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Superbosonization in disorder and chaos: Role of anomalies
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The superbosonization formula aims at rigorously calculating fermionic integrals via employing supersymme-
try. We derive such a supermatrix representation of superfield integrals and specify integration contours for the
supermatrices. The derivation is essentially based on the supersymmetric generalization of the Itzykson-Zuber
integral in the presence of anomalies in the Berezinian and shows how an integral over supervectors is eventually
reduced to an integral over commuting variables. The approach is tested by calculating both one and two point
correlation functions in a class of random matrix models. It is argued that the approach is capable of producing
nonperturbative results in various systems with disorder, including physics of many-body localization, and other
situations hosting localization phenomena.
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I. INTRODUCTION

Supersymmetry [1,2] deals with Grassmann numbers that
were originally invented in mathematics and later used in quan-
tum field theory as the classical analogues of anticommuting
operators. This mathematical construction is proven to be a
very useful tool for studies in various fields of physics and
in particular in models of quantum chaos, involving random
matrix theory and various models of disorder [3–5].

One of the prominent methods employing supersymmetry
is the nonlinear supersymmetric σ model [3,4] description
of disordered metallic conductors. According to this standard
formalism, effective field theory is described by an action
with coordinate dependent supermatrix field, Q(r), obeying
the constraint,

Q2(r) = 1. (1)

This method has a broad range of applications including
study of Anderson localization, mesoscopic fluctuations, levels
statistics in a limited volume, quantum chaos. A general form
of the free energy functional F is rather simple

F [Q] = πν

8

∫
Str[D(∇Q)2 + 2i(ω + iδ)Q(r)]dr (2)

containing the classical diffusion coefficient D, the one particle
density of states ν, and frequency ω. Although the free energy
F [Q], Eq. (2), is written in the limit of a weak disorder,
it can be used for strongly disordered samples replacing the
gradient by finite differences. At very low energies the effective
free energy functional is dominated in a finite volume by the
zero spatial mode, Q(r) = Q0, which is independent of r. In
this limit the model is especially simple containing only the
second term in Eq. (2). The spectral properties of the theory are
universal and coincide with those of Wigner-Dyson random
matrix ensembles with corresponding symmetries [3–7].

The derivation of the σ model, Eq. (2), from microscopic
models is not exact and is based on a saddle point method or
invariance arguments applicable at weak disorder or the large
size of the matrices in the Wigner-Dyson ensembles. At the
same time, the “diffusive” σ model, Eq. (2) is not applicable
for, e.g., description of electron motion in ballistic regime,

where characteristic spatial scales are much smaller than the
mean free path. Another important problem, that is known to
be out of the reach of the nonlinear σ model, is random matrix
models with finite range correlations between the matrix
elements that do not belong to the Wigner-Dyson ensembles.
One of the examples is models of weakly nondiagonal matrices
[8,9]. Of course, there are many other models that cannot be
reduced to the σ model, Eq. (2).

In many of those models correlation functions of interest
can be expressed from the beginning in terms of integrals
over supervectors, and the problem arises due to absence of
a possibility of using the saddle-point approximation leading
to Eqs. (1) and (2). Therefore, it is natural to try to generalize
the σ model, Eq. (2), to a model containing supermatrices but
without the constraint, Eq. (1). In such a model, the generating
functional Z(J ) would be expressed in terms of an integral
over unconstrained supermatrices, and having calculated this
integral, one would be able to compute correlation functions
of interest. It should be noticed here that usually many-level
or many point correlation functions are really interesting.
One-level or one-point averages (average density of states)
usually do not bring interesting information about the systems
(in the problem of Anderson localization, the average density
of states cannot help to distinguish between the metal and
insulator).

In principle, some dual representations of a generating
functional, initially given by an integral over N × N Hermitian
matrices (color space), are known as color-flavor transforma-
tions [10]. They transform the original integral in “color space”
to an integral over certain supermanifolds, which are acting in
the dual space (flavor space). However, being interesting on
its own, this transformation has not yet evolved into a new
computational tool.

Trying to find a new method of studying nonstandard
problems of the supersymmetry method, a kind of bosonization
procedure to the original fermionic functional Z(J ) has
been suggested some time ago [11,12]. As a result, the
partition function has been represented in a supermatrix action
formulation without any constraint whatsoever; this approach
was claimed to be applicable to the physics of electron
motion at all scales. It seemed that the limitations due to the
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nonlinearity of the conventional σ -model representation were
overcame. Nevertheless the formula of superbosonization was
not well understood from the practical point of view, namely
the integration method was not specified.

More precisely, in Ref. [12] a new superbosonization
formula that allowed the field integral over supervectors be
expressed through a supermatrix integral has been derived,∫

DψDψ̄ F (ψ ⊗ ψ̄) =
∫
Hn

DA SdetA−1 F (A), (3)

where Hn is the linear space of Hermitian n-dimensional
complex supermatrices, ψ ∈ U (n,1|n,1) and ψ̄ ∈ U (n,1|n,1)
are supervectors, and F : Hn → G is a formal map with G
representing a superspace [13]. Importantly, the right-hand
side of Eq. (3) could be evaluated under general conditions,
without reducing it to any mean-field manifold. For this reason,
it was suggested that Eq. (3) could be capable of producing
nonperturbative results in various models of disorder. One can
imagine that Eq. (3) can represent a promising approach for
nonperturbative studies in physics of many-body localization
[14,15] and other situations where disorder plays an important
role [16].

Originally [12], Eq. (3) has been derived rather schemat-
ically without discussing contours of integration over the
commuting elements of the supermatrix A. An attempt
to specify contours of integration has been undertaken in
Ref. [17]. Roughly, speaking it was suggested to integrate
over the eigenvalues of the boson block from −∞ to ∞, while
the integration over the eigenvalues of the fermion-fermion
block has to be performed over a compact domain (a circle
in the simplest case). Surprisingly, it turned out that such an
integration was well defined only in rather uninteresting cases.
In particular, it worked perfectly well for correlation functions
that required a sufficiently small number q � n of the bosonic
components, where n was a number of artificial “orbitals”.
In other words, one could use Eqs. (3) for calculation of the
density of states in case of the unitary ensemble, while one
encountered a singularity of the type ∞ × 0, when trying
to calculate a two-level correlation function. The situation
for, e.g. orthogonal ensemble was even worse and one could
not calculate even the density of states in this case. The
situation was better when using a sufficiently large number
of the “orbitals” n but this could be efficiently closer to results
obtained using the standard saddle-point method and therefore
less interesting.

These findings have been confirmed rigorously in Ref. [18]
but the case q > n was not resolved and it was even concluded
that the superbosonization formula, Eq. (3), was not correct
for this case. This was a serious obstacle in using the
superbosonization for applications to interesting unsolved
problems.

In this paper we resolve this long standing problem of the
integration in Eq. (3) for the case of hermitian matrices with an
arbitrary correlation between the matrix elements. Of course,
the suggested approach can be used for disordered systems
with a broken time-reversal invariance. We do it integrating
over the eigenvalues of the fermion-fermion block along the
imaginary axis from −i∞ to i∞ instead of the integration
along the circle adopted in Refs. [17,18]. This does not make
a difference in the results for q � n but it makes the integral,

Eq. (3), well defined for q > n and computation of many point
correlation functions feasible, thus establishing a new method
of calculations for interesting problems.

The paper is organized as follows. In Sec. II we set the basis
for the subsequent analysis of the bosonization procedure of
Ref. [12] by calculation of a supersymmetric generalization
of Itzykson-Zuber (IZ) integral. In Sec. III we show how
the formulated supermatrix representation of integrals over
supervectors (the so-called bosonized representation) can be
evaluated. In particular, we derive the domains of integration,
for which the bosonization formula is exact. It is remarkable
that this regularized scheme leads to an effective reduction
of dimensionality of the domain of integration, which is
noncompact.

The proof is essentially based on the results discussed in
Sec. II: the supersymmetric generalization of the Itzykson-
Zuber (IZ) integral [19–24], in situations when a boundary
term is crucial due to the presence of singularities in the
Berezinian. Emergence of this boundary term in the IZ integral
ensures that both representations of the generating functional
coincide.

In Sec. IV we apply the regularized superbosonization for-
mula to calculation of correlation functions in random matrix
models. We derive both one and two point correlation functions
for Hermitian diagonal random matrices with continuously
distributed components and correction to the density of states
for weakly nondiagonal random matrices [8,9]. Technical
details of some of the derivations are presented in Appendices
A–C.

II. ANOMALY IN SUPERSYMMETRIC
ITZYKSON-ZUBER INTEGRAL

A. Supersymmetric Itzykson-Zuber integral

In this section we present useful formulas that will be
applied in subsequent sections. Let us note that in all future
considerations the integration over the linear space of complex
supermatrices,

∫
Hn

DA, with flat Berezin measure [1,2] is
always performed first by diagonalizing the matrix A and then
by integrating over the eigenvalues. We distinguish between
“fermion-fermion (FF)” and “boson-boson (BB)” blocks of the
matrixA corresponding respectively to products ψF ⊗ ψ̄F and
ψB ⊗ ψ̄B of anticommuting and commuting components of
the supervectors. After the diagonalization of the supermatrix
A one half of the eigenvalues will be in the FF block, and
the other part will be in the BB block. We will call these
eigenvalues FF and BB eigenvalues, respectively.

We will demonstrate that the integration over the BB
eigenvalues should be performed in the infinite interval R ≡
{−∞,∞}, while the integration over the FF eigenvalues should
be performed in the infinite interval {−i∞,i∞}. This contrasts
the integration rules of Refs. [17,18], where the integration
over the FF eigenvalues was performed along the unit
circle.

Let us note that any complex 2n × 2n supermatrix, A,
can be diagonalized as A = UAd V̄ , where U ∈ U (n|n),
V̄ ∈ U (n|n)/U 2n(1) are diagonalization matrices restricted
correspondingly to the unitary supergroup and its subspace
with removed phases. To this end, we are interested in a matrix
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integral of the type

�[{b̃j ,bj ,}|{λ̃j ,λj }] =
∫

DUDV̄ exp{Re Str[UBdV̄ Qd ]},
(4)

where Bd = diag{b̃i ,bi} and Qd = diag{λ̃,λ,} are the FF and
BB eigenvalues of supermatrices B and Q, respectively, and
U ∈ U (n|n), V̄ ∈ U (n|n)/U 2n(1). Let us note that this integral
is often referred to as supersymmetric Berezin-Karpelevich
integral [25] in the literature, and the connection between the
latter and the Itzykson-Zuber integral is not straightforward
[26]. The result of integration in Eq. (4) reads [20,22,23]

�[{b̃j ,b,}|{λ̃j ,λj }]

= [1 − η({λ̃i ,λi})]
∏

i δ(b̃i)δ(bi)

�2
({

b̃2
j ,b

2
j

}) + �0[{b̃j ,bj }|{λ̃j ,λj }].

(5)

Here �0[{b̃j ,bj }|{λ̃j ,λj }] is the result of the bulk integration
without accounting for the singularity in the Berezinian (if
there is such). It has the form

�0[{b̃j ,bj }|{λ̃j ,λj }]

= 1

22n2 (n!)2

det J0[b̃pλ̃q]p,q=1...n det J0[blλm]l,m=1...n

�
({

b̃2
j ,b

2
j

})
�
({

λ̃2
j ,λ

2
j

}) ,

(6)

where

�
({

b̃2
j ,b

2
j

}) =
∏n

k<r=1

(
b̃2

k − b̃2
r

)∏n
l<m=1

(
b2

i − b2
m

)
∏n

p<q=1

(
b̃2

q − b2
p

)
= det

[
1

b̃2
j − b2

i

]
i,j=1...n

(7)

is the supersymmetric Vandermonde determinant and J0[bpλq]
is the zero-order Bessel function. The term η({λ̃i ,λi}) is
the boundary term arising from the singularities of the
Berezinian (This type of the boundary term in the integrals over
supermatrices has been found in Refs. [3,27] and is sometimes
called Efetov-Wegner boundary term [28,29]). It originates
from the regularization of the anomaly in the Berezinian and
is given by [23]

η({λ̃i ,λi})

= 1

�
({

λ̃2
j ,λ

2
j

}) det

[
1

λ̃2
l − λ2

k

(
1 − e

λ̃2
l
−λ2

k
2t

)]
k,l=1,...,n

. (8)

One can easily check that the expression (7) for IZ integral
boundary terms, �0[{b̃j ,bj }|{λ̃j ,λj }], does not fulfill Eq. (9)
(see below). The singularity of the Berezinian �2({b̃2

j ,b
2
j }) in

Eq. (9) gives rise to the appearance of the boundary term in
�[{b̃j ,bj }|{λ̃j ,λj }].

B. Origin of the boundary term in the Itzykson-Zuber integral

Our aim in this section is to underline the origin of
the anomaly of the Berezinian and the implication for the
supersymmetric Itzykson-Zuber integral. For this purpose for

any given diagonal complex supermatrix Qd consider the
Gaussian integral,∫

DB exp

{
1

2t
Str[(B − Qd )2]

}

=
∫ ∏

i

db̃idbi �2
({

b̃2
j ,b

2
j

})

× exp

{
− 1

2t
Str
[
B2

d + Q2
d

]}

×
∫

DU DV̄ exp

{
1

2t
Re Str{UBdV̄ Qd}

}

=
∫ ∏

i

db̃idbi�
2
({

b̃2
j ,b

2
j

})
�[{b̃j ,bj ,}|{λ̃j ,λj }], (9)

where we have the diagonalized complex supermatrix B →
Bd = diag{bi,b̄i}. In Eq. (9) �2({b̃2

j ,b
2
j }) is the Berezinian

of the transformation, B = UBdV̄ , where U ∈ U (n|n) and
V̄ ∈ U (n|n)/U 2n(1).

The integral, Eq. (9), is originally gaussian, and integrating
separately over all matrix elements of the supermatrix B

gives unity. It is clear that changing the variables of the
integration cannot modify this result and one must obtain
unity also integrating over the eigenvalues. However, one can
easily check that the “naive” expression for Itzykson-Zuber
integral �0[{b̃j ,bj }|{λ̃j ,λj }], Eqs. (6) and (7), is not equal
to unity. It is the singularity of the Berezinian �2({b̃2

j ,b
2
j })

in Eq. (9) that gives rise to the appearance of boundary
term η({λ̃i ,λi}) Eq. (8), in �[{b̃j ,bj }|{λ̃j ,λj }], that was found
in Ref. [23]. Existence of this boundary term ensures the
condition that the integral Eq. (9) is unity. Hence, the correct
answer for supersymmetric Itzykson-Zuber integral � has the
form Eq. (5).

The following remark is in order. The result,
�0[{b̃j ,bj }|{λ̃j ,λj }], of the evaluation of the supersymmetric
IZ integral in the absence of singularities was derived by
solving the supersymmetric heat equation [20,22], a technique
that was developed in Ref. [19] for conventional matrices. It is
straightforward to check that the boundary term ∝(1 − η) in
Eq. (5) also satisfies the heat equation.

III. SUPERBOSONIZATION: PROOF AND
INTEGRATION CONTOURS

In this section we present a derivation of the super-
bosonization formula and, in particular, of the bosonized
σ model for random matrices. The derivation is similar
to the procedure developed in Refs. [3–5,20,30], but here
instead of the Hubbard-Stratonovich transformation [31],
which in the standard scheme follows the averaging over
random matrices, we use the identities from the above
section. Actually, the scheme of the derivation is very close
to that of Ref. [12] but is more rigorous. It is useful to
recall that formal sums of formal products � ⊗ �̄, where
� ∈ U (n,1|n,1) and �̄ ∈ U (n,1|n,1) are supervectors, con-
stitute a vector space. This vector space is defined, up to
isomorphism, by the condition that every antisymmetric,
bilinear map f : U (n,1|n,1) × Ū (n,1|n,1) → G determines
a unique linear map g : U (n,1|n,1) ⊗ Ū (n,1|n,1) → G with
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f (�,�̄) = g(� ⊗ �̄). This implies that if we consider a map,
F : Hn → G, then the integral

IF =
∫

DψDψ̄ F (ψ ⊗ ψ̄) (10)

is now well defined. From now on we will restrict ourselves
to the case of maps, F , such that the integral IF in Eq. (10) is
convergent.

As the first step we make use of the identity derived in
Appendix A to rewrite the field integral in the left-hand side
of Eq. (3) as

IF =
∫
Hn

DAF (A)
∫

DψDψ̄

∫
Hn

DB

× exp

⎧⎨
⎩iStr[AB] − i

∑
j

Str[ψj ⊗ ψ̄jB] − δStr[B2]

⎫⎬
⎭,

(11)

where δ is an infinitely small variable that ensures the
convergence of the integral over the variable B in Eq. (11);
it can be dropped once the integral over B is convergent. Now,
due to the convergence of the integral in Eq. (11) and the
presence of δ, we are free to change the order of the integration
over the supermatrix B and the supermatrices ψi ⊗ ψ̄i . The
integration over the supervectors ψ,ψ̄ leads to

∫
DψDψ̄ exp

⎧⎨
⎩−i

∑
j

Str[ψj ⊗ ψ̄jB]

⎫⎬
⎭

=
∫

DψDψ̄ ei
∑

j ψ̄j Bψj = Sdet[iB]. (12)

Then, the integral over B acquires the form

IB =
∫
Hn

DB Sdet[iB] eiStr[AB], (13)

where we dropped δ due to the convergence of the integral
Eq. (13). The integral Eq. (13) can be calculated by changing
the integration variable B to B ′ = AB. Supermatrix B ′ is
not necessarily Hermitian, however it obeys the constraint
Str[B ′] = Str[(B ′)†]. By definition B ′ is an element of the
vector space 2(Hn) (for definition see Appendox B). Taking
into account the fact that due to the supersymmetry the
Berezinian of the transformation B ′ = AB is unity and

SdetB = SdetB ′

SdetA , (14)

we obtain

IB = SdetA−1
∫

2(Hn)
DB ′ SdetB ′ eiStrB ′ = Cn SdetA−1.

(15)

The coefficient Cn is calculated in Appendix B, yielding Cn =
1. As a result, one arrives at the bosonized representation for
the integral Eq. (11)

IF =
∫
Hn

DA SdetA−1 F (A). (16)

To finalize this section we remind the reader that in
Eq. (16) the integration over the linear space of Hermitian
supermatrices,

∫
Hn

DA, with Berezin measure is understood
here as follows: (i) First we diagonalize the matrix A and
then integrate over the eigenvalues. (ii) Integration over
“boson-boson” eigenvalues is performed in the infinite interval
{−∞,∞}, whereas the integration over the “fermion-fermion”
eigenvalues is performed (in contrast to Refs. [17,18]) in the
noncompact interval {−i∞,i∞}. In this way, the integral
in Eq. (3) over supervectors is reduced to an integral over
commuting variables. It is worth mentioning that the presence
of SdetA−1 in Eq. (3) leads to a singular product

∏
i λ̃

−1
i ,

which make the integral very sensitive to the contour of the
integration over the FF eigenvalues λ̃i .

Representing the integral over supervectors in terms of an
integral over the supermatrices is more than just changing the
variables of the integration. Usually, the term bosonization is
used for the procedure of a replacement of an electron model
by a model describing collective bosonic excitations. For
example, the traditional σ model describes so-called diffusion
modes instead of electrons in a random potential. As our
transformation is exact and is based on the supersymmetry,
we find it proper to use the word “superbosonization” for
the transformation, Eq. (3), complemented by the rules of the
integration over the eigenvalues of the supermatrices.

IV. SUPERBOSONIZATION OF RANDOM MATRICES:
CORRELATION FUNCTIONS

In this section we develop a technique for calculation of
various correlation functions in random matrix theory (RMT),
such as the averaged density of states, level-level correla-
tions, eigenfunction correlations, and higher order correlation
functions. For this purpose, without loss of generality, we
consider an ensemble of N -dimensional Hermitian matrices,
H = {Hij }, with continuously distributed components. For
simplicity let us concentrate on the Gaussian probability
density function,

P(H ) =
N∏

i,j=1

Pij (Hij ), (17)

with the distribution functions Pij (i,j = 1 . . . N ) equal to

P (Hij ) = 1

2πAij

exp

{
−HijH

∗
ij

2Aij

}
. (18)

Then Eqs. (17) and (18) unambiguously define statistical
properties of the matrix entries as 〈Hij 〉 = 0, 〈H 2

ii〉 = A0, and
〈H 2

ij 〉 = Aij for i = j . The Wigner-Dyson unitary ensemble is
obtained putting Aij = const independent on i,j.

A. Correlation functions in the superbosonized representation:
General framework

We begin with the generating functional for n-point corre-
lation functions

Z(J1 . . . Jn) =
∫

DψDψ+ exp

⎧⎨
⎩i

N∑
i,j=1

ψ+
i MJj

i,jψj

⎫⎬
⎭,

(19)
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with the matrix MJj

i,j defined as

MJj

i,j = LδijHJj

j + LHij ,

HJj

j =
(

−E1̂ + ω + i0

2
 − Jj ŝ

)
. (20)

In Eq. (19) ψi are supervectors with n bosonic and n fermionic
components, the source terms, Ji (i = 1 . . . n), in Eq. (20) are
real parameters multiplied by diagonal 2n × 2n matrices, ŝ,
which break the fermion-boson (FB) symmetry. Parameter
E stands for the energy and ω is the frequency. The 2n-
dimensional supermatrices L, , and ŝ are defined as

L =
(

idn 0
0 k̂

)
FB

,

 =
(

k̂ 0
0 k̂

)
FB

, (21)

ŝ =
(

idn 0
0 −idn

)
FB

,

with n-dimensional unity matrix, idn, and n-dimensional
diagonal matrix, k̂ = diag(1,−1). The purpose of introducing
the matrix, k̂, is that it distinguishes between the advanced
and the retarded (A/R) Green functions. Finally, 1̂ is an
identity matrix in both F/B and A/R spaces (from now on
we will discontinue explicitly writing 1̂ for shortening the
presentation).

To derive the supersymmetric action for RMT, one has to
perform averaging in the generating functional, Z(J1 . . . Jn),
over realizations of the entries of the random matrix, H . Car-
rying out such an averaging with the probability distribution
defined in Eqs. (17) and (18), one obtains

〈Z(J1 . . . Jn)〉 =
∫

DψDψ̄ exp

⎧⎨
⎩i
∑

i

ψ̄iHJ
i ψi

− 1

2

∑
i,j

Ai,j (ψ̄iψj )(ψ̄jψi)

⎫⎬
⎭, (22)

where we have defined ψ̄i = ψ+
i L. At this point we note

that for the constituent terms of the action (expressions in
exponent), Eq. (22), the following identities hold

ψ̄iHJ
i ψi = Str

[
ψi ⊗ ψ̄i

(
−E + ω + i0

2
 − Ji

)]
,

(ψ̄jψi)(ψ̄iψj ) = −Str(ψi ⊗ ψ̄iψj ⊗ ψ̄j ), (23)

The crucial step towards calculation of the correlation
functions in Gaussian random matrix theory under consid-
eration is the evaluation of the superintegrals in Eq. (23) from
their superbosonized representation Eq. (3). With the help of
the superbosonization formula Eq. (3) we can represent the
generating functional, 〈Z(J )〉, in the form

〈Z(J1 . . . Jn)〉
=
∫
Hn

∏
i

DQi Sdet[Qi]
−1

× exp

⎧⎨
⎩i
∑

i

Str
[
QiHJ

i

]− 1

2

∑
i,j

Ai,j Str[QiQj ]

⎫⎬
⎭,

(24)

where each of the integrals over the linear space of com-
plex Hermitian supermatrices, Hn, should be performed
first diagonalizing matrices Qi and then integrating over
their eigenvalues. As was mentioned in the Introduction,
integration over BB eigenvalues is performed along the real
axis, (−∞,∞), whereas integration over FF eigenvalues is
performed along the imaginary axis, (−i∞,i∞).

In conclusion of this subsection we note that the derivatives
of the averaged generating functional, 〈Z(J1 . . . Jn)〉, taken at
zero source, J = 0, define the advanced and retarded Green
functions in RMT [5,20]. The n-point Green functions can be
expressed via the derivatives of 〈Z(J1 . . . Jn)〉 functional in a
standard way,

GR/A(E1 . . . En) = 1

πn

〈
n∏

i=1

Tr

[
1

Ei − H ± i0

]〉

= 1

(2π )n
∂n

∂J1 · · · ∂Jn

〈Z(J1 . . . Jn)〉|Ji=0,

(25)

which define the universal characteristics of RMT. As usual,
the sign “+” in the denominator corresponds to the retarded
Green function GR , while the sign “−” to the advanced
one GA.

B. Correlation functions for diagonal random matrices

Let us first show how the method developed here works for
diagonal random matrices. Although this case is not the most
interesting one, it allows one to understand how the method
works. We remind the reader that the conventional nonlinear
σ model [3–5] is not applicable in this case.

For diagonal random matrices we have Aij = 0 for i = j ,
and thus the averaged generating functional Eq. (24) acquires
the form

〈Z0(J1 . . . Jn)〉 = ∫Hn

∏
i DQi Sdet[Qi]−1 exp

{
i
∑

i Str
[
QiHJ

i

]− 1
2

∑
i A0Str

[
Q2

i

]}
, (26)

where supermatrices HJ
i are given by Eq. (20), ŝ is given by Eq. (21), and Qi are Hermitian supermatrices with n bosonic and n

fermionic entries.
Calculation of 〈Z0(J1 . . . Jn)〉 can be performed in a similar way, as the calculation of Cn in Appendix B. Namely, first

we diagonalize the supermatrices Qi and afterwards perform IZ-type integration. Since the supermatrices Qi in Eq. (26)
are Hermitian, they can be diagonalized upon the rotation by the elements of the unitary supergroup, SU(n|n). Substituting
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transformation Q = UQdU
+, where U ∈ SU(n|n), into Eq. (26) we arrive to the following form of the generating functional

〈Z0(J1 . . . Jn)〉 =
∫ ∏

i

DUi

∫ ∏
α

Dλi,α Dλ̃i,α�2({λ̃i,α,λi,α})
∏
j,α

λj,α ± i0

λ̃j,α ± i0

× exp

{
i
∑

i

Str
[
Qi,dUiHJ

i,dU
+
i

]− 1

2

∑
i,α

A0
(
λ2

i,α − λ̃2
i,α

)}
, (27)

where the integration over bosonic eigenvalues of Qi , λi,α (α = 1, . . . n), should be carried out along the real axis,
(−∞,∞), and the integration over fermionic eigenvalues, λ̃i,α (α = 1, . . . n), should be carried out along the imaginary
axis, (−i∞,i∞). The infinitesimally small terms ±i0 in Eq. (27) arise after removing ±i0 from HJ

i in Eq. (26)
by shifting the variable of the integration Q. Berezinian, �2({λ̃j,α,λj,α}), is the Jacobian of the diagonalization
given by

�({λ̃j,α,λj,α}) =
n∏

α,β=1

(λj,α − λj,β)(λ̃j,α − λ̃j,β)

(λj,α − λ̃j,β)
= det

α,β

[
1

λj,α − λ̃j,β

]
. (28)

It is transparent that the zero order generating functional Eq. (27) has a factorized form and can be represented as

〈Z0(J1 . . . Jn)〉 = [Z0(J )]N, (29)

where

Z0(J ) =
∫ ∏

i

DU

∫ ∏
α

Dλα Dλ̃α�2({λ̃α,λα}) ×
n∏

α=1

λα ± i0

λ̃α ± i0
exp

{
iStr
[
QdUHJ

d U+]− 1

2

∑
α

A0
(
λ2

α − λ̃2
α

)}
. (30)

We see that the calculation of the generating functional for diagonal random matrices reduces to the calculation of the IZ integral.
This integral can be calculated employing the result of Sec. II for the unitary supergroup [20,23], U ∈ SU(n,n):

I =
∫

DU exp
{
iStr
[
QdUHJ

d U+]}

= [1 − η({h̃α,hα})]
∏

α δ(λα) δ(λ̃α)

�2({λ̃α,λα}) + 1

2n(n−1)πnn!2

detα,β [eihαλβ ] detα,β[eihαλβ ]

�({h̃β,hα})�({λ̃β,λα}) , (31)

where the components hα and h̃α, (α = 1 · · · n) are BB and FF eigenvalues of HJ
d , respectively, and the � functions are defined

by Eq. (28). The boundary term η is given by Eq. (8) and reads

η({h̃β,hα}) = det[μ(h̃β,hα)]α,β=1,...,n

2n(n−1)πn�({h̃β,hα,}) , (32)

Here, the matrix μαβ = μ(h̃β,hα) is given by

μ(h̃β,hα) =
∫ ∞

−∞
Dλ

∫ i∞

−i∞
Dλ̃

1

(λ − λ̃)
exp

{
−A0

2
(λ2 − λ̃2) + ihαλ − ih̃β λ̃

}

=
{

− 2π

hα−h̃β
exp
{− h2

α−h̃2
β

2A0

}
for hα = h̃β,

0 for hα = h̃β .
(33)

Now, with the help of the IZ integral, Eq. (31), we can perform integration over U and U+, namely the parameter space
of the unitary supergroup, in the expression for Z0(J ), Eq. (30). Then, taking into account the determinant form of the
super-Vandermonde determinant Eq. (28), we obtain

Z0(J ) = [1 − η({hα,h̃α})] + 1

2n(n−1)πn �({hα,h̃β})

× det

[∫ ∞

−∞
Dλ

∫ i∞

−i∞
Dλ̃

λ

λ̃(λ − λ̃)
exp

{
−A0

2
(λ2 − λ̃2) + ihαλ − ih̃β λ̃

}]
α,β=1...n

.

(34)

With this expression for Z0(J ) we are ready to calculate one and two point (both level-level and eigenfunction-eigenfunction)
correlation functions for Gaussian ensemble of unitary diagonal random matrices. These calculations are presented in the next
two subsections.
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1. Density of states for diagonal random matrices

The averaged density of states is expressed in terms of the
imaginary part of the one-point Green function, GA(E), as
follows

ρ(E) = 1

π
ImGA(E). (35)

The function GA(E) is related to the averaged generating
functional via Eq. (25). Employing the factorization property
Eq. (29) for one point Green function, one is led to evaluate
the integral in Eq. (34) for n = 1, which means that all the
supermatrices are two dimensional and thus have one bosonic
and one fermionic eigenvalue. Then the Bosonic eigenvalue of
the supermatrix HJ

d will have the form h = E + ω + J , while
the fermionic eigenvalue will have the form h̃ = E + ω − J .
Without lost of generality we can set ω = 0.

For one point Green function one has to take a derivative of
the generating functional, GA

0 (E) = (1/2π )∂〈Z0(J )〉/∂J |J=0,
which, as follows from Eqs. (25) and (26), can be equivalently
represented as GA

0 (E) = i〈Str[ŝQ]〉. For n = 1 the supersym-
metric Vandermonde determinant simplifies and acquires the
form �(h,h̃) = 1/(h − h̃) = 1/(2J ). From here one can easily
realize that only 1/�(h̃,h) term in Eq. (34) contributes to the
derivative in the J = 0 limit. Therefore, the expression for one
point Green function takes the form

GA
0 (E) = −2E

A0
+ 1

π

∫ ∞

−∞
Dλ

∫ i∞

−i∞
Dλ̃

λ

(λ̃ − i0)(λ − λ̃)

× exp

{
−A0

2
(λ2 − λ̃2) + iE(λ − λ̃)

}
. (36)

Evaluation of the integral in Eq. (36), presented in Appendix C,
leads to

GA
0 (E) =

√
π

2A0

(
i + erfi

[
E√
2A0

])
e
− E2

2A0 , (37)

where erfi(x) is the imaginary error function

erfi(x) = 2√
π

∞∑
n=0

x2n+1

(2n + 1)n!
. (38)

Equation (37) exactly reproduces the averaged advanced Green
function of the Gaussian unitary ensemble of diagonal random
matrices (see for example Refs. [8,9]). Substituting Eq. (37)
into Eq. (35) we find the density of states ρ0(E) for diagonal
random matrices,

ρ0(E) = N2

√
2πA0

e
− E2

2A0 . (39)

2. Two point correlation function for diagonal random matrices

In this subsection we show how the superbosonization for-
mula with the flat integration measure, as defined above, works
for four-dimensional supermatrices. Namely, we employ the
developed technique of superbosonized generating functional
Eqs. (24) and (25) for calculation of a two-level correlation
function of diagonal random matrices. For simplicity we will
concentrate on a level-level correlation function having the

following form

KA
0 (E1,E2) = 1

π2

〈
Tr

[
1

E1 − H − i0

]
Tr

[
1

E2 − H − i0

]〉

−N (N − 1)GA
0 (E1)GA

0 (E2), (40)

where N is the size of the matrices. We are aware of the fact
that the correlation function KA

0 (E1,E2) containing the product
of two advanced Green functions is not the most interesting
function characterizing the level correlations. However, the
computation of this function presented here serves merely as
a demonstration of how the method works. We emphasize that
the method of integration adopted in Refs. [17,18] does not
work when applied to this problem.

For the case of diagonal random matrices the two-point
function Eq. (40) can be derived upon evaluating Eqs. (24) and
(25). This can be done making use of the factorization property
Eq. (29) with Z0(J ) given by (34). The calculation is straight-
forward. Since the Vandermonde determinant, �({h̃β,hα}), in
Eqs. (32) and (34) is always inverse proportional to the source
terms, J1 and J2, it is easy to see that only the [�({hα,h̃β})]−1

term will contribute to double derivative in Eq. (25) taken
at J1 = J2 = 0. The double derivative of the Vandermonde
determinant is equal to

∂J1∂J2 [�({h̃β,hα,})]−1|J1,J2=0 = 4. (41)

Therefore, we have for the function KA
0 (E1,E2)

1

N
KA

0 (E1,E2)

= − 1

π2
det[μ({hα,h̃β})]α,β=1,2

+ 1

π2
det

[∫ ∞

−∞
Dλ

∫ i∞

−i∞
Dλ̃

λ

(λ̃ + i0)(λ − λ̃)

× exp

{
−A0

2
(λ2 − λ̃2) + ihαλ − ih̃β λ̃

}]
α,β=1,2

,

(42)

where μ({h̃β,hα}) is defined by Eq. (33) and h1,2 = h̃1,2 =
E1,2.

Analysis of the integral over λ and λ̃ under the second
determinant in Eq. (42) is presented in Appendix C. Result of
the integration can be represented as the sum, η̃({hα,h̃β}) +
G0({hα,h̃β}), where

G0({h̃β,hα}) =
√

π

2A0

(
i + erfi

[
h̃β√
2A0

])
e
− h2

α
2A0 . (43)

Substituting now Eqs. (32) and (43) into the determinants in
Eq. (42), we come to the result

KA
0 (E1,E2) = N

π

[
GA

0 (E2) − GA
0 (E1)

E1 − E2

]
, (44)

where the function GA
0 (E) is given by Eq. (37). The result

for the level-level correlation function for diagonal random
matrices, Eq. (44), coinciding with Eq. (40), together with
Eq. (37) agrees with the one found in Ref. [32].
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C. Nondiagonal contributions to the density of states
for almost diagonal matrices

In order to show how the superbosonization technique
works for less trivial random matrix theories, we calculate
in this section a correction to the density of states in the
model of almost diagonal matrices [8,9] up to the second
order in the bandwidth b. By definition, statistical properties of
nondiagonal matrices are described by a single, always positive
function, F(r), as Aij = b2F(|i − j |), i = j . Function F(r)
can adopt any form provided that it has a maximum at the
center of the band, r = 0, and decays with the bandwidth b as
r becomes large. For small b we have the ensemble of almost
diagonal random matrices, while for large b we approach the
Wigner-Dyson Gaussian unitary ensemble (GUE).

We consider the case of b � 1 when the standard nonlinear
σ model is not applicable. Then, expanding the exponent in
Eq. (24) in b, we have

〈Z(J )〉 = 〈Z0(J )〉 + b2〈Z1(J )〉, (45)

where zero order in b2 contribution, 〈Z0(J )〉, corresponds to
diagonal random matrices considered in the previous subsec-
tion. Technically, calculation of the correction, b2〈Z1(J )〉, is
similar to that of 〈Z0(J )〉. It is determined by the form of Aij

for almost diagonal matrices as follows

〈Z1(J )〉 = 1

2

∑
i,j

F(|i − j |)〈Str[QiQj ]〉

= −1

2

∫
Hn

∏
i

DQi Sdet[Qi]
−1

× 1

2

∑
i,j

F(|i − j |) Str[QiQj ]

× exp

{
i
∑

i

Str
[
QiHJ

i

]− 1

2

∑
i

A0 Str
[
Q2

i

]}
,

(46)

where, as usual, integration goes over the linear space Hn with
the flat measure. Then, the correction to the advanced Green
function, b2GA

1 (E), is expressed in terms of the correction,
b2〈Z1(J )〉, to the averaged generating functional,

GA
1 (E) = ∂〈Z1(J )〉

∂J

= i

2

∑
k,i =j

F(|i − j |) 〈Str[ŝQk] Str[QiQj ]〉. (47)

In Eq. (47) the averaging, 〈. . .〉, is defined as

〈F [Q]〉 =
∫

DQ Sdet[Q]−1 F [Q]

× exp

{
i
∑

i

Str[QHJ ] − 1

2
A0 Str[Q2]

}
. (48)

Averaging in the right hand side of Eq. (47) can be performed
using the identity, 〈Q〉 = 〈 1

2 Str[ŝQ]〉id2n. Next, we make use

of this identity to represent the average in Eq. (47) as

〈Str[ŝQk]〉Qk
〈Str[QiQj ]〉Qi,j

= 〈Str[ŝQ]〉Q
〈

1

2
Str[ŝQ]Str[Q]

〉
Q

δki (or δkj )

= − i

2
G0(E)

∂〈Str[Q]〉J
∂J

δki (or, alternatively δkj ),

(49)

where, according to Eq. (48), we have

∂〈Str[Q]〉J
∂J

= ∂

∂J

∫
DQ Sdet[Q]−1 Str[Q]

× exp

{
i
∑

i

Str[QHJ ] − 1

2
A0 Str[Q2]

}
.

(50)

As described above, now again, one has to diagonalize
the supermatrix Q and reduce the expression Eq. (46) to
IZ integral. For that purpose, we first notice that the only
difference between the expressions for 〈Str[Q]〉J and Z0(J )
is the presence of the term Str[Q] under integral, which,
after diagonalization for the one-point Green functions (n = 1
case), produces an additional λ − λ̃ term under the integral
in Eq. (34). Secondly, the boundary 1 − η term does not
contribute here, because the presence of δ functions in Eq. (31)
together with λ − λ̃ in the integral makes it zero. Repeating
now the calculation for G0(E) and keeping in mind the two
observations above, one finds

∂〈Str[Q]〉J
∂J

= 1

π

∫ ∞

−∞
Dλ

∫ i∞

−i∞
Dλ̃

λ

(λ̃ + i0)

× exp

{
−A0

2
(λ2 − λ̃2) + iE(λ − λ̃)

}

= 2i

A0
N RN [F] GA

0 (E). (51)

Substituting now Eqs. (49) and (51) into the expression for the
first order correction to the Green function G1(E), Eq. (47),
we obtain

G1(E) = N RN [F] GA
0 (E)

1

A0

[
GA

0 (E) − 1
]
,

where RN [F] ≡ 2
∑N

l=1 F(l). Then, for the first order in b2

correction to density of states, ρ1(E) = π−1ImGA
1 (E), one

easily finds

ρ1(E) = RN [F] ρ0(E)
1

A0

(
E

√
2π

A0
erfi

[
E√
2A0

]
− 1

)
,

(52)

which exactly reproduces the results first obtained with the
help of the virial expansion [8,9].

V. OUTLOOK

We have presented a new scheme of computations using the
superbosonization formula, Eq. (3), first proposed in Ref. [12].
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We have proven that this formula is exact and have given a
precise recipe for the performing integration for many point
correlation functions for the unitary ensemble. In contrast to a
previous study [17,18] the integration over the eigenvalues in
the fermion-fermion block of the supermatrices is performed
from −i∞ to i∞ and not along a circle. This way of the
integration has allowed us to obtain regular integrals and
calculate them in several cases.

The proof of our approach and proposed method of compu-
tation of the integrals is heavily based on the supersymmetric
extension of the Itzykson-Zuber integral. This integral in
known only for systems with broken time-reversal symmetry
(unitary ensemble) and this is why we consider here only
such systems. At the same time, the proposed method of the
integration over the eigenvalues of the supermatrices when one
integrates over the eigenvalues in the boson-boson block from
−∞ to ∞ and over the eigenvalues in the fermion-fermion
block from −i∞ to i∞ looks very general. This encourages
us to make a guess that this way of the integration can also be
used for time reversal invariant ensembles. Of course, such a
guess must be checked and proven in the future.

We have demonstrated that the application of the bosoniza-
tion formula to random band matrix (RBM) [33–38] models
with small bandwidth b reproduces the perturbative expansion
of DOS obtained by virial expansion [8]. We have also com-
puted the simplest two-point correlation function containing a
product of two advanced Green functions for the ensemble of
diagonal matrices. Of course, calculating an average product
of both retarded and advanced Green functions would be a
more interesting task but we leave it for future study. It is
important at the moment that our method allows us to calculate
many-point correlations functions for cases where the way
of the integration developed in Refs. [17,18] does not work.
We have made comparison with the known results only for
checking our approach and demonstration of details of the
computation.

Equation (3) complemented by our recipe of the integration
is exact and most general representation of the integrals over
supervectors in terms of integrals over supermatrices. The
traditional nonlinear σ model, Eqs. (1) and (2), can be obtained
using the saddle-point approximation for calculation of the
integral over the supermatrix Q is less general. Taking into
account a success of the latter in solving numerous problems
(see, e.g. Ref. [3]) we believe that its generalization can also
bring new interesting results.

Finally, we would like to mention that to this point
disordered systems have been actually successfully studied
using supersymmetric σ model (including statistical properties
of the energy levels in small metallic disordered grains), and
we mostly focused here on a field theory for random matrix
ensembles and nonperturbative effects therein. Another field
of great interest of course is the nonperturbative study of
various correlation functions in strongly interacting systems.
Examples of such systems that potentially can be studied
nonperturbatively using superbosonization include among
others (i) the field theory of many-body localization in random
spin chains [15]; (ii) quantum phase transitions at the boundary
of topological superconductors in two and three dimensions,
which have been argued to support supersymmetry at long
distances and times [39]; (iii) translation invariant lattices

with an odd number of Majorana fermions per unit cell
[40].
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APPENDIX A: INTEGRAL OVER Hn

Let Hn be the linear space of Hermitian 2n × 2n superma-
trices. Then for all A ∈ Hn the convergent integral,

ϒ̂(A) = lim
η→0

∫
Hn

DB exp{iStr[AB] − η̃Str[B2]}, (A1)

taken over Hn with Berezin measure satisfies the condition∫
Hn

DA′ ϒ̂(A′ − A) ≡ 1. (A2)

Moreover, for any map, F : Hn → G, that converges expo-
nentially (or faster), the identity

F(Q) ≡
∫
Hn

DAF (A)ϒ̂(A − Q) (A3)

always holds.
To derive identities (A2) and (A3) for ϒ̂(A), one can first

formally perform integration in the definition Eq. (A1) of
ϒ̂(A), under the limit. This integration yields

ϒ̂(A) = lim
η→0

[
1

4πη

] N
2

exp

{
−StrA2

4η

}
, (A4)

where the limit is well defined. With the help of Eq. (A4), the
right hand side of Eq. (A3) can be represented as follows∫

Hn

DAF (A)ϒ̂(A − Q)

=
∫
Hn

DAF (Q + A)ϒ̂(A)

= lim
η→0

[
1

4πη

] N
2
∫
Hn

DA{F(Q) + Str[F ′(A)A] + · · ·

+ Str[F (n)(A)An]/n! + · · · } exp

{
−StrA2

4η

}

= F(Q) + lim
η→0

[
1

4πη

] N
2
∫
Hn

DA{Str[F ′(A)A] + · · ·

+ Str[F (n)(A)An]/n! + · · · } exp

{
−StrA2

4η

}
, (A5)

where we have Tailor expanded the functionF(Q + A) around
A = 0. We note that such an expansion exists due to the
specific constraints on the function F , outlined in Sec. III.
To finalize our proof, it is left to show that

lim
η→0

[
1

4πη

] N
2
∫
Hn

DAtr[An] exp

{
−StrA2

4η

}
= 0. (A6)
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Equation (A6) is proven by introducing the generating func-
tional,

Wη(K) =
[

1

4πη

] N
2
∫
Hn

DA exp

{
−StrA2

4η
+ Str[KA]

}

= exp{ηStr[K2]}, (A7)

and observing that

lim
η→0

[
1

4πη

] N
2
∫
Hn

DAStr[An] exp

{
−StrA2

4η

}

= lim
η→0

[
1

4πη

] N
2

Str

[
δnWη(K)

δA1 · · · δAn

]∣∣∣∣
K=0

= 0. (A8)

APPENDIX B: CALCULATION OF Cn

Let the formal sums of Hermitian superbivectors (product
of two supermatrices, each of them being from Hn) constitute
a vector space 2(Hn) called the second exterior power of Hn.
Then the integral

Cn =
∫

2(Hn)
DB ′ SdetB ′ eiStrB ′

(B1)

over the vector space 2(Hn) is unity, Cn = 1.
According to the proposed prescription, one evaluates

integral Eq. (B1) first by diagonalizing the supermatrix B ′.
As already stated, any given complex 2n × 2n supermatrix
B ′ can be diagonalized by the transformation B ′ = UB ′

d V̄ ,
where U ∈ U (n|n), V̄ ∈ U (n|n)/U 2n(1). Substituting this
transformation into Eq. (13) we obtain an integral over the
eigenvalues, B ′

d , and diagonalization “angles” U and V̄ ; the
latter integral is nothing but supersymmetric Itzykson-Zuber
[19] integral.

In order to evaluate the integral in Eq. (15), we consider the
following generalized integral∫

DB Sdet[B] exp

{
i

t
Str[QdB]

}

=
∫

DB Sdet[B] exp

{
1

2t
Str
[
B2 − Q2

d

]

− 1

2t
Str[(B − iQd )2]

}

=
∫ ∏

i

dbi db̃i �2
({

b2
j ,b̃

2
j

})

×
[∏

i

b̃i

bi

exp

{
1

2t

[(
b2

i − b̃2
i

)− (λ2
i − λ̃2

i

)]}]

×�[{bj ,b̃j }|{λj ,λ̃j }], (B2)

which coincides with Eq. (B2) in the case when Qd is an iden-
tity matrix. Before setting Qd = id, first let us note that for any
complex 2n × 2n supermatrix of the following diagonal form:

 =
(

x ⊗ idn 0
0 y ⊗ idn

)
, x,y ∈ R, (B3)

where idn is the n × n identity matrix, the η term has the form

η(x,y) = (1 − e− x2−y2

2t

)n
. (B4)

The term, �0[{bj ,b̃j }|x,y], [see Eq. (5)] corresponding to
the matrix  vanishes. This is because the Vandermonde
determinant, �(x,y), in the denominator will cancel one of
the determinants involving Bessel function in the nominator.
However the next determinant, which is equal to zero, remains.
Thus, we see that if our 2n dimensional complex supermatrix
Qd = id (which means x = y above), then the corresponding
η term ηid (1,1) = (1 − e− 1−1

2t )
n = 0. Therefore, from Eq. (5),

we obtain

�[{bj ,b̃j }|{1 . . . 1}] =
∏

i δ(bi)δ(b̃i)

�2
({

b2
j ,b̃

2
j

}) . (B5)

Substituting Eq. (B5) into Eq. (B2), where as Qd a unity
matrix is taken with t = 1, one obtains

Cn =
∫

DB ′ Sdet[B ′] eiStrB ′

=
∫ ∏

i

dbi db̃i �2
({

b2
j ,b̃

2
j

})

×
{∏

i

b̃i

bi

e
1
2 [b2

i −b̃2
i ]

}
�[{bj ,b̃j }|{1 . . . 1}]

=
∫ ∏

i

dbi db̃i

{∏
i

b̃i

bi

e
1
2 [b2

i −b̃2
i ]
}∏

i

δ(bi)δ(b̃i) = 1.

(B6)

The last equality holds, since our integration contours are
shifted by an infinitesimal δ and iδ with respect to the
imaginary and real axis correspondingly. This completes the
computation of Cn.

APPENDIX C: EVALUATION OF DOUBLE INTEGRALS

Here we will evaluate the following integral

I(h,h̃) =
∫ ∞

−∞
dλ

∫ i∞

−i∞
dλ̃

λ

(λ̃ − i0)(λ − λ̃)

× exp

{
−A0

2
(λ2 − λ̃2) + ihλ − ih̃λ̃

}
. (C1)

Making use of the decoupling

λ

(λ̃ − i0)(λ − λ̃)
=
(

1

λ̃ − i0
+ 1

λ − λ̃

)
, (C2)

we represent the double integral, I(h,h̃), as the sum

I(h,h̃) = I1(h,h̃) + I2(h,h̃), (C3)

where

I1(h,h̃) =
∫ ∞

−∞
dλ

∫ i∞

−i∞
dλ̃

1

(λ̃ − i0)

× exp

{
−A0

2
(λ2 − λ̃2) + ihλ − ih̃λ̃

}
,

I2(h,h̃) =
∫ ∞

−∞
dλ

∫ i∞

−i∞
dλ̃

1

(λ − λ̃)

× exp

{
−A0

2
(λ2 − λ̃2) + ihλ − ih̃λ̃

}
. (C4)
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In the following two subsections we will evaluate integrals
I1(h,h̃) and I2(h,h̃), respectively.

1. Calculation of I1

In order to evaluate I1(h,h̃) we recall that

1

(λ̃ − i0)
= P

1

λ̃
+ iπδ(λ̃), (C5)

where symbol P denotes the principal value of the integral.
Then for I1(h,h̃) we have

I1(A0,h,h̃) = iπ

∫ ∞

−∞
exp

{
−A0

2
λ2 + ihλ

}
+ Ĩ1(A0,h,h̃),

(C6)

with

Ĩ1(A0,h,h̃) =
∫ ∞

−∞
dλ P

∫ i∞

−i∞

dλ̃

λ̃

× exp

{
−A0

2
(λ2 − λ̃2) + ihλ − ih̃λ̃

}
.

(C7)

The presence of the principle value in Eq. (C7) insures the
possibility of bringing the integral to the Gaussian form first
by taking the derivative over h̃:

∂Ĩ1(A0,h,h̃)

∂h̃
= −i

∫ ∞

−∞
dλ

∫ i∞

−i∞
dλ̃

× exp

{
−A0

2
(λ2 − λ̃2) + ihλ − ih̃λ̃

}

=
√

2π

A0
e−h2/(2A0)

√
2π

A0
eh̃2/(2A0)

= 2π

A0
exp

{
−h2 − h̃2

2A0

}
. (C8)

Then the function Ĩ1 itself will have the form

Ĩ1(A0,h,h̃) = 2π

A0
e−h2/(2A0)

(∫ h̃

0
dh̃1e

h̃2
1/(2A0) + C

)
, (C9)

with C = (A0/2π ) exp(h2/2A0)Ĩ1(A0,h,0). On the other hand
we have that

Ĩ1(A0,h,0) =
∫ ∞

−∞
dλ P

∫ i∞

−i∞

dλ̃

λ̃

× exp

{
−A0

2
(λ2 − λ̃2) + ihλ

}
= 0 (C10)

suggesting C = 0. Substituting Eq. (C9) into Eq. (C6) we
obtain

I1(A0,h,h̃) = π

√
2π

A0
exp

(
− h2

2A0

)[
i + erfi

(
h̃√
2A0

)]
.

(C11)

2. Calculation of I2

Introducing a new variable, λ′ = −iλ̃, we rewrite integral
I2(h,h̃) as

I2(h,h̃) = i

∫ ∞

−∞
dλ

∫ ∞

−∞
dλ′ 1

λ − iλ′

× exp

{
−A0

2

(
λ − ih

A0

)2

− A0

2

(
λ′ − h̃

A0

)2

− h2 − h̃2

2A0

}
. (C12)

As the next step we shift variables λ and λ′ by ih/A0 and
h̃/A0, respectively. Then Eq. (C12) will acquire the form

I2(h,h̃) = ie
− h2−h̃2

2A0

∫ ∞

−∞
dλ

∫ ∞

−∞
dλ′

× e− A0
2 (λ2+λ′2)

λ + ih
A0

− i
(
λ′ + h̃

A0

) . (C13)

It is convenient to evaluate integral Eq. (C13) after switching
to polar coordinates, λ − iλ′ = ueiθ :

I2(h,h̃) = ie
− h2−h̃2

2A0

∫ ∞

0
u du

∫ 2π

0
dθ

e− A0
2 u2

ih
A0

− ih̃
A0

+ ueiθ
,

(C14)

and integrate first over θ and only then over u. Result reads

I2(h,h̃) = ie
− h2−h̃2

2A0
2π

i
(

h
A0

− h̃
A0

) (1 − δhh̃)
∫ ∞

0
du ue− A0

2 u2

= 2π

h − h̃
(1 − δhh̃)e− h2−h̃2

2A0 . (C15)
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