r − s-coordinate basis. We observed that while for the states
with K ∼ π/2 the relative coordinate wave functions φK (s) are
all alike, for K ∼ 0 and small D their width strongly depends
on K (see Fig. 3 for an example). If a wave packet is formed
from the states near K ∼ π/2, we can approximately factorize
it as

∑
K fK (r)φK (s) ≈ φK=π/2(s)

∑
K fK (r), which is nearly

a pure state. In contrast, when K ∼ 0 and |D| ∼ 2.1|J |,
the states do not disentangle. This suggests a possibility to
compose a highly entangled wave packet out of these low-K
small-D states, which could purify upon propagation, by
scattering with the impurity or by other physical processes.
However, as this involves small D, in order to study this effect
one has to include two-exciton continuum states in the basis
set. Such a calculation is beyond the scope of the present
paper.

Our calculations are relevant for studies of quantum
interference and decoherence of composite objects, as well
as for the discussion of Anderson localization of interacting
particles. Currently a lot of effort is devoted to understanding
the role of interactions in many-body Anderson localization
[39,40], which can also be viewed as interplay between two
potentials (particle-particle vs particle-localization potential)
and two length scales (particle-particle relative distance vs the
correlation length of the disorder potential). Application of our
results to study of this phenomenon is underway.

Our work demonstrates important differences between
lattice and free-space models. In particular, the change of

the sign of the effective mass of the quasiparticle and
the resulting equivalence between the effects produced by
“attractive” and “repulsive” potentials have no free-space
analogs. Furthermore, the property of the biexciton wave
function derived from the lattice Hamiltonian (1) which
is inseparable in r − s coordinate with periodic boundary
conditions plays an important role: the dependence of the
relative coordinate wave function φK (s) on the center of mass
wave vector K is responsible (i) for different numbers of bound
states for sgn(V0) = ±sgn(D) and (ii) for the entanglement
dynamics. Yet another difference involves resonance states.
In the framework of the free-space model [14], long-lived
resonances for a composite particle at a δ-like mirror were
found using a complex scaling method. This method, how-
ever, becomes ineffective on a lattice, where the periodic
boundary conditions rule out the very possibility of complex
eigenenergies associated with Hermitian Hamiltonians [41].
Roughly speaking, an ideal discrete periodic system is doomed
to experience periodic evolution with revivals instead of
exponential decay. On the other hand, it is clear that analogs of
continuum resonances should exist in nonideal lattice models,
as soon as the lifetimes associated with resonances are smaller
than the lifetime of the system or when the decay length of the
excitation is smaller than the system physical size. We plan to
address this question in a further study.
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APPENDIX A: EXCITON SCATTERING BY AN IMPURITY

For an exciton scattered by an impurity in a 1D lattice,
the Hamiltonian is (20) with free-exciton states (21) and
energy (23).

The Lippmann-Schwinger equation represents the total
wave-function |ψ〉 as a sum of the incident state |ϕ〉 and
the scattered state, i.e., |ψ〉 = |ϕ〉 + Ĝ0V̂ |ψ〉, where Ĝ0 =
[Ee(k) − Ĥ0 + iε]−1 is the Green’s function of the exciton
and ε stands for any positive infinitesimal. Projecting the
Lippmann-Schwinger equation onto 〈n| gives

ψ(n) = 1√
N

ϕk(n) + V0ψ(0)
∑

q

eiqn

E(k) − E(q) + iε
. (A1)

We find ψ(0) by letting n = 0 in this equation, and reduce
it to

ψ(n) = 1√
N

[
eikn + V0I1

1 − V0I2

]
, (A2)
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FIG. 8. Integration contour for various n and k.

where

I1 = 1

N

∑
q

eiqn

Ee(k) − Ee(q) + iε
,

I2 = 1

N

∑
q

1

Ee(k) − Ee(q) + iε
. (A3)

In [16] this expression was examined with parabolic
approximation for the dispersion of exciton, which is valid
at small k. Here we go beyond this approximation. Replacing
the sum by the integral assuming N → ∞,∑

q

→ N

2π

∫ π

−π

dq, (A4)

and writing Ee(k) = (E0 + 2J ) − 4J sin2(k/2), we get

I1 = 1

8πJ

∫ π

−π

dq eiqn

sin2(q/2) − sin2(k/2) − iJ ε
. (A5)

We are interested in the complex values of k = k′ + ik′′
[Re(k) = k′, Im(k) = k′′], as they provide poles of the scat-
tering amplitude corresponding to bound states. We choose
k′ = 0 or π to keep the exciton energy real. Then the integral
has no poles on the real axis and iJ ε can be omitted. The
function has two series of poles, q = ±k, one laying in the
upper and one in the lower half-plane. In each series the poles
are shifted with respect to each other by 2π . We choose the
integration contour as a rectangle, with one horizontal side
along the real axis segment [−π,π ], two vertical sides, and
the second horizontal line approaching +i∞ if n > 0 and
−i∞ if n < 0. These contours are shown in Fig. 8, along
with a pair of poles ±k with −π < k′ < π . If k′ = π , the
contour is shifted by π to the right, using the periodicity of
the integrand. The integrals along the right and left sides of
the rectangles cancel each other, and the integral along the top
side vanishes, and only one of the poles q = ±k always lays

within the contour. Considering four combinations of sgn(n)
and sgn(k′′), as shown in Fig. 8, we find that the result of
integration is

I1 =
⎧⎨
⎩

e−|k′′ ||n|
2J sinh |k′′| if k′ = 0,

− (−1)ne−|k′′ ||n|
2J sinh |k′′| if k′ = π,

(A6)

and I2 = I1 with n = 0.
Then (A2) can be written as

ψ(n) = 1√
N

[eikn + Re(k)eik|n|], (A7)

where the scattering amplitude Re(k) is

Re(k) =
{

V0
2J sinh |k′′|−V0

if k′ = 0,

− V0
2J sinh |k′′|+V0

if k′ = π.
(A8)

The poles of this scattering amplitude coincide with those
determined by (26) in the limit of large N . Again, as in Sec. III,
we note that it is the combination of signs of J and V0 that
determines which of these two cases is realized, as sinh |k′′|
is always positive. When J > 0 and V0 > 0, the only pole
in the reflection amplitude appears at k = i sinh−1(V0/2J ). It
corresponds to a single bound state marked by (i) in Fig. 1(a)
above an upper bound of the continuum spectrum with V0 >0.
The pole at k = π + i sinh−1(−V0/2J ) is realized when
V0 < 0, and corresponds to a bound state (ii) in Fig. 1(a)
below the lower bound. For J < 0, on the other hand, poles
at k = i sinh−1(V0/2J ) (iii) and k = π + i sinh−1(−V0/2J )
(iv) correspond, respectively, to a bound state below the lower
bound with V0 < 0 and above the upper bound with V0 > 0.

APPENDIX B: SOLVING LIPPMANN-SCHWINGER
EQUATION WITH METHOD OF CONTINUED FRACTIONS

In the method of continued fractions [36], the Lippmann-
Schwinger equation is solved by means of iterations. In the
first order,

|�K〉 ≈ |�K〉 + β
(0)
K Ĝ0V̂

β
(0)
K − γ

(1)
K

|�K〉, (B1)

where |�K〉 is a biexciton wave function without the impurity
(17), β

(0)
K = 〈�K |V̂ |�K〉, and γ

(1)
K = 〈�K |V̂ Ĝ0V̂ |�K〉.

We calculate γ
(1)
K as

γ
(1)
K =

∑
Q

|〈�K |V̂ |�Q〉|2
Eb(K) − Eb(Q) + iε

= ND

4πJ 2

∫ π/2

−π/2

dQ|〈�K |V̂ |�Q〉|2
sin2 Q − sin2 K + iεD

. (B2)

For complex K , this integral can be carried out by the same
method as in Appendix A for single exciton, with the result
(K̃ = K ′ + iK ′′),

γ
(1)
K̃

= iND|〈�K̃ |V̂ |�K̃〉|2
2J 2 sin 2K̃

, (B3)

and the matrix element of the potential is

〈�K̃ |V̂ |�K̃〉 = 4V0

N
S(K ′,|K ′′|), (B4)
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where

S(K ′,|K ′′|) =
N/2∑

s=−N/2+1

e−2|K ′′ |sφK ′−i|K ′′ |(s)φK ′+i|K ′′ |(s)

(B5)
is a real-valued function of K ′ and |K ′′|. The function
S(K ′,|K ′′|) multiplies V0, and reflects the averaging of the
δ potential by the wave function of biexciton’s relative
coordinate. Then the scattered state in (B1) has poles if

1 = 2iV0DS(K ′,|K ′′|)/J 2

sin(2K ′) cosh(2|K ′′|) + i cos(2K ′) sinh(2|K ′′|) . (B6)

This equality with real biexciton energy can be satisfied
when (a) K ′ = 0 or (b) K ′ = π/2. These two cases lead to
two types of poles, defined, respectively, by the following

equations:

K ′ = 0, S(0,|K ′′|) = J 2 sinh(2|K ′′|)
2V0D

,

K ′ = π

2
, S(π/2,|K ′′|) = −J 2 sinh(2|K ′′|)

2V0D
. (B7)

The first type of poles correspond to the poles marked as
(i),(iii) in Fig. 2(a) and the second to those marked as (ii)
and (iv). Again, which of the two poles can be realized is
determined by the signs of V0 and D (the latter determines the
signs of the effective mass of biexciton near K ∼ 0 and near
K ∼ π/2).

Then the projection of (B1) onto 〈r,s| can be written as

�K (r,s) ≈ �K (r,s) + Rb(K)�K (r,s), (B8)

where the scattering amplitude Rb(K) is

Rb(K) = 2iDV0S(K ′,|K ′′|)
J 2 sin 2(K ′ + i|K ′′|) − 2iDV0S(K ′,|K ′′|) . (B9)

[1] M. Arndt et al., Nat. Phys. 401, 680 (1999).
[2] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature (London)

413, 400 (2001).
[3] I. Pikovski, M. Zych, F. Costa, and Č. Brukner, Nat. Phys. 11,
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