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Steady-state properties of a nonequilibrium Fermi gas
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The current-carrying steady state that arises in the middle of a metallic wire connected to macroscopic
leads is characterized regarding its response functions, correlations, and entanglement entropy. The spectral
function and the dynamical structure factor show clear nonequilibrium signatures accessible by state-of-the-
art techniques. In contrast with the equilibrium case, the entanglement entropy is extensive with logarithmic
corrections at zero temperature that depend on the lead-wire coupling and, in a nonanalytic way, on voltage.
This shows that some robust universal quantities found in gapless equilibrium phases do not persist away from
equilibrium.
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I. INTRODUCTION

Current-carrying steady states (CCSS) are characterized
by a steady flow of equilibrium-conserved quantities, such
as energy, spin, or charge. Of direct relevance to transport
experiments are steady currents generated by coupling a
system to reservoirs at different thermodynamic potentials.
The resulting CCSS are thermodynamically unbalanced, i.e.,
do not fulfill equilibrium fluctuation-dissipation relations
[1,2]. CCSS in one- or quasi-one-dimensional systems are of
relevance in many fields, including charge and spin transport
in electronic devices and in cold-atom setups.

Due to kinetic constraints, accounting for relaxation in one
dimension requires one to go beyond two-body interaction
terms and explicitly account for three- and higher-body colli-
sions [3–5] and thus may be neglected for weakly interacting
clean samples. For noninteracting electrons on a wire, ideal
reservoirs can be mimicked by injecting particles from plus
and minus infinity with given energy distributions [6–9].
These ideal conditions, alluded to as Landauer reservoirs
[10,11], yield to a local energy distribution function that
is the average of those of the leads. A series of studies
featuring nonequilibrium Luttinger liquids [12–17] found that
interaction-induced dephasing may smear the local energy dis-
tribution even in the absence of relaxation. In the presence of a
strong enough relaxation, the system is expected to equilibrate
locally. Treatments based on the Boltzmann equation have
been used to obtain the distribution function of the charge
carriers in this regime [3–5,18–20].

Experiments featuring CCSS, designed to access the local
energy distribution of charge carriers, were performed using
tunneling spectroscopy in mesoscopic wires [21–23] and car-
bon nanotubes [24]. The local energy distribution, measured in
the center of the wire, was reported to exhibit a characteristic
double-step form resulting from contribution of both Fermi
functions of the electronic leads. The sharp steps seen at
low temperatures are smeared out as temperature increases
or in the presence of electron-electron interactions, disorder,
or electron-phonon coupling.

The study of current-carrying states recently became
available for cold-atomic setups [25]. Mainly motivated by
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these advances, a rather different body of works investigated
the time evolution of two initially disconnected semi-infinite
wires held at different equilibrium conditions. After the two
wires are connected, a CCSS forms around the connection
point. This central region grows with time, with the remaining
parts of the wire acting essentially as reservoirs. At large times,
a translationally invariant CCSS is locally observed [26–35],
as long as the chains are not in a correlated insulating state
[36]. Interestingly, some of the properties of the CCSS created
in this way, in particular the momentum-resolved electronic
distribution, are similar to the CCSS obtained using a Landauer
description [26,29–33,37–39]. Furthermore, in both cases, the
entanglement entropy of a region in the middle of the wire
yields to the same universal result as in equilibrium.

Recently, momentum-resolved spectroscopic measure-
ments became available for nonequilibrium electronic systems
[40,41]. Since the same local energy spectrum may correspond
to various momentum distributions, these developments allows
a better characterization of the state and may shed some
light on discrepancies between existing theoretical predictions
and experimental findings. In addition, transport experiments
in cold-atomic setups [25] allow one to access a set of
physical quantities that are difficult to study in solid-state
devices. These developments urge for a better theoretical un-
derstanding of thermodynamically unbalanced CCSS, beyond
the local energy distribution function, that is currently still
unavailable.

This work addresses the CCSS realized on a finite metallic
wire coupled to metallic leads at different temperatures and
chemical potentials. The lead-wire couplings are treated
explicitly as they induce additional reflections that change the
energy distribution of the carriers [6,7]. At equilibrium, the
system can be described by a one-dimensional electron gas as
we assume no electron-electron interactions or disorder to be
present. These assumptions hold for weakly interacting clean
systems when the system size is larger than the disordered-
induced localization length, and the equilibrium Luttinger
parameter [42] used to model the interactions is close to
unity. Our approach describes the low-energy sector where
the dispersion relation is essentially linear and the reservoirs’
chemical potentials and temperatures are much smaller that the
wire’s bandwidth. We study the one- and two-point functions
and analyze the entanglement content in the wire’s central
region.

2469-9950/2017/96(5)/054302(11) 054302-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.054302


PEDRO RIBEIRO PHYSICAL REVIEW B 96, 054302 (2017)

T R
, μ

R

TL
, μ

L

I

x

I

I

L

0
a

L − a

(a) (b)

(c)

Γ

Γ

εk

kF

VεF

μR

μL k

TL , μL

TR , μR

FIG. 1. (a) Schematics of the setup. (b) Tight-binding chain
coupled to reservoirs. (c) Dispersion relation of the tight-binding
chain, εk , linearized around the Fermi momentum, kF, defined such
that εkF = (μL + μR)/2, with V = μL − μR and � = a0V/v.

II. MODELS

Consider the setup of Fig. 1(a) depicting a one-dimensional
fermionic gas on a wire of length L attached to external leads.
In the wire, we assume fermions to have an approximately
linear dispersion, with velocity v, within a window of size
2� around the Fermi points. The effective Hamiltonian of the
isolated metallic wire, valid for energies scales below v�, is
given by

H = −iv

∫
dx �†(x)σ z∂x�(x), (1)

where �(x) = {ψL(x),ψR(x)}T , with ψl=L,R(x) corresponding
to the left- and right-moving fermions with {ψl(x),ψ†

l′ (x
′)} =

δll′δ(x − x ′). At position xL = 0 and xR = L, the boundary
conditions are given by ψL(xl) = eiφl ψR(xl) with phase shift
φl . To model the leads, we assume that the extremities of the
wire are connected to fermionic reservoirs within a region of
length a � L, such as in Fig. 1(a). The reservoirs are assumed
to be metallic, with a bandwidth much larger than any char-
acteristic energy scale of the wire. Their chemical potentials
μl=L,R and temperatures Tl=L,R = β−1

l=L,R are taken to be much
smaller than the energy cutoff v�. The system-reservoir cou-
pling, given by HS-R = ∑

l=R,L tl
∫
Il

dx [�†(x)�l(x) + c.c.],
where �l(x) is a fermionic field of lead l, induces a hybridiza-
tion between the wire and the lead characterized by the energy
vγl = π (atl)2νl , which is proportional to the square of the
hopping amplitude per unit length tl from region Il to lead
l and to the lead’s density of states νl . The corresponding
time scale (vγl)−1 gives the characteristic time for a particle in
region Il=L,R to escape the reservoir l. With these assumptions,
integrating out reservoir l yields a self-energy contribution to
the propagator of the system, with retarded (R) and advanced
(A) components given by

�
R/A

l (ω; xx ′) = ∓iδ(x − x ′)v γl�[|x − xl| − a], (2)

where �(x) is the Heaviside theta function. Since the reservoirs
are taken to be at thermal equilibrium, the Keldysh (K)
component is

�K
l (ω; xx ′) = tanh

[
βl

2
(ω − μl)

][
�R

l (ω; xx ′) − �A
l (ω; xx ′)

]
.

(3)

FIG. 2. (a) Jk(ω) = −i 1
2π

G<
k (ω), proportional to the transition

rate measured by angle-resolved photoemission spectroscopy, for
TL,TR = 0. (b) Momentum-resolved occupation number nk given for
TL = TR = 0 (blue) and TL > TR �= 0 (red).

The total self-energy is the sum of the contributions of both
reservoirs �R/A/K = ∑

l �
R/A/K

l . In the following, we set
μL − μR = V � 0 without loss of generality.

In addition to the low-energy model above, we present a set
of numerical results for a tight-binding model on a chain of
N sites, with Hamiltonian

HTB = −t

N∑
r=1

c†r cr+1 + H.c., (4)

coupled at the two end sites to a wideband reservoir, as in
Fig. 2(b). The reservoir l introduces a hybridization energy
scale �l = πt2

l Dl , where tl is the chain-reservoir hopping and
Dl is the local density of states of the reservoir. This yields to
a self-energy contribution from the reservoir l given by

�
R/A

TB,rr ′;l(ω) = ∓i�lδr ′rl
δrrl

, (5)

with rL = 1 and rR = N . The Keldysh component is obtained
from �R/A as in the continuum case.

The correspondence between the low-energy sectors of
these two models (see Appendix A) allows for a detailed
comparison of analytical results, obtained for the continuum
model, and numerics done for the tight binding that provide the
following identifications. The average Fermi momentum kF is
defined such that εkF = εF = (μL + μR)/2, thus for q smaller
than �: εk � εF ± vq and cr � eikFrψL(a0r) + e−ikFrψR(a0r),
with k = ±kF + a0q and a0 the lattice constant; see Fig. 2(c).
Further identification between the continuum and tight-
binding models yield to N = La−1

0 , kF = arccos (−εF/2t),
v = 2a0t sin kF.

III. METHOD

In order to address the properties of the steady state that
forms under the conditions described above, we compute the
retarded (R), advanced (A), and Keldysh (K) components of
the Green’s function in the frequency domain. The wideband
nature of the reservoirs considerably simplifies our treatment
[43]. In this case, the retarded Green’s function is given by

GR(ω; x,x ′) = 〈x|(ω − K )−1|x ′〉, (6)

where

K = −iv

∫
dx |x〉

[
σ z∂x +

∑
l=L,R

γl�[|x − xl| − a]

]
〈x|

(7)
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is a non-Hermitian operator describing a single particle on
a wire with particle sinks in regions Il=R,L, with boundary
conditions imposed by the reservoir-free system: Sl〈xl|ψ〉 =
〈xl |ψ〉, where

Sl =
(

0 eiφl

e−iφl 0

)
. (8)

K is diagonalized by left and right eigenvectors 〈ψ̃n| and
|ψn〉, with eigenvalues λn = vqn. In position space, 〈ψ̃nx〉 and
〈x|ψn〉 are plane waves, with a complex-valued momentum
qn, for x within the regions Il=R,0,L defined in Fig. 1(a). The
wave amplitudes within each region are given by

〈x ∈ IL|ψ〉 = 1√
2L

(
e(a−x)γL+iqx

e(a+x)γL−i(φL+qx)

)
, (9)

〈x ∈ I0|ψ〉 = 1√
2L

(
eiqx

e−i(2iaγL+φL+qx)

)
, (10)

〈x ∈ IR|ψ〉 = 1√
2L

(
e−γR(a−L+x)+iqx

e−γR(a+L−x)+i(2Lq−qx−φR)

)
, (11)

and

〈ψ̃ |x ∈ IL〉 = 1√
2L

(
e(x−a)γL−iqx

ei[i(a+x)γL+φL+qx]

)T

, (12)

〈ψ̃ |x ∈ I0〉 = 1√
2L

(
e−iqx

ei(2iaγL+φL+qx)

)T

, (13)

〈ψ̃ |x ∈ IR〉 = 1√
2L

(
eγR(a−L+x)−iqx

eγR(a+L−x)−2iLq+iqx+iφR

)T

, (14)

and the quantization condition qn ≡ − 1
2L

(φL − φR) + πn
L

−
ia

γL+γR

L
, with n ∈ Z, are determined by imposing boundary

conditions at x = 0,L, the continuity of the wave func-
tions at x = a,L − a, and the normalization of the wave
functions 〈ψ̃n|ψn′ 〉 = δnn′ . The retarded Green’s function,
in terms of these single-particle quantities, gives GR =∑

n |ψn〉(ω − vqn)−1〈ψ̃n|. The Keldysh component of the
Green’s function in the steady state, given by GK =
GR�K GA, can also be obtained explicitly using essentially
the same procedure. For convenience, in the following we
analyze the Hermitian matrices ρ− = −[GR − GA]/2πi and
ρ+ = GK/(−2πi) rather than the Green’s functions. The
explicit expressions of 〈x|ρ±|x ′〉 are given in Appendix B.

In order to compare results from the continuum and
tight-binding models, the phase shifts in Eq. (8) and the
relation between the hybridization �l and the parameter γl

have to be determined; this is done in Appendix C. The phase
shifts, φL = 2kF − π ; φR = −2kFLa−1

0 − π , are obtained by
analyzing the tight-binding eigenfunctions near the boundaries
in the absence of the leads. The relation

aγl = 1

4
ln

(
−�2

l t
−2 − 2t−1 sin kF�l + 1

�2
l t

−2 + 2t−1 sin kF�l + 1

)
(15)

between hybridization constants can be derived by matching
the imaginary part of the wave vectors. A numerical compari-
son between the two models is given in Appendix C 3.

IV. RESULTS

A. Single-particle correlation functions

We concentrate in the middle region of the wire in the
limit L → ∞, in which case the quantities ρ±

bulk(ω; x,x ′) ≡
limL→∞ ρ±(ω; x + L/2,x ′ + L/2) become translationally in-
variant, for finite x and x ′, and their Fourier components are
given by

ρ±
bulk (ω,q) = diag{ρ±

L (ω,q),ρ±
R (ω,q)}, (16)

with ρ−
L/R(ω,q) = δ(ω ∓ vq) and ρ+

l (ω,q) =
[1 − 2nl(ω)]ρ−

l (ω,q), for |q| < �, and where

nl(ω) = bl

eβl (ω−μl ) + 1
+ (1 − bl)

eβl̄ (ω−μl̄ ) + 1
(17)

is the energy distribution function of the l movers, with R̄ =
L, L̄ = R, aγL = 1

4 ln 1−bR
1−bL

and aγR = 1
4 ln bL

bR
. Since V � 0,

we have that bL � bR. Using the correspondence with the
continuum model, the tight-binding Green’s functions Gα

rr ′ (ω)
or, equivalently, the quantities ρ±

rr ′ (ω) are given by ρ±
rr ′ (ω) =∫ π

−π
dk
2π

ρ±
k (ω)eik(r−r ′), for r and r ′ in the middle of the wire,

where

ρ±
k (ω) = ρ±

L

[
ω,(k − kF)a−1

0

]
�(|k − kF| − �a0)

+ ρ±
R (ω,k + kF)�(|k + kF| − �a0). (18)

Due to the quadratic nature of the model, these quantities can
be used to compute all correlations and response functions
restricted to the center of the wire and to low energies.
In particular, the single-particle density matrix �rr ′ (t) =
〈c†r (t)cr ′ (t)〉, which in the steady state is given by �rr ′ =
−π

∫
dω
2π

ρ+
r ′r (ω) + 1

2δrr ′ , can be approximated by

�rr ′ � �r−r ′ =
∫ π

−π

dk

2π
e−i(r−r ′)knk, (19)

with

nk = nL

[
v

a0
(k − kF)

]
�(|k − kF| − �a0)

+ nR

[
v

a0
(−kF − k)

]
�(|k + kF| − �a0), (20)

the occupation number of momentum k. These relations can
be complemented by nk = 0 or nk = 1 away from the range
of validity of the low-energy theory, i.e., |k ± kF| > �a0.
Figure 2(b) shows nk for TL,TR = 0 and for finite but distinct
TL and TR. For finite V , there is a double step structure around
each Fermi point with width � = a0V/v and height bL (bR)
for k near kF (−kF). A single step per Fermi point is recovered
in three different cases: for reflectionless leads, with bL =
1,bR = 0, reproducing the results obtained using Landauer
reservoirs; when one of the leads effectively decouples, bL =
1,bR = 1 (bL = 0,bR = 0), i.e., the wire coupling to the left
(right) lead is much larger than that of the right (left), in
which case the wire distribution function becomes that of
the lead which strongly couples to the system. The steps are
smoothened with the temperature associated to the respective
reservoir. For TL,TR �= 0, �r ∝ e−|r|/ξ decays exponentially in
r , with a temperature-dependent characteristic length ξ that
diverges as TL or TR vanish. For TL,TR = 0, one obtains �r =
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1
r
{sin (�r

2 )[(bL − 1)e−irkF + bReirkF ] + e− 1
2 i�rsin (rkF)}, cor-

responding to a 1/r decay as in the equilibrium T = 0 case.
For reflectionless leads, i.e., bL = 1, bR = 0, the argument
of �r becomes linear in r: arg (�r ) = − 1

2�r , as observed in
the CCSS formed after a quench in Refs. [26,28]. The local
distribution function, as measured by tunneling spectroscopy,
is nlocal(ω) = [nR(ω) + nL(ω)]/2, which, for equal contacts
(i.e., bL + bR = 1), becomes independent of bl . Tunneling
spectroscopy measurements performed with similar contacts
can therefore be insensitive to some of the features of nk .
The particle current J = −it〈c†r cr+1 − c

†
r+1cr〉, given in the

low-energy sector by J � 1
2π

(bL − bR)V , is independent of v

and of the temperature, assuming for consistency � � 1.
In addition to static quantities, the CCSS is characterized

by its dynamic correlators. Figure 2(a) depicts the one point
function Jk(ω) = −i 1

2π
G<

k (ω) = 1
2 [ρ−

k (ω) − ρ+
k (ω)] that is

proportional to the transition rate as measured by angle-
resolved photoemission spectroscopy. For |ω| < �v, it
can be approximated by Jk(ω) � nk{δ[ω − va−1

0 (k − kF)] +
δ[ω + va−1

0 (k + kF)]}, thus the step structure of Fig. 2(a) is the
same as nk . Even at zero temperature, there is a nonvanishing
probability of finding a particle above εF for V > 0 and thus
Jk(ω > 0) does not vanish.

B. Particle-number fluctuations and entanglement entropy

We now turn to the characterization of the CCSS in terms
of its particle-number fluctuations and entanglement content.
For the equilibrium ground state of a Fermi gas, i.e., at T = 0,
both the second moment of the distribution of the number of
particles in a subregion and its entanglement entropy scale as
the logarithm of the subregion size � with universal prefactors
[44–47]. For finite temperatures, this behavior is observed
for � � v/T above which it crosses over to an extensive
dependence in �. In this section, we study these quantities
in the presence of nonequilibrium conditions imposed by the
thermodynamic unbalanced leads.

The generating function for the particle-number fluctua-
tions in a region � is given by

χ (λ) =
∑
m

Pmeiλm = tr(ρ̂�eiλN� ), (21)

where Pm is the probability of finding m particles in region
�, N� = ∑

r∈� c
†
r cr , and ρ̂� = tr�̄ ρ̂ is obtained from the

total density matrix ρ̂ by tracing out the degrees of freedom
belonging to �̄, the complement of �. The fluctuations
of the number of particles was shown to be intimately
related to the entanglement entropy of a region � [44–47],
defined as S� = −tr(ρ̂� ln ρ̂�). In the following, we con-
sider a region �� of size � and denote S� = S��

. Since
the model is noninteracting, the entanglement entropy can
be obtained from �� = ∑

rr ′∈��
|r〉�rr ′ 〈r|, with the single-

particle density matrix restricted to ��, as S� = tr[s(��)],
where s(ν) = −ν ln ν − (1 − ν) ln (1 − ν). Similarly, using
the Levitov-Lesovik determinant formula [48], we arrive at
χ (λ) = det [1 − ��(1 − eiλ)]. Both quantities can be related
to det [z − ��]: the generation function is simply obtained by
ln χ (λ) = −� ln z + ln det [z − ��] with z = (1 − eiλ)

−1
, and

the entanglement entropy can be written as

S� = 1

2πi

∮
dz s(ν) ∂z ln det[z − ��], (22)

following Ref. [49]. This connection has been explored to
relate the entanglement entropy to the fluctuations of the
particle number [44–47]. In particular, for the ground state of
a gapless one-dimensional system, the second moment F� =
〈N2

� 〉 − 〈N�〉2 was observed to have logarithmic diverging
terms in �, i.e., F ∝ ln �, whenever they were present for
the entanglement entropy [45] in such a way that S�/F� =
πc/(3vκ), with c the central charge and κ the compressibility.
This is particularly interesting since fluctuations can, in
principle, be measured experimentally and this connection thus
permits the study of the entanglement entropy that suffers from
a general lack of measurement methods.

In the case where �� is chosen in the center of the wire and
� � N , D�[φ] = det [z − ��] becomes a Toplitz determinant,
where φ(k) = z − nk is called the symbol of the Toplitz
matrix z − �� = ∑

rr ′∈��
|r〉 ∫

dk
2π

φ(k)eik(r−r ′)〈r ′|. D�[φ] can
be computed asymptotically for large values of � using some
results for approximating determinants of Toplitz matrices
in the � → ∞ limit [49]. For TR,TL �= 0, the symbol φ(k)
is a smooth function of k, thus the Szegö’s limit theorem
can be employed yielding S� = −�

∑
l

∫ ∞
−∞

dk
2π

s[nk] + γA,
where γA is an � independent constant and ln χ (λ) =
�
∫

dk
2π

ln [1 − nk(1 − eiλ)] + O(�0). For the case TR,TL = 0,
we have to appeal to the Fisher-Hartwing conjecture for the
case of Fig. 2(b) (blue line), where nk has four discontinuities
rather then the two present at equilibrium. Following the same
steps as in Ref. [49], detailed in Appendix D, we obtain

ln χ (λ) = κV� + κ̃V ln (�) + κA + O(1/�), (23)

with κA is an �-independent constant,

κV =
(

2kF − �

2π

)
iλ +

(
�

2π

)
ln{[1 − bL(1 − eiλ)]

× [1 − bR(1 − eiλ)]}, (24)

and κ̃V = −∑4
j=0 β2

j , where βj are functions of z =
(1 − eiλ)

−1
that also depend on bL and bR and are defined

in Appendix D. For the second moment, we explicitly obtain

F� = �
�[(1 − bL)bL + (1 − bR)bR]

4π

+ ln(�)

2π2
[1 − (1 − bL)bL − (1 − bR)bR]. (25)

This expression reduces to the equilibrium zero-temperature
result F� = − ln (�)

2π2 [47] for bR,L = 0,1. Note that the second
term only depends on the number of discontinuities of nk and
their magnitude, having no dependence of �. This renders
nonanalytic the limit � → 0 since the equilibrium result is
not recovered by Eq. (25) at � = 0.

For the entanglement entropy, after evaluating the contour
integral in Eq. (22) (see details in Appendix D), we find

S� = γV� + γ̃V ln (�) + γA + O(1/�), (26)

where γA is an �-independent constant, γV =
�
2π

[s(bL) + s(bR)] is the coefficient of the volume term,
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γ̃V

γV /
a0V

2πv
γV

log10 ΓL

lo
g 1

0
Γ

R

bL

b R

log10 ΓN = 500
N = 1000

FIG. 3. Extensive coefficient of the entanglement entropy γV and
logarithmic correction γ̃V computed for a set of points {�L,�R}
following the color code in the inset. The second inset depicts the
corresponding {bL,bR} values. The numerical values obtained for the
tight-binding model with εF = 0.3t , V = 0.2t , and TL = TR = 0 are
compared with the low-energy theory predictions (black line).

and γ̃V = 1
3 − s̃(bL) − s̃(bR) with

s̃(b) = 1

24
+ 1

4π2
{(2b − 1)[Li2(1 − b) − Li2(b)]

+ (1 − b) ln2(1 − b) + b ln2(b) + ln(b) ln(1 − b)},
which is the coefficient of the logarithmic correction that is
voltage independent. We note that Ref. [50] has considered the
calculation of Renyi entropies with discontinuities in nk of the
kind we encounter here, although dealing with an equilibrium
setup.

The logarithmic correction is particularly important for
the mutual information S(A,B) = SA + SB − SA+B between
two adjacent segments of length �/2. Here the volume
term cancels and thus S(A,B) = γ̃V ln (�) + γA − 2γ̃V ln (2) +
O(1/�), which can be used to directly compute γ̃V numerically.
Figure 3 shows γV and γ̃V as a function of the hybridization
along a path in the �L − �R plane as well as the corresponding
values in the bL − bR plane. With increasing system size,
the numerical results obtained for the tight-binding model
converge to the analytic predictions. γV and γ̃V vary in the
opposite sense—a large volume term corresponds to a small
mutual information content. The maximum value γ̃V = 1/3,
obtained at equilibrium, is attained for V > 0 whenever bL

and bR are such that only two discontinuities arise in nk , in
which case γV = 0. Similar to what happens for κ̃V, for a
generic point in the bL − bR plane with γ̃V �= 1/3, the limit
V → 0 is singular since for V = 0, and only at that point, one
recovers the equilibrium value γ̃V = 1/3. Figure 4 depicts the
� and the ln � coefficients of the entanglement entropy S�,
respectively γV and γ̃V, as a function of the voltage. The

N = 500
N = 1000
N = 2000

FIG. 4. Volume γV and logarithmic γ̃V coefficients of the entan-
glement entropy as a function of the applied voltage V computed for
�L = 0.02t , �R = 0.01t , εF = 0.3t , and TL = TR = 0.

numerical results obtained for the tight-binding model are seen
to converge to the analytic curves predicted by the continuum
model. We observe that γV ∝ |V | and that γ̃V is V independent
for V �= 0. At V = 0, we recover the equilibrium result
γ̃V = 1/3. The observed singularity prohibits the calculation
of the entanglement entropy and of the number fluctuations
perturbatively in V and thus this quantity cannot be obtained
from linear response arguments.

C. Two-point correlations

Finally, we analyze the two-point density-density corre-
lations and response functions of the CCSS encoded in the
lesser and greater components of the charge susceptibility
χ>

rr ′ (t,t ′) = −i〈n̂r (t)n̂r ′(t ′)〉, χ<
rr ′ (t,t ′) = −i〈n̂r ′ (t ′)n̂r (t)〉. As

for the one-point function, for r,r ′ in the central region of
the wire, χ><

rr ′ become approximately translationally invariant.
In this regime, the Fourier transformed quantities χ±

p (ν) =
− 1

2πi
[χ>

p (ν) ± χ<
p (ν)] are given by

χ±
p (ν) = [

χ±
LL

(
ν,a−1

0 p
) + χ±

RR

(
ν,a−1

0 p
)]

+χ±
LR

[
ν,a−1

0 (p − 2kF)
] + χ±

RL

[
ν,a−1

0 (p + 2kF)
]
,

(27)

where the first two terms correspond to low momentum (|p| <

a0�) and the last two terms to 2kF contributions (|p − 2kF| <

a0� and |p − 2kF| < a0�) and where

χ+
ll (νq) = 1

2v
δ(ν ∓ vq)

∫
dω

2π
[1 − Fl(ω)Fl(ω − ν)],

χ+
ll̄

(νq) = 1

4πv

[
1 − Fl

(±vq + ν

2

)
Fl̄

(±vq − ν

2

)]
,

χ−
ll (νq) = 1

2v
δ(ν ∓ vq)

∫
dω

2π
[Fl(ω) − Fl(ω − ν)],

χ−
ll̄

(νq) = 1

4πv

[
Fl

(±vq + ν

2

)
− Fl̄

(±vq − ν

2

)]
, (28)

where the upper (lower) signs are for l = R (l = L) and
Fl(ω) = 1 − 2nl(ω). The details of the calculation are pro-
vided in Appendix E. The dynamical structure factor Sp(ν) =
iχ>

p (ν), that can be directly accessed by neutron scattering
is shown is Fig. 5 for TL = TR = 0. As in equilibrium, the
contribution at low momentum is coherent, but the δ-function

0

0
V

−
V

ν

S
(ν

,q
).

v F

1

b
L

bR

1−
b
L

1−
bR

(1 − bR)bL

(1 − bL)bR

1

0−V V
0

V

ν

Z

(a) (b)

k

2kF

−2kF

Δ

FIG. 5. (a) Dynamical structure factor Sp(ν) = iχ>
p (ν), directly

accessible by neutron scattering. (b) Weight of the δ-function Z for
the positive (blue) and negative (green) velocity branches near k = 0.
The red line depicts the equilibrium, i.e., V = 0, result.
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weight Z acquires a nontrivial dependence on frequency, as
seen in the inset. Contributions near ±kF form the particle-hole
excitation continuum and also develop a steplike structure
dependent on bL and bR that gets smeared out at finite tem-
peratures. In the reflectionless case bL = 1,bR = 0, the
particle-hole continuum is simply shifted up (down) in energy
for positive (negative) momentum.

V. DISCUSSION

The properties of a CCSS in the bulk of a thermody-
namically unbalanced one-dimensional system are found to
crucially depend on the couplings to the leads which induce a
double-step momentum occupation number near each Fermi
point. This feature imprints a clear signature to the one- and
two-point functions, as depicted in Figs. 2(a) and 5. As in
equilibrium, the structure factor consists of a coherent branch
around zero momentum and a quasiparticle continuum around
±2kF. Besides an abrupt change of the weight of the coherent
excitation for energies corresponding to plus or minus the bias
voltage, nonequilibrium conditions lead to a set of steps in
the incoherent component. In frequency, the steps arise at the
energy of the applied bias voltage, while in momentum they
are observed for momenta that differ from ±2kF by the bias
voltage divided by the Fermi velocity. The height of the steps
is set by the couplings to the contacts and can be interpreted
within a Landauer-like scattering approach by considering
imperfect contacts with a finite reflection coefficient. In the
reflectionless case, corresponding to ideal Landauer contacts,
the asymmetry between the ±2kF components can be simply
linked to the energy difference between the Fermi surfaces of
the right and left reservoirs.

The experimental detection of these features requires
probes that can resolve both momentum and energy and a clean
system in the ballistic regime. In equilibrium, the one-point
function in quasi-one-dimensional organic conductors can
be accessed by angle-resolved photoemission spectroscopy
(ARPES) [51–53]. By contacting the sample to external
leads, such setup could in principle be used to access the
nonequilibrium spectral function and detect the double step
depicted in Fig. 2(a). In solid-state setups, the equilibrium
structure factor is accessible by neutron scattering. While
for insulating quasi-one-dimensional materials this technique
has been extensively employed to study magnetic excitations
[54,55], in the absence of a charge gap its use has been more
challenging [56–58]; nonetheless this technique can as well
be used to probe the structure factor away from equilibrium.
Momentum-resolved studies of one-dimensional systems are
also available in cold-atomic setups [59–61] where the dy-
namic structure factor can be probed by Bragg spectroscopy
[62]. While for the moment the reported transport setups
[63] are restricted to point contacts between reservoirs, their
versatility could in the near future allow for the investigation
of extended one-dimensional systems.

One-dimensional electronic systems are strongly affected
by electron-electron interactions; therefore, it is natural to
wonder about the stability and relevance of the predictions
above, obtained in the strict noninteracting limit. For a
Luttinger liquid at equilibrium, the Fermi-step discontinu-
ity observed in the noninteracting momentum distribution

function is smeared out. On the other hand, the dynamical
one- and two-point functions are characterized by a set of
power laws near spectral edges [56,64–69]. For the out-of-
equilibrium reflectionless case, since in one dimension kinetic
constraints ensure that relaxation can be neglected at low
energies, the distribution function of left (right) movers is
solely fixed by the right (left) reservoir, even in the presence
of interactions. This was investigated in Refs. [12–17] . Even
though, to our knowledge, the nonequilibrium momentum- and
energy-resolved response functions have not been studied, the
techniques therein could be used to obtain response functions
in the presence of interactions. In this case, one expects the set
of nonequilibrium spectral edges reported here for the non-
interacting case to acquire the power-law features at the
spectral edges characteristic of Luttinger liquids.

Let us now discuss the results regarding the entanglement
properties. The direct measurement of entanglement entropy
of a subregion remains a challenge; however, it is possible to
access some of its signatures by monitoring the fluctuations
of the number of particles within the same volume. Such
measurements are naturally available for quantum point
contacts and in cold-atomic setups by procedures that are
extendable to the nonequilibrium regime.

For a generic CCSS, the entanglement entropy and the
second moment of the particle-number fluctuations are found
to be proportional to the volume of the system and to the
applied voltage, even at zero temperature. For the entropy,
the prefactor of the extensive contribution is simply the free-
fermion entropy computed from the momentum distribution
function. As in equilibrium, there is a zero-temperature
subextensive contribution that goes as the logarithm of the
system size. The existence of an extensive zero-temperature
contribution to S� and F�, for V �= 0 and bL,bR �= 0,1, makes
the generic nonequilibrium case quite different from the
equilibrium one, where S�/F� was found to simply depend
only on the ratio c/(κv). Nonetheless, the knowledge of the
moments of the number-fluctuation distribution permits one
to reconstruct the entanglement entropy [46] and can thus
be used as a means to measure this quantity in a CCSS.
As in equilibrium, the logarithmic contribution seen at zero
temperature can be observed for system sizes � � v/T , above
which there is a crossover to the purely extensive behavior
observed at finite temperatures.

As a consequence of the subextensive term appearing in
the entanglement entropy, the mutual information of two
adjacent segments grows logarithmically with the segment
length. Interestingly, the prefactor differs from the equilibrium
in a singular way: it is 1/3 for the equilibrium V = 0 case
and, for |V | > 0, it is a voltage-independent function of the
contact properties. This implies that the equilibrium result,
which can be obtained by conformal field theory arguments
for gapless one-dimensional phases with unit central charge,
does not hold away from equilibrium. The particular functional
form of the logarithmic prefactor of the mutual information of
two adjacent segments shows that their shared information is
never larger than at equilibrium and that a steady-state current
thought the system cannot carry any additional information
between the segments. A similar modification of the area-law
violation for the mutual information has been observed in
the CCSS formed after a quench of two chains at different
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temperatures [37]. In this case, the discontinuity in the
momentum distribution arises at k = 0 and π , for energies
where the dispersion relation is not linear; thus it depends on
the details of the band structure and cannot be captured by
the low-energy description used in this work. Modifications
to the equilibrium area-law violation suggest that the physics
away from equilibrium may be ruled by low-energy fixed-point
theories fundamentally different from the equilibrium ones.
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APPENDIX A: IDENTIFICATIONS WITH THE
TIGHT-BINDING MODEL I: GREEN’S FUNCTIONS

Using that, in the low-energy sector, cr � eikFrψL(a0r) +
e−ikFrψR(a0r), the Green’s function of the tight-binding model
on the Keldysh contour can be approximated by

Grr ′ (z,z′) ≡ −i〈Tγ cr (z) · c
†
r ′ (z′)〉

� (eikFr e−ikFr ) · G
(
zra−1

0 ,z′r ′a−1
0

) ·
(

e−ikFr ′

eikFr ′

)
,

(A1)

where

G(zx,z′x ′) ≡ −i〈Tγ �(zx) · �†(z′x ′)〉 (A2)

is the continuum Green’s function and Tγ is the time-ordered
operator for two times z and z′ on the Keldysh contour γ .
We use the standard definitions of larger and lesser Green’s
functions, G>(<)(tx,t ′x ′) ≡ G(tx,t ′x ′), for z = t (z′ = t ′)
coming after z′ = t ′ (z = t) along γ , and

GR(tx,t ′x ′) ≡ �(t − t ′)[G>(tx,t ′x ′) − G<(tx,t ′x ′)],

GA(tx,t ′x ′) ≡ −�(t ′ − t)[G>(tx,t ′x ′) − G<(tx,t ′x ′)],

GK (tx,t ′x ′) ≡ G>(tx,t ′x ′) + G<(tx,t ′x ′). (A3)

We use the notation Ga(tx,t ′x ′) = 〈x|Ga(t,t ′)|x ′〉, for a =
R,A,K , and in the steady state we define Ga(ω) =∫

dω
2π

eiω(t−t ′)Ga(t,t ′) . For convenience, we work with the

quantities

ρ−(ω) = −[GR(ω) − GA(ω)]/(2πi), (A4)

ρ+(ω) = −GK (ω)/(2πi), (A5)

rather than the Green’s functions themselves. These are
proportional to the spectral function and to the imaginary part
of the Keldysh Green’s function, respectively, and encode the
same physical information. Note that defined in this way, both
ρ± are Hermitian matrices (ρ±)† = ρ±. As in Eq. (A1), we
also have the relation

ρ±
rr ′ (ω) � (eikFr e−ikFr ) · ρ±(

ω; ra−1
0 ,r ′a−1

0

) ·
(

e−ikFr ′

eikFr ′

)

(A6)

between continuum and tight-binding quantities.

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE
GREEN’S FUNCTIONS

1. Retarded and advanced Green’s functions

Using the previously obtained eigensystem of K , the
retarded and advanced components of the Green’s function
for x,x ′ ∈ I0 are given by

〈x|GR(ω)|x ′〉 = 1

2L

∑
n

(
eiφLe−2aγLeiqnx

e−iqnx

)
1

ω − vqn

× (e−iφLe2aγLe−iqnx
′

eiqnx
′
) (B1)

and GA(ω) = [GR(ω)]
†
. The sum over the quantized qn’s can

be replaced by the contour integral,

1

2L

∑
n

eiqnx

ω − vqn

= dq

2π

eiqnx

ω − vqn

z±(q)

= i

v
z±(ωv−1)eiωv−1x, (B2)

where

z±(q) = ±1

e±[2iqL−2a(γL+γR)+i(φL−φR)] − 1
, (B3)

for x > 0 or x < 0, respectively, can be chosen in order to
render the integral convergent once the contour is deformed.
Using this identity, we obtain

〈x|ρ−(ω)|x ′〉 = 1

2πv

sinh(2aγL)

sinh[2a(γL + γR)]

(
e2aγRuL,0(ωv−1)eiωv−1(x−x ′) eiφLuL,−2(ωv−1)eiωv−1(x+x ′)

e−iφLuL,2(ωv−1)e−iωv−1(x+x ′) e−2aγRuL,0(ωv−1)e−iωv−1(x−x ′)

)

+ 1

2πv

sinh(2aγR)

sinh[2a(γL + γR)]

(
e−2aγLuL,0(ωv−1)eiωv−1(x−x ′) eiφLuL,0(ωv−1)eiωv−1(x+x ′)

e−iφLuL,0(ωv−1)e−iωv−1(x+x ′) e2aγLuL,0(ωv−1)e−iωv−1(x−x ′)

)
(B4)

where we defined

uL,n(q) = − ei[qL+ 1
2 (φL−φR)]n sinh[2a(γL + γR)]

cos[2qL + (φL − φR)] − cosh[2a(γL + γR)]
. (B5)
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In the limit L → ∞, one has that for a regular function f (q) and ε > 0 independent of L,

lim
L→∞

1

2ε

∫ q+ε

q−ε

dq ′ uL,n(q ′)f (q ′) = un f (q), (B6)

with

u0 = u±21; u±1 = 0 : = e−2a(γL+γR). (B7)

Using these limiting identities, for |x|,|x ′| � L/2 and L → ∞, the spectral function in the middle of the wire is given by

〈x|ρ−
bulk(ω)|x ′〉 ≡ 〈x + L/2|ρ−(ω)|x ′ + L/2〉 = 1

2πv

(
eiωv−1(x−x ′) 0

0 e−iωv−1(x−x ′)

)
. (B8)

2. Keldysh Green’s functions

In the steady state, the Keldysh component of the Green’s function is given by GK = GR�KGA with �K = �K
L + �K

R and

〈x|�K
l (ω)|x ′〉 = −2iv γl�(|x − xl| − a)δ(x − x ′) tanh

[
βl

2
(ω − μl)

]
σ0, (B9)

which yields

〈x|GK (ω)|x ′〉 =
∑

l=L,R

∫
Il

dy 〈x|GR(ω)|y〉〈y|�K
l (ω)|y〉〈y|GA(ω)|x ′〉. (B10)

For x,x ′ ∈ I0, one gets

〈x|ρ+(ω)|x ′〉 = 1

2πv
tanh

[
βL

2
(ω − μL)

]
sinh(2aγL)

sinh[2a(γL + γR)]

(
e2aγRuL,0(ωv−1)eiωv−1(x−x ′) uL,−2(ωv−1)eiφLeiωv−1(x+x ′)

uL,2(ωv−1)e−iφLe−iωv−1(x+x ′) e−2aγRuL,0(ωv−1)e−iωv−1(x−x ′)

)

+ 1

2πv
tanh

[
βR

2
(ω − μR)

]
sinh(2aγR)

sinh[2a(γL + γR)]

(
uL,0(ωv−1)e−2aγLeiωv−1(x−x ′) uL,0(ωv−1)eiφLeiωv−1(x+x ′)

e−iφLuL,0(ωv−1)e−iωv−1(x+x ′) e2aγLuL,0(ωv−1)e−iωv−1(x−x ′)

)
.

(B11)

As before, for |x|,|x ′| � L/2 and L → ∞, we obtain

〈x|ρ+
bulk(ω)|x ′〉 ≡ 〈x + L/2|ρ+(ω)|x ′ + L/2〉

= 1

2πv
tanh

[
βL

2
(ω − μL)

]
sinh(2aγL)

sinh[2a(γL + γR)]

(
e2aγReiωv−1(x−x ′) 0

0 e−2aγRe−iωv−1(x−x ′)

)

+ 1

2πv
tanh

[
βR

2
(ω − μR)

]
sinh(2aγR)

sinh[2a(γL + γR)]

(
e−2aγLeiωv−1(x−x ′) 0

0 e2aγLe−iωv−1(x−x ′)

)
.

APPENDIX C: IDENTIFICATIONS WITH THE
TIGHT-BINDING MODEL II: φl AND γl

1. Determination of φl

The tight-binding Hamiltonian, given by

HTB = −t

[(
N−2∑
r=0

|r〉〈r + 1|
)

+ H.c.

]
, (C1)

has wave functions of the form

ψ(r) = 〈r |ψk〉 = Aeikr + Be−ikr , (C2)

and the dispersion relation

εk = −2 cos (k). (C3)

The quantization condition for the momentum can
be obtained imposing 〈r = 0|HTB|ψk〉 = εk〈0|ψk〉 and
〈r = N − 1|HTB|ψk〉 = εk〈N − 1|ψk〉 and are equivalent to

the relations

ψ(−1) = ψ(N ) = 0. (C4)

For the wave function expanded around kF,

〈r|ψk〉 � eikFr〈x = a0r|ψL〉 + e−ikFr〈x = a0r|ψR〉, (C5)

this implies, in the limit a0 → 0, a0N → L,

e−ikF〈0|ψL〉 + eikFr〈0|ψR〉 = 0, (C6)

eikFLa−1
0 〈L|ψL〉 + e−ikFLa−1

0 〈L|ψR〉 = 0, (C7)

yielding to the phase shifts

φL = 2kF − π, (C8)

φR = −2kFLa−1
0 − π. (C9)
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2. Determination of γl

The eigenvectors of the tight-binding version of the K
operator,

K TB = − t

[(
N−1∑
r=1

|r〉〈r + 1|
)

+ H.c.

]

− i(�L|1〉〈1| + �R|N〉〈N |),
can be given in terms of a sum of plane waves and can
be obtained in a similar way to that employed in the
previous section. The spectrum of K TB is obtained impos-
ing 〈r = 0|HTB|ψk〉 = εk〈0|ψk〉 and 〈r = N − 1|HTB|ψk〉 =
εk〈N − 1|ψk〉, and yields[

te−ik − i�L

teik − i�L

][
te−ik − i�R

teik − i�R

]
= e2ikN .

Assuming k = k0 + �k
N

, where k0 is a solution of the equation

e−4ik0 = e2ik0N, (C10)

i..e.,

k0 = π

L + 1
n, (C11)

and �k is of the order of 1/N , we obtain

�k = 1

2
tan−1

{
sin(2k0)

[(
�2

R + �2
L

) + 2 cos(2k0)�2
L�2

R

]
�2

L�2
R cos(4k0) + (

�2
L + �2

R

)
cos(2k0) + t2

}

+ 1

4
i

[
ln

(
−�2

Lt−2 − 2t−1 sin k0�L + 1

�2
Lt−2 + 2t−1 sin k0�L + 1

)

+ ln

(
−�2

Rt−2 − 2t−1 sin k0�R + 1

�2
Rt−2 + 2t−1 sin k0�R + 1

)]
. (C12)

Therefore, near k0 = kF, we get

Imq = a−1
0 Im(k0 − kF)

=−1

4
i

1

a0N

[
ln

(
−�2

Lt−2 + 2t−1 sin kF�L + 1

�2
Lt−2 − 2t−1 sin kF�L + 1

)

+ ln

(
−�2

Rt−2 + 2t−1 sin kF�R + 1

�2
Rt−2 − 2t−1 sin kF�R + 1

)]
. (C13)

Identifying this expression with the quantization condition of
the continuum model, we obtain

aγl = 1

4
ln

(
−�2

l t
−2 − 2t−1 sin kF�l + 1

�2
l t

−2 + 2t−1 sin kF�l + 1

)
, (C14)

which for �l � 1 can be approximated by aγl � sin kF�l .

3. Numerical results for the two-point function

Figure 6 shows the one-point functions ρ±
rr ′ (ω) as a function

of ω for a finite system. The sharp features with frequency
are signatures of the discrete spectrum of the finite chain in
the absence of the leads and, in the spectral function ρ−

rr ′ (ω),
they become δ functions in the limit �L,�R → 0. The infinite
volume approximation washes out the rapid variations by
averaging over small energy window of the order of the level
spacing before taking the L → ∞ limit; see Eq. (B6).

ρ
+ r,

r
(ω

)
ρ
− r
,r

(ω
)

ρ
− r,

r
+

1
(ω

)
ρ
+ r,

r
+

1
(ω

)L = 501
r = 250

t.-b.

cont.app.∞
cont.app.L

ω − εF ω − εF

FIG. 6. One-point functions ρ±
rr ′ (ω) as a function of ω computed

for r ′ = r (left panel) and r ′ = r + 1 (right panel) and for r =
250, L = 501, �L = 0.5t , �R = 0.2t , εF = 0.9t , V = 0.1t , and
TL = TR = 0.01t . The black dots are obtained numerically using
the tight-binding model. The black curves are obtained from the
continuum limit for finite L using Eqs. (B4) and (B11).

APPENDIX D: CALCULATION OF THE DETERMINANT
AND ENTANGLEMENT ENTROPY

For zero temperature, the symbol φ is not a smooth function
of k. In this case, the Fisher-Hartwing conjecture [49] states
that if we decompose the symbol as

φ(θ ) = eV (θ)ei
∑m

i=0 βi (θ−θi )e−π
∑m

i=0 βisgn(θ−θi )

×
∣∣∣∣2 sin

(
θ − θi

2

)∣∣∣∣
2αj

, (D1)

where the θi’s are the points where φ(θ ) is nonanalytic, αi

and βi are constants that characterize the nonanalyticities, and
V (θ ) is a smooth function of θ , the asymptotic large-� form of
the determinant of the Toplitz matrix is given by

D�[φ] � EFH[φ]e�V0+ln(�)
∑m

j=0(α2
j −β2

j ), (D2)

with EFH[φ] an �-independent constant and

V0 =
∫

dθ

2π
V (θ ).

For TR,TL = 0, the momentum distribution function in the
middle of the wire is given by

nk �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −kF + �
2 < k < kF − �

2

bL kF − �
2 < k < kF + �

2

0 kF + �
2 < k ∨ k < −kF − �

2

bR for − kF − �
2 < k < −kF + �

2 .

(D3)

Therefore, decomposing φ(θ ) = z − nθ , we obtain

θ0 = 0; θ1 = kF − �

2
, θ2 = kF + �

2
, (D4)

θ3 = 2π − kF − �

2
, θ4 = 2π − kF + �

2
, (D5)

αi = 0,

β0 = 0, (D6)

β1 = 1

2πi
[ln(z − 1) − ln(z − bR)], (D7)
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β2 = i

2π
[ln(z − bR) − ln(z)], (D8)

β3 = 1

2πi
[ln(z) − ln(z − bL)], (D9)

β4 = 1

2πi
[ln(z − bL) − ln(z − 1)], (D10)

and

eV (θ) = (z − 1)
2kF−�

2π z
−�−2kF+2π

2π

× (z − bL)
�
2π (z − bR)

�
2π . (D11)

Equation (23) follows immediately from these definitions,
given by Eq. (D2), and by setting z = (1 − eiλ)

−1
. The

entanglement entropy is given by

S� = �

[
1

2πi

∮
dz s(z)∂zV0

]

+ ln (�)

⎡
⎣ 1

2πi

∮
dz s(z) ∂z

m∑
j=0

(
α2

j − β2
j

)⎤⎦, (D12)

where the contour of integration in Eq. (D12) contains the
segment z ∈ [0,1]. Performing the integration explicitly yields
Eq. (26).

APPENDIX E: CALCULATION OF THE TWO-PARTICLE
CORRELATION FUNCTIONS

The charge susceptibility on the Keldysh contour γ is
defined as

χ (zr,z′r ′) = −i[〈Tγ c†r (z+)cr (z)c†r ′(z′+)cr ′(z′)〉
− 〈Tγ c†r (z+)cr (z)〉〈Tγ c

†
r ′ (z′+)cr ′ (z′)〉], (E1)

where the z+ denotes a point coming infinitesimally later than
z along γ . Due to the Gaussian nature of the model,

χ (zr,z′r ′) = −iGr ′r (z′,z)Grr ′ (z′,z). (E2)

The greater and lesser components are given by
χ>,<(t r,t ′r ′) = χ (z = t r,z′ = t ′r ′) with z, respectively, after
or before z′. For the r and r ′ in the middle of the wire, using
the approximated translationally invariant Green’s functions,
we obtain

χ><
r,r ′ (t,t ′) = −i[G<>

L (t ′x ′,tx)G><
L (tx,t ′x ′)

+G<>
R (t ′x ′,tx)G><

R (tx,t ′x ′)

+G<>
L (t ′x ′,tx)G><

R (tx,t ′x ′)e−i2kF (r−r ′)

+G<>
R (t ′x ′,tx)G><

L (tx,t ′x ′)ei2kF (r−r ′)], (E3)

with x = ra0, x ′ = r ′a0 and Gl(zx,z′x ′) = −i〈Tγ ψl

(zx)ψ†
l (zx)〉, since the cross terms 〈Tγ ψR(zx)ψ†

L(zx)〉 vanish.
Defining

Ga
l (tx,t ′x ′) =

∫
dω

2π

∫
dq

2π
e−iω(t−t ′)eiq(x−x ′)Ga

l (ωk), (E4)

we have that for the quantities χ±
p (ν) = − 1

2πi
[χ>

p (ν) ±
χ<

p (ν)],

χ±
p (ν) = χ±

LL

(
ν,a−1

0 p
) + χ±

RR

(
ν,a−1

0 p
)

+χ±
LR

[
ν,a−1

0 (p − 2kF)
]

+χ±
RL

[
ν,a−1

0 (p + 2kF)
]
, (E5)

with

χ±
ll′ (νq) = −π

∫
dω

2π

∫
dk

2π
[ρ±

l (ωk)ρ+
l′ (ω − ν; k − q)

− ρ∓
l (ωk)ρ−

l′ (ω − ν; k − q)], (E6)

and substituting the expressions for ρ±
l (ωk), we obtain

Eqs. (28).
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