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Understanding the collective dynamics in many-particle systems is of important significance in nonequilibrium
physics. In this paper, we systematically study the long-time behavior in stochastically driven interacting quantum
systems. We find that even though the stochastic forces will inevitably drive a system into a featureless steady
state, the asymptotic behavior to approach the steady state can be highly nontrivial and exhibits rich universal
dynamics due to the interplay between the stochastic driving and quantum many-body effects. Special attention
is devoted to the effect of the mode-coupling perturbations, which may have important consequence for the
long-time dynamics of the stochastically driven quantum many-body systems.

DOI: 10.1103/PhysRevB.96.054303

I. INTRODUCTION

Recently, nonequilibrium quantum many-body physics has
attracted considerable attention due to enormous progress in
ultracold atomic experiments [1], in which interacting quan-
tum systems can be driven out of thermodynamic equilibrium
by quenching [2–6], ramping [7], and periodic driving [8–10]
of Hamiltonian parameters, or by coupling the systems to
engineered [11–15] or thermal [16–22] baths and external
noise [23–30]. A complete understanding of the nonequi-
librium systems is an essential theoretical challenge, while
incorporating quantum many-body effects further complicates
the situation and gives rise to important novel phenomena;
e.g., a system subject to external driving forces can display
unexpected dynamical and steady properties absent in the
nondriven counterpart [31–39]. Up to now, most of the research
on driven quantum many-body systems has been devoted to
the periodically driven cases [40–46], while their stochastic
counterpart is much less studied. In spite of the fact that
stochastic driving of a quantum system will inevitably lead
to decoherence and heat the system towards an infinite-
temperature state, the way to approach this featureless steady
state can be highly nontrivial and the interplay between the
quantum many-body effect and stochastic driving may give
rise to rich dynamical behavior. Moreover, understanding
stochastically driven quantum (many-body) systems is not
only of high theoretical interest, but also of immense practical
significance due to the possible relations to the decoherence
problem in quantum simulation and information processing
[47].

Among the topics of great current interest in nonequilibrium
physics are the abnormal (nonexponential) relaxation dynam-
ics of a perturbed system: in certain types of many-particle
systems, the relaxation time can diverge and the resulting
power-law abnormal relaxation dynamics can be understood
as a collective behavior of independent system modes, each of
which decays with its own rate and at least for one mode
the relaxation rate vanishes. The situation is significantly
complicated in the presence of mode-coupling perturbations

(e.g., interactions), and understanding the complex relaxation
dynamics of interacting many-particle systems is of immense
significance in rapidly developing interdisciplinary fields
between physics, biology, and the social-economical sciences.
Even though this problem has been intensively studied by
analytic ( e.g., renormalization group analysis) and numerical
methods based on microscopic master equations or meso-
scopic Langevin-type representations in classical physics, our
understanding of the abnormal relaxation behavior in quantum
many-particle systems is still far from complete.

In this paper, we study the abnormal relaxation dynamics
of stochastically driven quantum many-body systems. Without
loss of generality, we choose one of the simplest stochastic
driving protocols: a telegraph-like driving where one of the
Hamiltonian parameters randomly jumps between two discrete
values during the time evolution. This type of noise has
recently been introduced in condensed matter physics to model
the noise effect on the intensively studied Majorana fermions
[47]. As we will show in the following, the results derived
from this specific example can also apply for more general
stochastic driving protocols. The goal in this paper is to
understand the statistical long-time behavior of many-body
quantum systems driven by a stochastic sequence of sudden
quenches (see Fig. 1), and its dependence on the specific form
of the Hamiltonian and various perturbations, especially the
interactions. In general, the Hamiltonian of quantum lattice
systems can be classified into two categories according to its
local Hilbert space being bounded or not, whose long-time
heating dynamics are fundamentally different from each other
(e.g., a system with unbounded local Hilbert space can
absorb energy indefinitely and thus the steady state is ill
defined). To provide a comprehensive understanding of the
stochastically driven interacting quantum systems, we study
two representative examples of quantum many-body Hamilto-
nians: a one-dimensional (1D) spinless fermionic model and
a two-dimensional (2D) bosonic quantum O(N ) model (see
Fig. 1), representing the Hamiltonian with locally bounded
and unbounded Hilbert space, respectively. By exploring the
long-time behavior in these concrete models, we have taken
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FIG. 1. Sketches of the two models studied in this paper. (a) A
1D spinless fermion model with fluctuating staggered potential and
(b) a 2D quantum O(N ) model with a fluctuating mass. The inset
is an example of a typical trajectory of the telegraph-like stochastic
driving parameter λ(t).

a first step towards understanding the stochastically driven
interacting quantum systems.

The paper is organized as follows: In Sec. II, we propose
a general method to deal with the quantum many-body
systems with telegraph-like stochastic driving, and discuss
its limitations. In Sec. III, we study a 1D spinless fermionic
model with a stochastically fluctuating staggered potential,
which exhibits algebraic relaxation dynamics. This algebraic
long-time behavior is then investigated in the broader context
of a more general system Hamiltonian (gapped or gapless)
and driving protocols (multicolored), and we provide general
criteria for its existence. We further examine the effect
of two typical mode-coupling perturbations—disorder and
interaction—and find that both of them have important
consequence for the long-time dynamics of the system. In
Sec. IV, we study a 2D quantum O(N ) model with a fluctuating
mass that drives the system crossing the phase boundary of the
equilibrium phase diagram. At least in the large-N limit, we
find that the interaction will significantly suppress the heating
dynamics and change the divergent behavior from exponential
to algebraic. Sections V and VI contain a discussion of possible
experimental realizations and an outlook.

II. MARGINAL DENSITY MATRIX METHOD

In this paper, we consider stochastically driven quantum
many-body systems in which one parameter λ(t) in the
Hamiltonian randomly jumps between two values λa and
λb with a transition rate κ during time evolution. For a
given trajectory of the parameter {λ(t)} (e.g., the inset of
Fig. 1), the system evolves unitarily with a time-dependent
Hamiltonian and can be described by the density matrix
ρ{λ(t)}(t). Since we are interested in the statistical long-time
behavior of this stochastically driven system near the steady
state (infinite-temperature state), we perform the ensemble
averages over all the stochastic trajectories. Our goal is to
derive an equation of motion (EOM) for the average density

matrix ρs(t) = 〈ρ{λ(t)}(t)〉s where the angular brackets 〈 〉s
denote the ensemble average over all stochastic trajectories.
To achieve this goal, we introduce the marginal density matrix
ρa(b)(t) in which the ensemble average is over those trajectories
satisfying λ(t) = λa(b):

ρa(b)(t) = 〈ρ(t)δ(λ(t) − λa(b))〉s . (1)

Obviously ρs(t) = ρa(t) + ρb(t). The average of physical
observables is defined as 〈Ô〉 = Tr(Ôρa) + Tr(Ôρb). The
marginal density matrix method was first introduced by Zoller
et al. in the context of quantum optics [48] and has recently
been introduced in condensed matter physics [47]. We can
prove (see Appendix A and Ref. [47]) that the EOM of the
marginal density matrix is described by the following master
equation:

dρa(t)

dt
= i[ρa,Ĥa] − κρa + κρb,

(2)
dρb(t)

dt
= i[ρb,Ĥb] + κρa − κρb,

where Ĥa(b) is the time-independent Hamiltonian for
λ(t) = λa(b), and κ is the transition rate. Assuming the
dimension of the Hilbert space of the system is N , we can
rewrite the N × N density matrix ρa(b) into an N2-dimensional
vector �ρa(b), and the master equation Eq. (2) turns to

d �ρs

dt
= L̂ �ρs (3)

in which �ρs = [ �ρa, �ρb]T is a 2N2-dimensional vector and L̂ is
the 2N2 × 2N2 Liouville superoperator defined in Eq. (2). For
a quadratic Hamiltonian with translational symmetry, we can
perform a Fourier transformation Ha(b) = ∑

k H
a(b)
k , and the

Liouville superoperator can be decomposed as L = ⊕
k Lk .

In general, the long-time behavior of the system is determined
by the spectrum (eigenvalues) of Lk . From Eq. (2), we can
find that the steady state is always a unit matrix irrespective
of the specific form of the Hamiltonian: ρs

a = ρs
b = 1̂/(2N),

corresponding to the infinite-temperature state. The above
method can be straightforwardly generalized to a more general
driving protocol with the controlling parameter fluctuating
between N discrete values, where the marginal density matrix
�ρs = [ �ρ1, . . . , �ρN ]T .

Before we proceed further to discuss specific examples,
we make some remarks about the method. Compared to the
conventional method of calculating unitary evolution for each
given trajectory and then doing the ensemble average, the
marginal density matrix method has the advantage of the
absence of stochasticity. The ensemble average has already
been performed implicitly in Eq. (2) with the price of the
Hilbert space being significantly enlarged from N to 2N2.
For a fermionic or bosonic quadratic Hamiltonian, the EOM
of the system can be reduced to that of the single-particle
correlation functions taking advantage of Wick’s theorem;
thus the dimension of the reduced EOM is proportional to the
system size L. However, for a genuine interacting quantum
many-body system N ∼ O(eL); thus it is not convenient to
directly solve Eq. (2) for large systems.
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FIG. 2. The spectrum of the (noninteracting) Liouville superop-
erator Lk with parameters δ = J , κ = J .

III. ONE-DIMENSIONAL SPINLESS FERMION

A. Algebraic long-time dynamics: A collective behavior
of independent momentum modes

The first model we consider is a 1D spinless fermionic
model with a stochastically fluctuating staggered potential
with the Hamiltonian H = H0 + H ′, where H0 is the Hamil-
tonian of the noninteracting fermions with stochastic driving:

H0 =
∑
i,σ

−J (c†i ci+1 + H.c.) −
∑

i

λ(t)(−1)ini . (4)

c
†
i (ci) is the creation (annihilation) operator of the spinless

fermion and ni = c
†
i ci is the local density operator. λ(t)

stochastically jumps between λa = δ and λb = −δ with jump
rate κ . H ′ represents different kinds of perturbations that will
be explicitly analyzed below. We assume that initially the
system is in the ground state of Ha , and focus on the population
imbalance P (t) = ∑

i(−1)ini/L (L is the number of lattice
sites). As we analyzed above, the infinite-T state always plays
the role of an attractor during the time evolution, and we will
explore the relaxation dynamics towards this fixed point.

We first consider the unperturbed case (H ′ = 0), where
the translationally invariant system without interaction is best
treated in a Fourier-transformed picture as a collection of
independent momentum (k) modes (−π/2 < k < π/2; we
take the lattice constant to be 1). In the long-time limit, each k

mode will decay exponentially with time ∼ e−�kt , where �k is
the gap of Lk (the absolute value of the second largest real part
of the eigenvalues of Lk), which vanishes at kc = π/2, and can
be expanded around kc as �k = α(δk)2 with δk = k − kc (the
first order of δk vanishes for symmetry reason), as shown in
Fig. 2. The dynamics of physical observables results from
the collective behavior of all k modes, and the long-time
asymptotic behavior is determined by the long-lived modes
(k modes near the gapless point):

P (t) ∼
∫ ∞

0
d δk e−αδk2t ∼ t−1/2. (5)

This agrees with our numerical results shown in Fig. 3(a), that
the long-time behavior of P (t) always decays algebraically

with time: P (t) ∼ t−η, with a universal exponent η = 1/2
independent of the system parameters.

In the following, we will investigate this algebraic relax-
ation dynamics in a broader context to demonstrate that it
is not an artifact of a specific Hamiltonian with a peculiar
driving protocol. We first examine a more general driving
protocol where λ(t) is randomly fluctuating between N
discrete values: λi = λ − (i − 1)�λ with i = 1, . . . ,N and
�λ = 2λ/(N − 1). Without loss of generality, we assume that
the jump process can only occur between adjacent values of
{λi} (e.g., λi → λi+1 or λi−1) with a transition rate κ/2. In
the limit of N → ∞, λ(t) can take any continuous value in
the region [−λ,λ] during its random-walk dynamics, which
represents a typical colorful noise. From Fig. 3(b), we find
that the long-time behavior is qualitatively the same as
that in the telegraph noise. Second, we keep the telegraph
driving protocols but change the system Hamiltonian. It is
well known that the ground state and low-energy excited
state properties of a gapped and gapless Hamiltonian are
significantly different from each other; it is interesting to ask
whether the Hamiltonian gap has an important consequence
for the long-time dynamics of the stochastically driven system.
To examine the role of the Hamiltonian gap, we choose a 1D
Kitaev chain as our system Hamiltonian:

H0 =
∑

i

(−Jc
†
i ci+1 − �c

†
i c

†
i+1 + H.c.) −

∑
i

μni + H (t),

(6)

where H (t) = ∑
i λ(t)(−1)ini represents the same stochastic

driving protocol. For simplicity in the following discussion,
we choose the paring term with the same amplitude with the
hopping: � = J in Eq. (6). Without the external driving, this
model exhibits two gapped (topological and nontopological)
phases in the ground state separated by a gapless critical point
at μ = 2J . As shown in Fig. 3(c), the Hamiltonian gap does not
have important consequence on the long-time relaxation dy-
namics, which always decay algebraically no matter whether
the system is in the topological trivial/nontrivial phases or at
the critical point. This result also holds for a different driving
protocol with H (t) = ∑

i λ(t)ni .
Since the algebraic long-time dynamics is so common

in stochastically driven quantum (noninteracting) many-body
systems, irrespective of the specific driving protocols and the
gap/gapless feature of the system Hamiltonian, it is interesting
to explore the physics behind it and its universality. Physically,
this algebraic decay can be understood as a collective behavior
of independent k modes, and at least one of them is immune
to the stochastic driving and thus its relaxation rate vanishes.
Mathematically, this universality is related to the absence of a
gap in the spectrum of L as well as the continuity of �k around
the gapless point. It is a highly nontrivial question to determine
whether a general Liouville superoperator as defined in Eq. (3)
is gapped or gapless; there is no general answer. However,
for a fermionic system with a quadratic Hamiltonian, we can
propose a sufficient condition for the existence of a gapless
Liouville superoperator. We take the translationally invariant
system as an example, and the results can be easily generalized
to other quadratic Hamiltonians. For a translationally invariant
system, the Hamiltonian can be decoupled into an independent
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FIG. 3. (a) Time evolution of P (t) for the noninteracting case with δ = 2J and different κ (the inset is the dynamics of both the diagonal
and off-diagonal correlation functions). (b) Dynamics of P (t) with a N -state random walk driving protocols. (c) Time evolution for the Kitaev
chain model with stochastic driving in different phases with parameters δ = 0.5J , κ = 2J and the perfect CDW state as the initial state.
(d) Static disorder [the inset is the finite-size scaling of the Liouville gap �L for the noninteracting case, which is obtained by fitting the
long-time behavior using the exponential function P (t) ∼ e−�Lt ]. Finite-size effect on the dynamics of P (t) for (e) the noninteracting case
(the inset is the finite-size scaling of �L in the presence of strong interaction V = 2J ) and (f) the weak-interacting case (V = 0.2J ) (the inset
is the extrapolated results for the dynamics in the thermodynamics limit with weak interactions). In both cases open boundary conditions are
chosen and the dashed lines are the extrapolated results for the dynamics in thermodynamic limit. For (b) and (d)–(f), we choose the parameters
δ = 2J , κ = 2J .

k mode: H = ∑
k C†

kĤ (k)Ck , in which the Hamiltonian of
each k mode Ĥk can be decomposed into two parts Ĥ (k) =
Ĥ1(k) + λ(t)Ĥ2(k) with Ĥ1(k) corresponding to the nondriven
part of the Hamiltonian, and λ(t)Ĥ2(k) corresponding to the
external driving which can be telegraph or of other types. If
there exists a k mode at k = kc satisfying [Ĥ1(kc),Ĥ2(kc)] = 0,
then the eigenstates of Ĥ1(kc) will be immune to the external
driving; in other words, at least one nontrivial steady state
other than the infinite-temperature one exists at kc and this
degeneracy and the analyticity of �k around kc guarantee that
the gap of the Liouville superoperator closes at k = kc. In
the spinless fermion case, Ĥ1(kc = π/2) = 0 thus satisfies the
conditions. Finally, it is natural to ask whether it is possible
to find a long-time behavior different from this algebraic
scenario. In Appendix C, we propose a spinful fermion model,
which exhibits a dynamical phase transition from an algebraic
to exponential long-time relaxation behavior by tuning the
Hamiltonian parameters.

B. Effect of mode-coupling perturbations

As analyzed above, the algebraic long-time dynamics in
the stochastically driven quantum many-body system is a
collective behavior of independent k modes. One of the
most important questions is how robust the behavior is
against perturbations, especially those terms inducing coupling
between different modes. In the presence of the mode-coupling
perturbations, each mode no longer evolves independently

and the genuine many-body effect can significantly change
the long-time behavior and give rise to interesting relaxation
dynamics. In the context of nonequilibrium physics of quantum
quenches, this problem has been analyzed with the Keldysh
technique and renormalization analysis [49,50], and it has been
discovered that even those mode-coupling terms irrelevant in
equilibrium can have significant consequence on the steady
state and the long-time relaxation dynamics. Understanding
the effect of the mode-coupling perturbation on the long-
time dynamics of stochastically driven quantum many-body
systems is the main purpose of this paper.

In classic physics, these nonequilibrium dynamics of inter-
acting many-particle systems have been intensively studied
using the Boltzmann equations. In some special situations
(e.g., near the phase transition point [51–53]), the renormaliza-
tion group analysis provides a useful method in determining
whether a perturbation is relevant or not for the long-time
dynamics. However, due to the intrinsic difficulty of the
strongly correlated quantum physics, there is no universal
method to study their long-time dynamics. In certain quantum
many-body systems with strong decoherence, the off-diagonal
terms of the density matrix nearly vanish after long-time evolu-
tion, and the dynamics near the steady state could be reduced to
effective classic rate equations of the diagonal density matrix
elements [25,26]. This quasiclassic approximation, as we will
illustrate in the following, does not apply for our cases, where
we can find that off-diagonal terms of the density matrix are
not neglectable and that the dynamics of the systems are
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essentially quantum instead of classic even near the steady
state.

In the following, we study two typical mode-coupling
mechanisms: disorder and interaction. In the presence of static
disorder, the translational invariance is broken and a particle
initially in one k mode can be scattered into another, which
corresponds to a first-order mode-coupling mechanism, while
in an interacting system, the two-particle scattering process
introduces a second-order mode-coupling mechanism with
momentum and energy conservations.

Effect of static disorder. Now we study the effect of
static disorder on the long-time behavior of this stochastically
driven system; H ′ = ∑

i Vini , where Vi represents static
disorder sampled from a uniform random distribution with
Vi ∈ [−�,�]. From Fig. 3(d), we find that even weak disorder
(� 
 J ) will qualitatively change the long-time behavior of
the system from an algebraic decay to a stretched exponential
decay:

P (t) ∼ exp(−αtβ), (7)

where 0 < β < 1 is a nonuniversal parameter which depends
on the parameters in the Hamiltonian. These unconven-
tional relaxation dynamics were first discovered in 1847
by Kohlrausch, and have been observed in various systems
such as molecular [54] and spin [55] glasses and dissipative
interacting quantum systems [56–60]. Up to now, considerable
theoretical effort has been devoted to understanding the origin
of the stretched exponential decay [61–63]. For the system
considered above, we can propose a simple understanding
of the unconventional relaxation dynamics by considering an
extreme situation, where Vi can only take two discrete values
0 and ∞ with the probability p and 1 − p (0 < p < 1). In
this case, the system turns to a site-diluted model composed
of open chains (clusters) with different lengths. Notice that for
a cluster with length l, its relaxation time τl ∼ l2 [as shown
in the inset of Fig. 3(d)]; therefore the long clusters dominate
the long-time dynamics of the system. On the other hand,
in a site-diluted chain, the appearance of the long clusters
is a rare event with a probability exponentially decaying
with length l: Wl = pl = e(ln p)l . Under these approximations,
the long-time behavior of the system can be obtained as
P (t) ∼ ∫

dl Wl l e
−t/τl = ∫

dl l e
−(c′l+ ct

l2
), where c′ = − ln p.

For large t , this integral can be evaluated in the saddle-point
approximation, and we obtain P (t) ∼ exp[−c̃t

1
3 ].

Effect of interaction. In all the cases studied previously, the
Hamiltonians are of quadratic form. Hence, the information on
the system can be obtained from the single-particle correlation
functions. To investigate the dynamics of a genuine interacting
quantum many-body system, we consider the perturbation
H ′ = ∑

i V nini+1 representing nearest-neighboring (NN) in-
teractions between the spinless fermions. As pointed out
previously, for this interacting case, the dimension of the EOM
in Eq. (2) grows fast with the system size 2N2 ∼ O(e2L).
This makes it impractical for large systems. An alternative
method is to calculate the unitary evolution for each given
stochastic trajectory and then explicitly perform the ensemble
average over a sufficiently large number of trajectories. The
dimension of the EOM in the unitary evolution method
(UEM) N ∼ O(eL), even though much smaller than that in the

marginal density matrix method (MDMM), is still exponential
in lattice site. To extrapolate the long-time behavior of an
interacting quantum system in the thermodynamic limit based
on the finite-size results, we need to carefully study the role of
finite-size effects.

To gain some insight into the finite-size effects, we first
focus on the noninteracting case. From Fig. 3(e) we find that
for a finite-size system the time evolution can be divided
into three regimes by two time scales T1 and T2: the short-
term dynamics (t < T1) is characterized by the coherence
oscillations and depends on the initial state; once the initial
state information is lost, the systems enter the intermediate
regime (T1 < t < T2) exhibiting a power-law behavior. Since
any finite system has a nonzero Liouville gap, the finite-size
effect will dominate the long-term evolution (t > T2) and
lead to an exponential decay with time. From Fig. 3(e) we
find that the time scale T1 is insensitive to the system size
L, while T2 monotonically increases with L. Therefore, we
expect that in the thermodynamic limit L → ∞, the long-
term exponential dynamics will give way to the intermediate
algebraic dynamics, which represents the long-time behavior
of the system. This tendency can be seen clearly even for small
systems (L � 16).

For interacting systems, we expect that the above dynamical
structure of the time evolution still holds at least for weak
interactions V 
 J , which allows us to extract the long-
time behavior from the intermediate dynamics of finite-size
systems. The dynamics of P (t) in the presence of a weak in-
teraction is shown in Fig. 3(f), where we find that the structure
of the dynamic behavior is similar to that of the noninteracting
case. However, the exponent of the power-law decay in the
intermediate region is changed by the interaction to P (t) ∼ t−β

with β > 0.5, which reminds us of the algebraic correlation
functions in the Luttinger liquid whose power-law exponents
are also renormalized by interaction [64]. Recently, similar
anomalous power law dynamics have also been observed
in the many-body localization systems [65]. The finite-size
scaling indicates that, similarly to the noninteracting case, this
intermediate algebraic regime with a renormalized exponent
can also be extrapolated to infinite time in the thermodynamic
limit. A physical picture is that the interaction makes the
momentum modes no longer independent of each other, and
the scattering between them leads to transitions between the
fast and slow modes, and thus makes the decay faster than
that in the noninteracting case. Recently, a similar dynamical
behavior has been observed in the relaxation dynamics of
many-body localized systems [66,67]. For strong interactions,
the dynamical structure is complex and does not resemble
the noninteracting case; thus to extract the long-time behavior
requires larger systems, which is beyond the capability of the
current method. The only information we can obtain about the
strongly interacting case is that the finite-size scaling [inset of
Fig. 3(e)] indicates that the Liouville gap vanishes in the ther-
modynamic limit as �L ∝ 1/L2, which precludes the possibil-
ity of exponential decay for L → ∞ in the long-time behavior.

C. Discussion

At the end of this section, we add some remarks. First, we
shall compare our results of the stochastically driven systems
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with those in their periodical counterparts, where the periodic
driving may either drive the system to time-periodic regimes
synchronous [40] or asynchronous [43] with the driving, or
heat the system to an infinite-temperature state [41] after an
extraordinarily long time, and the asymptotic dynamics depend
on many details of the systems [40–44]. For the stochastic
cases, the external driving will heat and drive the system
into the “long-time” asymptotic regime after a relatively
short time T1 ∼ O(J−1). Due to the ensemble average, the
stochastic driving facilitates the stabilization of the system
into a universal dynamical regime, which enables us to study
the dynamical universality. Second, since stochastic driving
causes decoherence, one might expect that the off-diagonal
terms of the density matrix vanish after long-time evolution,
and all the previously studied dynamics near the steady state
could be reduced to a classic rate equation of the diagonal
matrix elements. Thus, the dynamics would be essentially
classic. To clarify this point, we calculate the dynamics of one
of the off-site correlations C2(t) = 〈c†i ci+2〉 as a representative
of the off-diagonal elements of the density matrix, and compare
it to that of the typical diagonal one P (t). As shown in the
inset of Fig. 3(b), C2(t) ∼ t−0.5 decays as slowly as P (t),
which indicates that even near the infinite-temperature state,
the quantum fluctuations still play an important role and the
dynamics are not classical.

IV. QUANTUM O(N) MODEL IN THE LARGE-N LIMIT

In the last section, we studied an example with a locally
bounded Hilbert space, where the infinite temperature state
is well defined (the unit matrix in the Hilbert space) and
all physical observables will converge eventually. However,
for systems with a locally unbounded Hilbert space, the
stochastic driving force can infinitely heat the systems and
the physical observables will diverge with time. Hence, we
expect that the long-time behavior will be fundamentally
different from the previously studied cases. As an example,
we consider a quantum O(N ) model in the large-N limit,
which provides a paradigm to understand symmetry breaking
in statistical mechanics, and both its equilibrium properties
and unitary dynamics can be solved exactly in different
dimensions. More precisely, we study a 2D quantum O(N )
model with a fluctuating mass that drives the system across
the phase boundary of the equilibrium phase diagram. Taking
the advantage of infinite N , the Hamiltonian of the interacting
quantum system can be reduced to a quadratic form with a
time-dependent parameter that is self-consistently determined
during the time evolution, which allows us to study the
dynamics of these genuine interacting quantum many-body
systems, e.g., the quantum quench [68] and periodically driven
[43] problems.

The Hamiltonian of a quantum O(N ) model with a
fluctuating mass reads

H =
∫

ddx
| �π (x)|2

2
+ |∇ �φ(x)|2

2
+ r(t)

2
| �φ(x)|2

+ U

4N
[| �φ(x)|2]2, (8)

where �φ(x) = [φ1(x), . . . ,φN (x)] are N -component real vector
field operators and | �φ(x)|2 = ∑

i φ
2
i (x). �π(x) are conjugate

field operators of �φ(x) that satisfy the commutation relation
[φi(x),πj (x′)] = δij δ(x − x′). r(t) is a time-dependent mass
term. It randomly jumps between two values ra and rb with
the transition rate κ . For d � 2, the equilibrium critical point
between ferromagnetic and paramagnetic phases is identified
by the condition rc = −U

4

∫
k

1
k2 (from now on we define

∫
k

=∫ � dd k
(2π)d with � the ultraviolet cutoff in momentum space).

Paramagnetic case. We first discuss the case where the
initial state is prepared in the paramagnetic region, where the
O(N ) symmetry is preserved during the time evolution.
The interaction terms can be decoupled by introducing the
auxiliary field ρ(x,t) as

e− U
4N

[| �φ(x)|2]2 =
∫

D[ρ]e−i U
2 ρ(x,t)| �φ(x)|2− UN

4 ρ2(x,t). (9)

For N → ∞, the fluctuations are suppressed by the large-
N effect, and the auxiliary field ρ(x,t) can be replaced
by its saddle point value ρ(x,t) = −if (t) with f (t) =∫

ddx〈| �φ(x)|2〉/N [69]. Performing the Fourier transformation
φi(x) = ∫

k
eik·xφi(k) and introducing the ladder operators a

and a† [70] by φ(k) = 1√
2
(ak + a

†
−k), π (k) = i√

2
(a†

−k − ak),

where [ak,a
†
k′ ] = (2π )dδ(k − k′), the Hamiltonian turns into

H =
∫

k

1 + δ
2

2
(a†

kak + a−ka
†
−k) + δ

4
(a†

ka
†
−k + a−kak), (10)

where δ = r(t) + k2 + Uf (t) − 1. In the following, we will
focus on the self-consistent field f (t) = ∫

k
fk(t) where

fk(t) = 〈φ(k)φ(−k)〉. To study the time evolution of f (t),
we introduce the vector representation of the bosonic corre-
lation functions �Gk = [〈a†

kak〉,〈a†
ka

†
−k〉,〈a−kak〉,〈a−ka

†
−k〉]T .

As previously analyzed, �Gk = �Ga
k + �Gb

k where �Ga(b)
k is the

correlation function corresponding to the marginal density
matrix ρa(b) with the EOM

d

dt

[ �Ga
k

�Gb
k

]
= Lk[f (t)]

[ �Ga
k

�Gb
k

]

=
[
�̂a

k − κ 1̂ κ 1̂
κ 1̂ �̂b

k − κ 1̂

][ �Ga
k

�Gb
k

]
, (11)

where 1̂ is the unit matrix with dimension 4 and

�̂
a(b)
k =

⎡
⎢⎢⎢⎢⎣

0 − i
2δ

a(b)
k

i
2δ

a(b)
k 0

i
2δ

a(b)
k i

(
2 + δ

a(b)
k

)
0 i

2δ
a(b)
k

− i
2δ

a(b)
k 0 −i

(
2 + δ

a(b)
k

) − i
2δ

a(b)
k

0 − i
2δ

a(b)
k

i
2δ

a(b)
k 0

⎤
⎥⎥⎥⎥⎦,

(12)

in which δ
a(b)
k = ra(b) + k2 + Uf (t) − 1 can be determined

self-consistently during the time evolution.
Ferromagnetic case. If we start from the ground state in

the ferromagnetic region, the O(N ) symmetry has already
spontaneously been broken from the beginning. Without loss
of generality, we assume that symmetry is broken along the
1-direction in order parameter space, thus φ1(x) contains a
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FIG. 4. (a) Time evolution of f (t) for the noninteracting case with parameters ra = −rb = 0.5 (the inset is the gap of the instantaneous
Liouville superoperator Lk[f (t)] as a function of Uf (t) in the limit Uf (t) 
 ra(b)). (b) The dynamics of f (t) starting from the paramagnetic
initial state with different U and ra = −rb = 0.5, κ = 1 [the inset is the long-time dynamics of ḟ (t)]. (c) The dynamics of f (t) starting from
the ferromagnetic initial state with U = 3, ra = −1.5, rb = −0.5, and κ = 1 [the inset is the dynamics of the magnetization m(t)], for (a)–(c)
� = 5.

finite uniform magnetization m(t) = 〈φ1(x)〉/√N , and the
field φ(k) can be expressed in terms of ladder operators
as φi(k) = 1√

2
(ak + a

†
−k) + δi1φ0(t) with φ0(t) = √

Nm(t)
[70]. The corresponding self-consistent Hamiltonian takes
the same form as that of the paramagnetic case Eq. (10),
with the only difference that the δ(t) in Eq. (10) is replaced
by δ̃(t) = r(t) + k2 + U [f̃ (t) + m2(t)] − 1, where f̃ (t) =∫

ddx
∑N

i=2
1
N

〈φ2
i (x)〉. The EOM of the correlation functions

are similar to the paramagnetic case Eq. (11), with δ
a(b)
k

replaced by δ̃
a(b)
k = ra(b) + k2 + U [f̃ (t) + m2(t)] − 1, and the

EOM for the magnetization m(t) can be obtained from that for
φ

a(b)
0 :

d

dt

⎡
⎢⎢⎢⎣

〈
φa

0

〉〈
πa

0

〉〈
φb

0

〉〈
πb

0

〉

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−κ 1 κ 0

−δ̃a
0 −κ 0 κ

κ 0 −κ 1

0 κ −δ̃b
0 −κ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

〈φa
0 〉〈

πa
0

〉〈
φb

0

〉〈
πb

0

〉

⎤
⎥⎥⎥⎦, (13)

where
√

Nm(t) = 〈φ0〉 = 〈φa
0 〉 + 〈φb

0 〉.
Results. We first focus on the noninteracting case (U = 0),

as shown in Fig. 4(a). This bosonic system with a locally
unbounded Hilbert space will absorb energy indefinitely,
which leads to exponentially divergent dynamics due to the
parametric resonance between the external driving and the se-
lected momentum modes of the Hamiltonian. Mathematically,
the exponential divergence indicates a positive branch in the
spectrum of the Liouville superoperatorLk defined in Eq. (11),
as shown in the inset of Fig. 4(a). In the presence of interaction
(U > 0), we find that even though the dynamics are still
divergent with time, the interaction will fundamentally change
the divergence from an exponential to an algebraic one in
the long-time dynamics: f (t) ∼ tη, where again the exponent
η = 0.5 is universal and independent of the details of the
systems, e.g., the parameters in the Hamiltonian and external
driving, the strength of the interaction, as well as the choices
of the initial state, as shown in Figs. 4(b) and 4(c). Physically,
this means that in the quantum O(N ) model in the large-N
limit, the (repulsive) interaction will significantly suppress the
driving-induced heating dynamics through a nonlinear effect:
the divergence of f (t) will increase the effective mass of the
system which makes the system less and less sensitive to the

external driving. Mathematically, the EOM of each k mode is
determined by �k:

dfk(t)/dt = �k[f (t)]fk(t), (14)

where the gap �k is the real part of the positive eigenvalue
of the instantaneous Liouville superoperator Lk[f (t)] defined
in Eq. (11). Different modes are coupled through the relation
f (t) = ∫

k
fk(t). Since f (t) diverges with time, in the long-time

limit we have Uf (t) 
 ra(b) + �2 and δ
a(b)
k ≈ Uf (t) ± δr ,

where δr = (ra − rb)/2 
 Uf (t). In this limit, we numeri-
cally calculate the gap of the instantaneous Liouville super-
operator [see the inset of Fig. 4(a)], and find the asymptotic
relation between the gap and f (t): �k[f (t)] ∝ 1/[Uf (t)]2.
Hence, we can obtain the EOM of f (t) in the long-time limit
as

df (t)/dt ∝ 1/[U 2f (t)] (15)

with the asymptotic solution f (t) ∼ t
1
2 for t → ∞. For the

ferromagnetic case, we can find that in the long-time limit, the
spontaneous magnetization is destroyed by external stochastic
driving; m(t) → 0 as shown in the inset of Fig. 4(c). Therefore,
the long-time behavior if we start from a ferromagnetic
initial state is qualitatively the same as if starting from the
paramagnetic case.

V. EXPERIMENTAL REALIZATION

In this section, we will briefly discuss the possible exper-
imental realization of the above two models as well as the
consequence of the imperfection in the realistic experimental
systems. The 1D spinless fermionic model with a stochasti-
cally fluctuating staggered potential can be realized by loading
ultracold fermions (or hard-core bosons) into a quasi-1D
optical superlattice potential, which can be implemented by
overlaying two commensurate lattices generated by lasers at
the wavelengths of λ and 2λ. The telegraph-like stochastic
driving can be artificially introduced in a controlled way by
programmable tuning of the relative strength of the two laser
beams during the time evolution. In Sec. III, we focus on
the population imbalance between the two sublattices, which
can be measured directly by employing a band-mapping and
imaging technique [5,71]. In the optical lattice, the Kitaev
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chain discussed in Sec. III can be implemented by employing
a Raman-induced dissociation technique and immersing the
system into an atomic BCS reservoir formed by Feshbach
molecules [72–74]. The static disorder has been created opti-
cally by using speckle patterns [75], and the NN interactions
naturally exist in magnetic dipolar atomic systems in optical
lattices. In recent experiments with erbium atoms [76], it was
measured that the strength of the NN interaction (V/h̄ � 30 Hz
for a lattice constant a0 = 266 nm) is of the same order of
magnitude as that of the single-particle hopping amplitude
(J/h̄ � 30 ∼ 100 Hz depending on the lattice depths). The
parameters encountered in the experiment typically meet the
parameter regime studied previously.

In realistic systems, the experimental imperfection will
make the system deviate from the ideal case we studied above
and now we discuss their effect on the long-time behavior. One
of the most important imperfection in optical lattice system is
the nonhomogeneous external potential due to the external
trap, which breaks the translational symmetry and couples
different k modes via a single-particle scattering process
similar with the disorder case; thus it may have important
consequence for the long-time dynamics. In Appendix D, we
numerically analyze this problem and find that the harmonic
trap will induce a faster power-law decay t−η, where the
exponent η = 2 independently of the strength of the harmonic
trap. Even though the harmonic trap qualitatively changes the
long-time dynamics, as we show in Appendix D, the diffusive
long-time behavior t−0.5 in the ideal case can still be observed
in a potential of an optical box trap [77].

The second imperfection we discuss here is the interband
coupling: in the realistic systems the stochastic driving will
continuously heat the system and pump the particle to the
higher orbital bands after sufficiently long time, which makes
the single-band approximation invalid. However, as long as the
band gap � is large enough, the effective interband coupling
is suppressed by the band gap via a second-order perturbation
process (Jeff ∼ J ′2/� with J ′ the interband coupling), and
its effect can be observed on a long time scale t > 1/Jeff .
Therefore, the “long-time” behavior defined in the ideal case
can be considered as an intermediate time region 1/J 
 t 

1/Jeff in a realistic experimental system with large band gap.
Another common perturbation in the optical lattice setup is
the noise, which is inevitable due to the impurity of the
laser beams. In the Appendix D, we show that the white
noise will not qualitatively change the long-time behavior
of the stochastically driven model. Finally we discuss the
finite-temperature effect. Even though temperature is not well
defined during the nonequilibrium dynamics, it can indeed
affect the preparation of the initial state. However, throughout
this paper, we focus on the long-time behavior of the system,
where the initial state information has been washed out by the
external driving; thus finite-temperature effects are irrelevant
for our results.

The connection between the discussion in Sec. IV and
realistic experimental systems is subtle, since any realistic
system has an upper bound of the locally Hilbert space.
However, for those systems with a sufficient large local
Hilbert space, e.g., the multicomponent Bose-Hubbard model
with a large component number and high filling factors, we
conjecture that the long-time behavior discussed in Sec. IV can

capture the correct intermediate-time dynamics during which
the information of the initial state has been lost but the energy
of the system is still far from its upper bound, because during
this time period the system can absorb energy “infinitely”
without feeling the restriction imposed by the upper bound of
the local Hilbert space.

VI. CONCLUSION AND OUTLOOK

In this paper, we study the long-time behavior of stochas-
tically driven quantum many-body systems based on two
representative examples, and special attention is devoted to the
effect of the mode-coupling terms, especially the interactions.
As a conclusion of this paper, we wish to emphasize some
connections and differences of our results with other relevant
ones and provide an outlook. First, even though many of
the phenomena we observed above have analogs in classic
physics (e.g., the power-law behavior t−1/2 corresponds to
the classic diffusive dynamics), we should emphasize that our
system is essentially quantum instead of classic even near the
infinite-temperature state. However, this fact does not preclude
the possibility of a more universal physical origin behind
these phenomena, independently of the quantum or classic
features of the systems, and is worthy of investigation in the
future. Moreover, the stochastically driven systems studied
above differ from another well-studied problem, quantum
many-body systems subject to white noise, in two aspects:
the external driving is spatially homogeneous instead of
site-dependent, and the correlation time of the stochastic
force is finite (1/κ) rather than zero. These differences give
rise to significant consequences; e.g., it is known that for a
1D XXZ model subject to white noise, the U (1) symmetry-
breaking term is a relevant perturbation for the long-time
behavior while the NN interaction is not [26], which is exactly
the opposite of our observation in the stochastic driving
cases.

By considering specific examples, we have taken the
first step towards characterizing the long-time dynamics
of stochastically driven interacting quantum systems, but a
comprehensive understanding of this problem is far from
achieved. Some avenues for further work immediately suggest
themselves. The first and most important question is the
generality of the above results. Even though we have tried
to generalize our results as much as we could by choosing
various representative system Hamiltonians, driving protocols,
and mode-coupling mechanisms, there is no guarantee that
the above results can hold for any stochastically driven
quantum many-body systems. A systematic answer to this
question requires us to treat the infinite-temperature state
as a fixed point and develop an effective nonequilibrium
field theory to characterize the dynamics towards the fixed
point, and determine the relevancy of various perturbations
through a controllable renormalization group analysis, which
is beyond the scope of this work and will be left for the
future. From the numerical point of view, to approach the
long-time behavior for a large system, it would be important to
develop efficient numerical methods based, e.g., on the density
matrix renormalization group (DMRG) technique [78,79] to
directly solve the master equation (2) instead of doing the
ensemble average over all the stochastic trajectories. Another
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important factor we have not considered in this paper is the
dissipation, which is inevitable for almost all the quantum
systems. The dissipation will balance the energy intake from
the stochastic driving, and thus can lead to a nontrivial steady
state other than the infinite-temperature state we studied above.
However, for a system with sufficiently weak dissipation (e.g.,
a well-isolated optical lattice system), we may expect that
the “long-time” behavior we studied in the dissipationless
case actually corresponds to an intermediate-time region
(1/J 
 t 
 1/γ with γ the dissipation strength) which is
long enough for the stochastic driving to wash out the initial
state information, but sufficiently short compared to the time
scale after which the dissipation will take over the evolutions.
However, for a system whose dissipation is compatible with
the energy scale in the system Hamiltonian [γ ∼ O(J )], both
the steady state and the long-time dynamics may be much more
complex and such a driven-dissipative system (e.g., Ref. [80]),
even though beyond the scope of this work, is one of the most
important avenues for further studies.
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APPENDIX A: DERIVATION OF THE EOM OF
THE MARGINAL DENSITY MATRIX

In this Appendix we will derive the EOM of the marginal
density matrix [Eq. (1) in the paper]. To do that, we first
discretize the time axis (from t0 to tn) into small slices
of size dt = (tn − t0)/n, and we denote tk = t0 + kdt with
k an integer from 0 to n. For n → ∞, we can assume
that the jump of the parameter λ can only take place at
the discrete time tk . We further denote {λn} = {λ1 · · · λn−1}
as a trajectory of the fluctuating parameter λ(t), which
satisfies λ(tk) = λk for k = 0, . . . ,n − 1 and λk = λa or λb.
For a given trajectory {λn}, we can define its probabil-
ity P{λn} = P (λ(tn−1) = λn−1,tn−1; . . . ; λ(t0) = λ0,t0), and the
density matrix at tn following this trajectory as ρ{λn}(tn) =
U{λn}ρ(t0)U−1

{λn}, with the corresponding unitary evolution op-

erators: U{λn} = eidtHλn−1 · · · eidtHλ0 . With these definitions, we
obtain the density matrix after the ensemble average of all the
trajectories:

ρs(tn) =
∑
{λn}

P{λn}ρ{λn}(tn). (A1)

The corresponding marginal density matrix ρa(b)(tn) =
〈ρ(tn)δ(λ(tn−1) = λa(b))〉 can be expressed as

ρa(tn) =
∑
{λn−1}

P (λa,tn−1|λn−2,tn−2)P{λn−1}

× eidtHaρ{λn−1}(tn−1)e−idtHa , (A2)

where P (λa,tn−1|λn−2,tn−2) denotes the conditional probabil-
ity of the case that λ(tn−1) takes the value of λa if λ(tn−2) =
λn−2. To express ρa(tn) in terms of ρa(tn−1) and ρb(tn−1), we
further expand the summation over λn−2 in Eq. (A2) and obtain

ρa(tn) = P (λa,tn−1|λa,tn−2)eidtHaρa(tn−1)e−idtHa

+P (λa,tn−1|λb,tn−2)eidtHaρb(tn−1)e−idtHa . (A3)

We use that in the time interval [tn,tn−1] the transition
probability for the parameter λ(t) is κdt , which indicates that
P (λa,tn−1|λa,tn−2) = 1 − κdt and P (λa,tn−1|λb,tn−2) = κdt .
In the limit of dt → 0, we can expand the right-hand side of
Eq. (A3) to the first order in dt and obtain

ρa(tn) − ρa(tn−1)

dt
= i[ρa(tn−1),Ha] − κρa(tn−1) + κρb(tn−1),

which reduces to the EOM of the marginal density matrix
ρa(t), Eq. (1) in the paper, in the limit dt → 0 [the EOM of
ρb(t) can be obtained similarly].

APPENDIX B: DETAILS OF NUMERICAL METHODS

In Sec. III, to study the time evolution of the system, we used
two methods: the marginal density matrix method (MDMM)
for small system sizes (L � 12) and the unitary evolution
method (UEM) for larger ones (L = 16). In this appendix,
we provide some details about these two methods, and check
the numerical convergence of the results. We also numerically
verify that the MDMM is equivalent to UEM for a sufficiently
large number of sampled trajectories.

Unitary evolution method. For a given trajectory, the time
evolution is unitary under a time-dependent Hamiltonian
H ({λ(t)}); thus at time t the wave function can be expressed
as

|�(t)〉 = T e−i
∫ t

0 H (λ(t ′))dt ′ |�(0)〉 =
∏
n

e−iHnδt |�(0)〉, (B1)

where T is the time ordering operator, δt = t/N is the
time interval, and Hn = H (λ(tn)) is the Hamiltonian at tn.
To calculate the time evolution, it is more convenient to
decompose the total Hamiltonian into pieces that act only on
odd bonds and even bonds,

Hn = Hn
even + Hn

odd, (B2)

where Hn
odd = ∑

i H
n
2i−1,2i and Hn

even = ∑
i H

n
2i,2i+1. All the

terms within the summation of Hodd or Heven commute with
each other. For each time step, the evolution operator can be
expanded in a second-order Suzuki-Trotter expansion:

e−iHnδt = e−iHn
evenδt/2e−iHn

oddδt e−iHn
evenδt/2 + O(δt3).
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FIG. 5. Convergence check of the dependence of results on (a) the time step δt in UEM with V = J , L = 16; (b) δt in the MDMM with
V = 0.2J , L = 12; and (c) the number of the sampled trajectories N in UEM with V = 0, L = 16. In (a)–(c) we choose δ = 2J , κ = 2J .

For each bond, we can decompose the Hamiltonian into the
diagonal and off-diagonal parts:

Hn
i,i+1 = Hd

i,i+1 + Ho
i,i+1, (B3)

where in our case Ho
i,i+1 = −J (c†i ci+1 + H.c.) and Hd

i,i+1 =
V nini+1 + λ(tn)

2 (−1)i(ni − ni+1). Thus for each bond the
evolution operator can be further decomposed as

e−iHn
i,i+1δt = e−iHd

i,i+1δt/2e−iHo
i,i+1δt e−iHd

i,i+1δt/2 + O(δt3),

where e−iHd
i,i+1δt/2 is a diagonal matrix, and e−iHo

i,i+1 only
operates on two adjacent sites i and i + 1. Hence, its operation
on the wave function can be easily performed without
explicitly calculating the matrix e−iHo

i,i+1 .
In our simulation of the L = 16 system using UEM, we

choose the time interval δt = 0.005J−1. Since the second
Trotter decomposition we used gives the errors of third order
of the time step δt , it is necessary to check the numerical
convergence of our results in the δt we used. To do this,
we choose the unitary evolution under one of the simplest
trajectories with only one flipping of the parameters at t = 0
(quantum quench problem). The convergence analysis is
shown in Fig. 5(a).

Marginal density matrix method. For small systems, we can
directly solve the EOM of the marginal density matrix Eq. (3),
which is a linear differential equation, using a fourth-order
Runge-Kutta method, whose accuracy also depends on the
time interval δt . In our simulation using MDMM, we choose
δt = 0.05J−1, and the convergence analysis is shown in
Fig. 5(b). Notice that the δt we choose in UEM is much
smaller than that in the MDMM. The reason is that in the
unitary evolution the error introduced by the finite δt in
the Trotter decomposition will accumulate during the time
evolution, and will eventually make the simulation inaccurate,
while in MDMM, the evolution is not unitary and it will
converge to a steady state. This convergence provides a
self-correction mechanism for the accumulated error in the
long-time evolution, thus allowing us to use larger δt .

Equivalence of the two methods. In the last section, we
provide an analytic proof of the equivalence between the
above two methods. Here, we will numerically verify that the
MDMM is equivalent to UEM for a sufficiently large number
of sampled trajectories (in our simulation of L = 16 using
UEM, we choose N = 105). As shown in Fig. 5(c), the results
of UEM will converge to that of MDMM with increasing

number of sampled trajectories (N ), and for N ∼ 105, the
results of the two methods almost coincide.

APPENDIX C: SIGNIFICANT OTHERS

In this Appendix, we consider another stochastically driven
fermionic model, which exhibits a dynamical phase transition
between phases with algebraic and exponential relaxation
behavior absent in the one previously studied in Sec. III.
Also we propose a sufficient condition for the existence of the
algebraic relaxation behavior in general quadratic fermionic
systems with stochastic driving.

Dynamical phase transition. The model we consider is a 1D
spin-1/2 fermionic model with a spin-flip term in a Zeeman
field with the Hamiltonian

H =
∑

i

[∑
σ

(−Jσ c
†
iσ ci+1σ + H.c.)

− hz(ni↑ − ni↓) + λ(t)(c†i↑ci↓ + H.c.)

]
, (C1)

where σ = ↑,↓ denotes the spin index, Jσ is the spin-
dependent hopping amplitude, hz is the Zeeman field, and λ(t)
is the stochastic driving parameter with transition between
two values λa and λb during the time evolution. Assuming
J↑ = −J↓ = J in the following, we focus on dynamics of
the quantity �E(t) = E(t) − E0 to monitor the long-time
behavior, where E(t) = Trρs(t)H̄ with H̄ = (Ha + Hb)/2 is
the time-independent Hamiltonian and E0 = E(t → ∞) is the
energy at the infinite-temperature state (steady state). The
long-time behavior of �E(t) characterizes how the system
approaches the steady state.

The dynamics of �E(t) is plotted in Fig. 6(a), where
we find that for hz < 2J , the long-time behavior is similar
to that given before, �E(t) ∼ t−

1
2 , while at the point hz =

2J , it suddenly turns to �E(t) ∼ t−
1
4 . Beyond this point

hz > 2J , an exponential decay takes place: �E(t) ∼ e−γ (hz)t .
As previously pointed out, in the absence of interactions, the
long-time behavior is determined by the Liouville spectrum
Lk . In Fig. 6(b), we plot the Liouville gap �k , which shows
that in the region 0 < hz < 2J , the gapless point is shifted
from kc = π/2 to π , while around the gapless point, �k

can always been expanded as �k = αδk2 + O(δk4) with
δk = k − kc, which is responsible for the algebraic behavior
�E(t) ∼ t−

1
2 . At the critical point (hz = 2J ), the coefficient
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FIG. 6. (a) Dynamics of the stochastically driven spin-1/2
fermionic model [Eq. (C1)] in algebraic and exponential (the inset)
regions. (b) The Liouville gap �k for different hz. We choose λ1 = 0,
λ2 = J , and κ = 2J .

before the quadratic term vanishes (α = 0) and the quartic term
dominates (�k = ηδk4). By performing a similar integral to
that in Eq. (5), we can obtain �E(t) ∼ t−

1
4 . For hz > 2J , a

gap is opened indicating an exponential decay. In summary, we
propose a stochastically driven model exhibiting a dynamical
phase transition, which is supplementary to various long-time
behaviors in the case previously studied in Sec. III. Since
the steady states are the same for both phases, this phase
transition can only be characterized by the dynamical instead
of static properties, e.g., the relaxation time, as well as the
singularity of the Liouville gap at the transition point. Notice
that the dynamical phase transition we proposed here has a
subtle difference from its conventional definition in which the
singularity occurs during the time evolution [81–83].

This dynamic phase transition can be understood by the
sufficient condition for the existence of the algebraic relaxation
we proposed in Sec. III. For hz < 2J , we can always find a
kc = cos−1 hz

2J
where Ĥ1(kc) = 0 thus commutes with Ĥ2(kc),

while for hz > 2J , [H1(k),H2(k)] �= 0 for all k, thus opening
a finite Liouville gap which leads to an exponential decay.

APPENDIX D: EFFECT OF THE EXPERIMENTAL
IMPERFECTIONS

In this Appendix, we analyze the effect of the experimental
imperfections on the long-time dynamics of the stochastically

driven spinless fermion model in the optical lattice system. We
first examine the effect of the external potential. We choose
two common potentials in ultracold atomic experiments: the
harmonic trap and box trap. The Hamiltonian of the system
reads

H = H0 +
∑

i

Vini, (D1)

where H0 is the same as Eq. (4), Vi = 1
2ω2(i − L/2)2 cor-

responds to the harmonic trap, while for the box trap we
choose Vi = V0 for |i| � L0 and Vi = 0 for |i| > L0. As
shown in Fig. 7, in the presence of the harmonic trap, the
scattering between the particle and the external potential will
induce a faster power-law decay t−η, where the exponent η = 2
independently of the strength of the harmonic trap, while for
the box trap, the scattering only occurs at two points i = ±L0,
and thus does not qualitatively change the long-time behavior
t−1/2 we found in the ideal case.

Now we analyze the effect of the white noise, which
provides another stochastic process independent of the driving
force. The Hamiltonian of the white noise can be written
as H ′ = ∑

i ξi(t)ni , where ξi(t) represents the site-dependent
random field satisfying 〈ξi(t)ξj (t ′)〉 = √

γ δij δ(t − t ′). In spite
of the stochastic properties, the white noise differs from the
previously studied stochastic driving in two aspects: it is
site-dependent and with zero correlation length. The ensemble
average over the external white noise can be performed
following the standard procedure [19], and the EOM of the
marginal density matrix reads

dρa(t)

dt
= i[ρa,Ĥa] + D̂ρa − κρa + κρb,

(D2)
dρb(t)

dt
= i[ρb,Ĥb] + D̂ρb + κρa − κρb,

where D̂ρ = ∑
i γ [niρni − 1

2 (n2
i ρ + ρn2

i )] represents the ef-
fect of the white noise. Since it is still a translationally invariant
and noninteracting system, the dynamics of P (t) can be easily
solved based on Eq. (D2). As shown in Fig. 7(b), we can find
that even though the external white noise makes the system
decay faster since it facilitates the heating, the long-time
behavior is still qualitatively the same as that in the noise-free

FIG. 7. Dynamics of the stochastically driven spinless fermionic model in the presence of (a) external trap, (b) white noise, and (c)
dissipation with parameters λ1 = 0, λ2 = J , and κ = 2J . In (a) we choose L = 120 and L0 = L/4 for the box trap.

054303-11



ZI CAI, CLAUDIUS HUBIG, AND ULRICH SCHOLLWÖCK PHYSICAL REVIEW B 96, 054303 (2017)

case P (t) ∼ t−0.5. This indicates that the white noise is an
irrelevant perturbation for the long-time behavior.

Finally, we discuss the effect of dissipation, which is
inevitable in almost all the experimental setups. We consider
one of the most common dissipation mechanisms in ultracold
atomic experiments: the single-particle loss that a particle
in the optical lattice can escape from the system into the
environment. We further assume that the environment satisfies
the Born-Markovian approximation; thus the EOM of the
marginal density matrix is similar to Eq. (D2), but the dissipa-
tive operator is replaced by D̂′ρ = ζ

∑
i[ciρc

†
i − 1

2 (c†i ciρ +

ρc
†
i ci)] with ζ the strength of the dissipation. In this case,

the EOM of the stochastically driven dissipative fermionic
model can still be solved exactly. The time evolution of P (t)
is shown in Fig. 7(c), from which we can find that for weak
dissipation ζ 
 J , the universal algebraic decay P (t) ∼ t−0.5

occurs in the intermediate time regime 1/J 
 t 
 1/ζ , while
the dissipation dominates after sufficiently long time t 
 1/ζ

and gives rise to an exponential decay, which agrees with
our analysis in the main text. When the dissipation strength
is compatible with the energy scale in the system, such an
intermediate regime vanishes.
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