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We study the thermal conductivity tensor in an atomistic model of vulcanized cis-1,4-polyisoprene (PI) rubber
via molecular dynamics simulations. Our polymer force field is based on V. A. Harmandaris et al. [J. Chem. Phys.
116, 436 (2002)], whereas the polymerization algorithm follows the description in J. Hager et al. [Macromolecules
48, 9039 (2015)]. The polymer chains are chemically cross linked via sulfur bridges of adjustable cross-link
density. A volume-conserving uniaxial strain of up to 200% is applied to the systems. The widely used GROMACS
simulation package is adapted to allow using the Green-Kubo approach to calculate the thermal conductivity
tensor components. Our analysis of the heat flux autocorrelation functions leads to the conclusion that the thermal
conductivity in PI is governed by short-lived phonon modes at low wave numbers due to deformation of the
monomers along the polymer backbone. Applying uniaxial strain causes increased orientation of monomers
along the strain direction, which enhances the attendant thermal conductivity component. We find an exponential
increase of the conductivity in stretch direction in terms of an attendant orientation order parameter. This is
accompanied by a simultaneous decline of thermal conductivity in the orthogonal directions. Increase of the
cross-link density only has a weak effect on thermal conductivity in the unstrained system, even at high cross-link
density. In the strained system we do observed a rising thermal conductivity in the limit of high stress. This
increase is attributed to enhanced coupling between chains rather than to their orientation.

DOI: 10.1103/PhysRevB.96.054110

I. INTRODUCTION

Amorphous polymer materials possess rather small thermal
conductivities of around 0.1 W/mK. In the case of elastomers
this material parameter is of particular interest, because of
the intricate coupling between operating conditions and heat
buildup. For instance, the operating temperature of automobile
tires strongly affects their performance, e.g., grip or rolling
resistance. When a tire, which is a complex multimaterial
product, is designed using finite-element solvers for the macro-
scopic material equations, parameters such as the thermal
conductivity (coefficients) are inserted from some standard
source. This is not always the preferred method, because a
material parameter is not a constant. During the past decade it
has become possible to obtain material parameters via atom-
istic computer simulation. This approach provides a direct link
between the parameter of interest, a material’s chemical struc-
ture, and thermodynamic conditions. The method of choice for
the calculation of transport properties is molecular dynamics,
which means solving the atomic equations of motion.

A fair number of simulation studies in the past have focused
on single polymer chains, in particular polyethylene models.
This is because experimental studies have shown that strong
uniaxial orientation of polymers can give rise to a pronounced
increase of thermal conductivity in chain direction attributed
to phonons along the backbone [1]. Using equilibrium and
nonequilibrium molecular dynamics Wang and Li [2] study
a one-dimensional particle chain, which they analyze using a
simple mode-coupling theory. They find three types of thermal
conduction: a logarithmic divergence with system sizes for
large transverse coupling, a 1/3 power law at intermediate
coupling, and a 2/5 power law at low temperatures and weak
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coupling. A similar single-chain study, based on polyethylene,
is described by Henry and Chen [3], who study the increase of
thermal conductivity with chain length. Two recent studies in
the same category are reported by Hu et al. [4] and Lin et al.
[5]. Hu et al. compute the thermal conductivity of a single
polymer chain via the Green-Kubo approach as well as a
nonequilibrium molecular dynamics simulation method. They
too focus on the unexpectedly large thermal conductivity
of isolated united-atom polyethylene chains. Lin et al. use
nonequilibrium molecular dynamics to also study thermal
conductivity along isolated polyethylene chains in terms of
chain length and strain.

Thermal conductivity in bulk isotropic polymer sam-
ples, e.g., amorphous polyvinyl chloride, poly(methyl
methacrylate), polystyrene, or polycarbonate, is much less
pronounced—albeit technically more important. A number of
molecular dynamics simulation studies do exist, which focus
on such systems. Lussetti et al. [6] present a nonequilibrium
molecular dynamics simulation study on the thermal conduc-
tivity in bulk polymer samples of amorphous polyamide-6,6.
Four separate models, differing in their number of high-
frequency degrees of freedom, are compared. The authors
find that the thermal conductivity systematically depends
on the number of degrees of freedom. The authors also
show that the thermal conduction is faster parallel to the
drawing direction than perpendicular to it. Algaer et al. [7]
investigate the thermal conductivity of stretched amorphous
atactic polystyrene swollen in supercritical carbon dioxide
over a wide temperature, pressure, and concentration range.
Liu and Yang [8] use an all-atom molecular dynamics
simulation of polyethylene to study the tuning of polymer
thermal conductivity via mechanical strain. These authors do
show that the thermal conductivity increases with increasing
strain and the enhancement is larger (about 20%) when the
polymer is stretched more slowly. The two strain rates in this
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study differ by a factor of ten. Decreasing the strain rate also
increases the orientation order, which, as we also find in this
work, correlates with the thermal conductivity. In addition,
it is observed that the thermal conductivity is affected by
molecular weight. Increasing the chain length from 200 to 400
results in a 20% increase of thermal conductivity. Zhao et al.
[9] apply united-atom nonequilibrium molecular dynamics
simulations to predict the thermal conductivity for amorphous
polyethylene at room temperature and chain lengths ranging
from 4 to 1260. The attendant system densities vary strongly.
Whereas the short molecules form a gas, the long chains
do form a condensed amorphous phase. Accordingly the
authors observe collision-dominated thermal conductivity at
low densities and phonon-dominated thermal conductivity in
the condensed phase. The effect of a confining geometry on
the thermal conductivity of polyamide-6,6 oligomers between
graphene sheets, using reverse nonequilibrium molecular dy-
namics, is discussed by Alaghemandi et al. [10]. Their results
show that the coefficient of thermal conductivity parallel to the
confining surfaces depends on the intersurface distance and is
much higher than that of the bulk polymer [11]. Rossinsky
and Müller-Plathe [12] employ a nonequilibrium simulation
study of the heat conductivity in crystalline polystyrene
focusing on anisotropy. Ni et al. [13] study the thermal
conductance across different interfaces consisting of oriented
single-crystal diamond surfaces and covalently bonded as
well as completely aligned polyethylene chains by molecular
dynamics simulation. In addition, effects of defects and cross
linking are analyzed. Varshney et al. [14] present a study
of a cross-linked polymer system, an epoxy-based thermoset
polymer. The thermal conductivity is calculated using both
nonequilibrium as well as equilibrium molecular dynamics
techniques. A recent simulation study on polyisoprene rubber,
the system we focus on in this work, is that of He et al.
[15]. The authors study two structurally different systems,
i.e., isoprene oligomer samples consisting of short disordered
chains, containing 10 monomer units each, without chemical
cross links and a quasicrystalline sample of straight chains, in
order to estimate the anisotropy of the thermal conductivity.
In contrast to the present study the authors do not use a
united-atom model but include the hydrogen atoms explicitly.
We comment on this technical point later in this text. The
authors observe, as we do also, that the thermal conductivity
is enhanced along the direction of the chains in the highly
ordered system. Finally we mention a recent review by Algaer
and Müller-Plathe [16] on molecular dynamics calculations of
the thermal conductivity in molecular liquids, polymers, and
carbon nanotubes.

Experimental measurements of thermal conductivity in
elastomers started to appear in the 1920s and 1930s, motivated
by the increased use of these materials in technical applications
involving high-frequency deformations with attendant heat
generation. One example is the work of Barnett [17], who
already studied the effect of fillers on thermal conductivity.
Another subsequent paper by Dauphinee et al. [18] discusses
the thermal conductivity of elastomers as a function of strain
and temperature. Two early reviews on the experimental data
available on the thermal conductivity of polymers up until
1966 are the papers by Anderson [19] and, focusing on rubber,
Carwile and Hoge [20]. One of the references included in this

second review is by Tautz [21], which explicitly addresses
the dependence of the thermal conductivity of a number of
rubbers on strain. Subsequent work by Hands and Horsfall [22]
describes measurement techniques and measurements of the
thermal conductivity of rubber specimens containing carbon
black filler. In addition, Hands [23] investigates the effect of
equibiaxial orientation on the thermal conductivity of a series
of natural rubber compounds. Finally, the paper by Bhowmick
and Pattanayak [24] is a more recent study of the thermal
conductivity, heat capacity, and diffusivity in various rubbers,
i.e., poly(butadiene-co-styrene), polychloroprene, and cis-1,4-
polyisoprene, from 60 to 300 K, i.e., through the respective
glass transitions.

In this work we study the thermal conductivity tensor in
a united-atom model of cis-1,4-polyisoprene (PI) rubber via
molecular dynamics simulations. Our polymer force field is
based on Harmandaris et al. [25], whereas the polymerization
algorithm follows the description in Hager et al. [26]. On this
basis we study a number of different systems distinguished by
their polymer molecular weight, different chemical cross link,
i.e., sulfur bridge, densities, and temperature. The systems
are subjected to volume-conserving uniaxial strain of up
to 200%. For this purpose the widely used GROMACS
simulation package [27] is adapted allowing us to employ
the Green-Kubo approach to the calculation of the thermal
conductivity tensor components �αβ . We analyze the the heat
flux autocorrelation functions and come to the conclusion
that the thermal conductivity in PI is governed by short-
lived phonon modes at low wave numbers. Comparison with
experimental results from vibration spectroscopy suggests
that physically these modes correspond to deformations of
the monomers along the polymer backbone. Application of
uniaxial strain causes increased orientation of the monomers
in strain direction, which enhances conductivity along this
direction. We find an exponential dependence of this thermal
conductivity component on a suitably defined order parameter.
This is accompanied by a simultaneous decline of thermal
conductivity in the orthogonal directions. If the cross-link
density is increased in the unstrained system, we do observe
(on average) a small rise of the thermal conductivity, which
qualitatively is in accord with experimental data. A more
noticeable increase in response to higher cross-link density
is observed when strain is applied, but only at the highest
stresses. This increase cannot be attributed to orientation but
appears to be due to enhanced coupling between chains.

II. SIMULATION DETAILS

The bulk polymer system is polymerized from a liquid
of monomers using the approach presented in detail by
Hager et al. [26], which allows for variable chain length
and number of chains. The polymer force field parameters
are those of Harmandaris et al. [25]. However, we do not
include long-range dispersion corrections. In addition we
also do not use constraints for the internal bonds since this
leads to problems during deformation of the system. These
adjustments give rise to density deviations which we reduce
by decreasing all σ parameters by 2% (relative to the values
in the aforementioned reference).
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FIG. 1. Top: Type and position of the sulfur bridges in this work.
Bottom: Bulk-polymer density vs concentration of sulfur in phr [parts
(by weight) per hundred rubber] at T = 300 K and P = 1 bar. This
systems consists of 40 polymer chains containing 200 monomers
each. The experimental densities are taken from McPherson [28].

The polymers are cross linked by sulfur bridges consisting
of two sulfur atoms each. The cross links are uniformly
distributed in the system subject to the constraint that all
polymer ends are joined to a neighboring chain via a sulfur
bridge. The latter avoids dangling polymer ends. An additional
restriction is that a chain cannot be cross linked to itself. The
sulfur bridges are described by the Amber94 force field [29].
This part of our parametrization is validated by comparing
the classical approach used here to Carr-Parinello molecular
dynamics calculations on selected small compounds [30].
Quantities used for comparison include bond lengths, valence
angles, and torsion angles. Deviations for the former two
are less than 10% whereas the torsion angles deviate, not
unexpectedly, by about 20% mostly due to small compound
size. Figure 1 shows the dependence of the system‘s density
on cross-link concentration in comparison to experimental
data. This system consists of 40 polymer chains containing
200 monomers each. The overall agreement is quite good. In
order to obtain the strain dependence of the components of the
thermal conductivity tensor, �αβ , we use Eq. (A21) discussed
in Appendix A. Additional computational details are compiled
in this appendix as well as in Appendix B.

Prior to the actual measurement of the thermal conductivity
the system is preconditioned during two initial volume-
conserving strain cycles, using a constant strain rate. The
strain amplitude is 200% (unless stated otherwise) and the
attendant strain cycle frequency is 1/12.5 ns−1. Subsequently
the actual data are taken during a final stretching of the system.
Unless stated otherwise the temperature is 300 K and the
pressure, in the case of NPT simulations (particle number,
pressure, and temperature are kept constant), is 1 bar. Each

data point encompasses two steps: (i) an equilibration time of
about 500 ps at NPT conditions keeping the strain, u, constant;
(ii) a subsequent NV T simulation (particle number, volume,
and temperature are kept constant), using a time step of 2.5 fs,
during which the components of the heat current according to
Eq. (A10) are determined.

III. RESULTS

Figure 2 is an example showing a particular system in the
undeformed state as well as at 150% strain. The system consists
of 20 polyisoprene (PI) chains containing 250 monomers each
cross linked via 500 disulfide bonds. The edge length of the
undeformed simulation cell is Lx = Ly = Lz ≈ 8.53 nm. A
number of chains are shown in color to make the effect of
strain on the chain conformations visible.

The dependence of chain orientation on strain is depicted
in Fig. 3, showing the orientation distribution function, f (θ ),
for different strain values, u. The angle θ is the angle between
a C-C double bond and the z or stretch direction. We return to
this figure below.

The upper panel of the next figure, Fig. 4, shows the
mean square polymer segment end-to-end distance along a
particular direction α, 〈R2

α〉, divided by the attendant length of
the simulation box, Lα , vs strain, u. In the case of an affine
deformation this ratio is constant. The bottom panel of this
figure shows cα defined via 〈R2

α〉 = cαb2(4n), where b2 is the
mean square bond length in a monomer, and 4n is the total
number of bonds. Here b ≈ 0.15 nm, and n = 250. Notice that

FIG. 2. Example showing one particular system in the unde-
formed state (left) and at 150% strain (right). Selected polymer
chains are highlighted in different colors. Yellow dumbbells indicate
sulfur cross links. The system consists of 20 PI chains containing 250
monomers each and 500 sulfur cross links.
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FIG. 3. (Double) bond orientation distribution functions at dif-
ferent strain values, u = [0.0,0.5,1.0,1.5,2.0]. Notice that θ refers to
the angle between the double bond and the direction of stretch.

at zero strain, i.e., u = 0, cα ≈ 2, and thus the characteristic
ratio we obtain is close to 6. This value is somewhat higher than
values reported in Ref. [31] (between 4 and 5), albeit at a higher
temperature, i.e., at 413 K instead of the 300 K in the present
study. The two cases, i.e., no cross links and phr = 9.41 [where
phr is parts (by weight) per hundred rubber], refer to the cases
when the aforementioned polymer segment encompasses the
entire polymer and the segment length between sulfur cross
links, respectively. The two lengths are very different, which
here however does not have a clearly discernible effect on
cα at u = 0. For u > 0 we notice first that

√〈R2
α〉/Lα shows a

slight increase in the system with no cross links (notice that the
frequency of deformation is rather high—a point to which we
return below). However, the error bars are quite large due to the
limited number of polymer chains entering into the average.
The cross-linked systems are very different in this respect,
which yields smoother data as well as a reduced maximum
strain. In the direction of stretch cz increases more strongly
when there are no cross links. The corresponding quantities
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FIG. 4. Top: Root mean square of Rα , divided by the attendant
box dimension, Lα , vs strain, u. Bottom: cα vs u corresponding to the
panel above.
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FIG. 5. Top: Diagonal components of the thermal conductivity
tensor at T = 300 K vs strain, u. The experimental data measured
along the long direction are taken from Tautz [21]. The number
of cross links is about 100 or about 1.9 phr. Bottom: Thermal
conductivity along the stretch direction for systems with very different
cross-link concentrations. Notice that the over bars indicate averages
over four independent measurements.

in the orthogonal directions, on the other hand, differ only
slightly.

Figure 5 shows the diagonal components of the thermal
conductivity tensor at T = 300 K vs strain, u. The strain is
applied along the z direction. The experimental data measured
along this direction are taken from Tautz [21]. Notice the
clearly discernible increase of the thermal conductivity in
the long direction in good accord with the experimental
data. The bottom panel illustrates that the increase of �zz

above u = 1 is more pronounced when the cross-link density
is increased. In contrast, the thermal conductivity in the
orthogonal direction exhibits an apparent decline over the
entire strain range. The same is observed by Liu and Yang
[8] in their study on polyethylene. Corresponding to the top
panel in this figure, Fig. 6 shows autocorrelation functions
of the heat current components Jα(t) for different strain
values. The autocorrelation function in the bottom panel is
for α = z, where z is the direction of stretch. The upper curve
is for a large strain, i.e. u ≈ 1.6, whereas the lower curve
is for a small strain, i.e., u ≈ 0.4. All discernible features
of the curves in the two cases are quite similar. The curves
differ by magnitude rather than shape. The same is true for
the corresponding autocorrelation functions in the top panel,
which are for α = x. Corresponding to the autocorrelation
functions in Fig. 6, Fig. 7 shows �xx(t ′) and �zz(t ′). Here
t ′ is the upper limit of the integral in Eq. (A21) (replacing
∞). The figure provides a connection between the integration
range and the attendant contribution from that range to the
thermal conductivity. Notice that the thermal conductivity
components require integration of the autocorrelation func-
tion out to several 10−1 ps to approach their asymptotic
values.
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FIG. 6. Time autocorrelation functions of the heat current com-
ponents Jα(t) for different strain values. Top: α = x. Bottom: α = z,
where z is the direction of stretch. The temperature is 300 K in all
cases. Notice that the curves are all normalized to c0 = 〈Jz(0)Jz(0)〉
at u = 1.625.

In the following we want to elucidate the molecular
mechanisms underlying the results shown in Figs. 5 through 7.
The current components Jα(t) in Eq. (A10) are the sum of two
terms. For the moment we focus on the second, which turns
out to be the dominant term in the present system. In order
to understand the basic shape of the autocorrelation functions
in Fig. 6, we construct a simple example. Let x(t) = sin(ωt)
be the displacement of a one-dimensional harmonic oscillator
of unit mass at time t . The corresponding force is f (t) =
−ω2x(t) and the velocity is v(t) = ω cos(ωt). The product,
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FIG. 7. �xx(t ′) (top) and �zz(t ′) (bottom) vs t ′, corresponding to
the autocorrelation functions of the previous figure. The quantity t ′

is the upper limit of the integral in Eq. (A21) and the temperature is
300 K.
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FIG. 8. The function of Eq. (1) for ω = 1 and τ = 1.

i.e., J (2)(t) = x(t)f (t)v(t), is an extremely simplified analog
to the second term on the right-hand side of Eq. (A10). We may
construct a likewise simple autocorrelation function defined
via

〈J (2)(0)J (2)(t)〉 = ω

2π

∫ 2π/ω

0
dt ′J (2)(t ′)J (2)(t ′ + t)e−t/τ , (1)

describing a collection of oscillators with different phases over
which we average. The exponential function is a simple means
to model the decay of the oscillator excitations. Figure 8
shows the normalized function 〈J (2)(0)J (2)(t)〉 according to
this equation for ω = 1 and τ = 1. In general the first minimum
(or “negative correlation”) will appear at t ≈ 1/ω. Notice that
the overall shape of this function roughly mimics the shape of
the autocorrelation functions in Fig. 6.

We test this concept using examples of increasing com-
plexity. The first example is the Lennard-Jones (LJ) system;
i.e., the interparticle potential is u(r) = 4ε[(σ/r)12 − (σ/r)6].
Figure 9 shows heat flux autocorrelation functions obtained
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FIG. 9. Heat flux autocorrelation functions obtained in the LJ
system at two different state points, i.e., T = 1.39, ρ = 0.484 and
T = 1.39, ρ = 0.0186. The index N means that a factor

√
V/(3T 2)

is absorbed into each �J ; i.e., the area under the curves is the respective
isotropic thermal conductivity in LJ units.
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for the three indicated rigid water models at T = 300 K and ambient
pressure using molecular dynamics simulations.

at two state points, i.e., T = 1.39, ρ = 0.484 and T = 1.39,
ρ = 0.0186. Here ρ is the particle number density and we
use LJ units throughout the remainder of this example (i.e.,
energy is in units of ε, length is in units of σ , time is in units of
τLJ =

√
mσ 2/ε, where m is the particle mass, and temperature

is in units of ε/kB , where kB is Boltzmann’s constant). Notice
that the critical temperature and density of the LJ system are
about 1.32 and 0.31, respectively.

Neither of the two autocorrelation functions exhibits neg-
ative correlations. But both do show a local minimum at t ≈
0.07, which at the low density is very shallow. Can we interpret
these minima in the above sense? Even the low-density gas, at
any particular time, does contain a small fraction of dimers,
i.e., momentarily bound particles (in the sense of the cluster
expansion picture). If we expand the above LJ potential at its
minimum to second order in the displacement, then we find that
the frequency of the corresponding oscillator is ω = 6 × 21/3

and thus 1/ω ≈ 0.13 (in LJ units). Even though this value
overestimates the position of the above minimum by a factor of
two, considering the crudeness of our estimate, we discern the
traces of our above idea. Notice that our harmonic-oscillator
assumption in the present case is quite rough and, especially
at the higher density, most clusters do contain more than two
particles. This means that a particle oscillating in a cage of
nearest neighbors is possibly a more accurate description than
dimer oscillations. In addition energy transfer is dominated
by single-particle collisions at the low density, which lead
to the long relaxation time exhibited by the autocorrelation
function in the upper panel in Fig. 9 (cf. chapter 9 in Ref. [32]).
We note that Zhao et al. [9] (cf. our introduction) simulate the
thermal conductivity in systems of oligoethylene over a range
of densities depending on the oligomer’s lengths. They observe
low thermal conductivity at low densities or small oligomers
and larger thermal conductivity at high densities or long chains.
This observation is attributed to collision dominance at the low
densities vs phonon dominance at high densities. However, no
further analysis is given in support of this conclusion.

Our second example is liquid water. Figure 10 shows nor-
malized heat flux autocorrelation functions obtained for three
frequently studied water models (simple point charge/extend
[33], transferrable intermolecular potential 4 point/2005 [34],
and transferrable intermolecular potential 5 point [35]) de-
scribing the water molecule with increasing detail. In this

system we observe the pronounced negative correlations akin
to those observed for PI (cf. Fig. 6). Here the first minimum is
located at t ≈ 2.5 × 10−14 s. Based on our above simple oscil-
lator model we obtain ω ≈ 1/2.5 × 10−14 s and converting this
ω into a wave number we find ν̃ = (2π )−1(ω/c) ≈ 210cm−1,
where c is the speed of light. The infrared absorption spectrum
of liquid water indeed shows a broad peak located at this wave
number, which is attributed to a complicated “rocking motion”
or libration of the water molecule [36].

It is worth noting in this context that the isochoric heat
capacity of liquids usually is close to 3kB (we note also that
PI is no exception in this respect; cf. [37]). Heat capacity and
thermal conductivity are intimately related (cf. for instance
Sec. 9.2.c in Ref. [32]). For instance, Lussetti et al. [6] study
the correlated increase of both quantities as a function of the
degrees of freedom in their model. This is a subtle point when
using classical force field simulations, because high-frequency
modes involving single or only a few light atoms (such as
C-H vibrations) are not classically excited at the temperatures
of interest. On the other hand, the experimental isochoric
heat capacity of for instance liquid water near the melting
point is very close to 3kB (per atom). This shows that the
high frequency vibration modes of water in the gas phase
are “softened” in the condensed state due to the coupling
between the molecules giving rise to different vibrational
modes. Therefore even classical force field models yield quite
reasonable descriptions of its thermodynamic and transport
properties. Probably it is fair to say that united-atom models,
which must however include hydrogen atoms involved in
hydrogen bonds explicitly, are very reasonable models in the
present context.

We now apply our idea that the dominant cause of heat
flux is due to low wave number oscillatory modes to PI. Here
the first minimum is located at t ≈ 1.2 × 10−14 s and thus
ω ≈ 1/1.2 × 10−14 s. Converting this ω into a wave number
we find ν̃ = (2π )−1(ω/c) ≈ 440cm−1. Nallasamy et al. [38]
have studied PI using vibrational spectroscopy. They assign
a large number of different modes to their respective wave
numbers. Wave numbers at around 440 cm−1 they identify
with C-C-C deformation modes. We therefore conclude that in
the case of PI the components of the heat capacity tensor are
governed by short-lived phonon modes due to deformations of
the monomers, i.e., deformations in chain direction.

We note that the quantity (1/2)h̄ω/kB , where (1/2)h̄ω is
the zero-point energy of a one-dimensional quantum oscillator
with the frequency ω, is about 300 K if ω is equal to the above
value. This is consistent with the underlying assumption that
a classical force field approach at the temperatures used in
this study is reasonable, considering the quantum nature of the
phenomenon.

Thus far we have focused on the second term on the right-
hand side in the heat flux equation (A10). We can of course
compare the two relative contributions of the two terms to
the thermal conductivity. It turns out that the second term in
the present case dominates by far; i.e., a plot of the heat flux
autocorrelation function neglecting the first term is virtually
identical to the full results in Fig. 6. Notice also that L/cs ,
which is the time it takes a sound wave with the speed cs to
travel through a simulation box of linear size L, due to its
periodicity, is much larger than the above value for 1/ω. And
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FIG. 11. �zz(u) vs n‖(u)/no (right side) and [�xx(u) +
�yy(u)]/2 vs n⊥(u)/no (left side) based on the simulation results
shown in Figs. 3 and 5 (upper panel). The lines through the data are
explained in the text.

even more importantly, this time depends on L, which does
vary in our study without however causing a discernible effect
on the aforementioned negative correlations.

Finally we discuss the effect of straining the polymer system
on the thermal conductivity components as shown in Fig. 5.
Stretching of the elastomer results in an increased alignment
of polymer backbone segments along the direction of stretch.
Based on our above interpretation we expect this to enhance the
heat transport along the direction of stretch. Simultaneously
the conductivity in the orthogonal directions should diminish.
There are two orthogonal directions vs one parallel direction,
so that the increase along the deformation direction is more
pronounced.

We may employ the orientation distribution function,
f (θ ), introduced in the context of Fig. 3, to correlate the
number of monomers oriented along a certain solid angle with
the diagonal components of the thermal conductivity tensor
obtained at the same values of u. The relative number of
monomers possessing an angle θ , i.e., the angle of the double
bond relative to the z axis, less than π/3 is given by

n‖(u)/no =
∫ π/3

0
dθ sin θf (θ ; u), (2)

where no is the total number of monomers in the system.
The quantity n⊥(u) = no − n‖(u) is the corresponding number
of monomers outside this solid angle, i.e., in the range
π/3 < θ � π/2. Notice that if f (θ ; u) = 1, i.e., the distri-
bution is uniform, this yields n‖(u)/no = n⊥(u)/no = 1/2
(this is why above we choose π/3). Notice also that we
use the normalization

∫ π/2
0 dθ sin θf (θ ; u) = 1. It is useful to

express f (θ ; u) via the (normalized) fit function f (θ ; u) =
(a/ sinh[a]) cosh[−a cos θ ], where a = a(u) is an adjustable
parameter for a fixed value of u. Notice that with this function
n‖(u)/no = 1 − 1/(2 cosh[a/2]). Adjusting the fit function
to the data shown in Fig. 3, including angular distributions
obtained at additional u values not shown explicitly, we obtain
a series of attendant values a(u) and correspondingly values
for n‖(u). Figure 11 is a plot of �zz(u) vs n‖(u)/no as well as
[�xx(u) + �yy(u)]/2 vs n⊥(u)/no. We notice first that �zz(u)
increases with increasing n‖(u)/no. The line through the data is
a fit based on ln[�zz(u)/�zz(0)] = b[n‖(u)/no − 1/2], where
the parameter b ≈ 2.9. Even though there is significant scatter
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FIG. 12. Temperature dependence of the thermal conductivity for
u = 0. The three simulated systems are distinguished by the sulfur
content. The experimental data [20] encompass hard and soft rubber,
where hard rubber (open circles) corresponds to about 47 phr of
sulfur and soft rubber (filled circles) means about 2.5 phr of sulfur,
respectively.

of the data, the exponential increase of �zz(u) with increas-
ing “order parameter” n‖(u)/no − 1/2 is clearly discernible.
Simultaneously, we observe a less pronounced decrease of the
orthogonal thermal conductivity components. The line on the
left side in Fig. 11 merely is simple linear least-squares fit
to the data. The exponential increase of �zz(u) indicates that,
in addition to the increasing number of monomers oriented
in stretch direction, there also must be an enhanced coupling
between the excitations on the individual chain segments. It
is worth noting that Liu and Yang in Ref. [8] do also observe
the same behavior, i.e., an exponential increase of the thermal
conductivity in the direction of stretch, in a system of randomly
coiled polyethylene chains (cf. Fig. 7 in their paper).

Figure 12 shows the temperature dependence of the thermal
conductivity for u = 0. We have simulated three systems, one
without sulfur cross links and two additional ones containing
500 and 1200 disulfide bonds, respectively. The overall
temperature dependence of �̄ is rather weak. In addition,
within the temperature interval over which the simulation
results are obtained, there is only a slight average increase
with increasing cross-link density, i.e., �̄ = 0.0582,0.0584,

and 0.0638 W/(mK) for 0,9.4, and 22.6 phr, respectively
(where of course the error bars are larger then the observed
differences). This increase can be explained as being due
to the enhanced coupling of the above deformation modes
on neighboring chains. The effect as such is in qualitative
agreement with the conclusion in Carwile and Hoge [20],
where the authors do find an average increase of the thermal
conductivity of 2% per 10 phr increase of the sulfur. (We
note that Ni et al. [13] in their simulation study of thermal
conductance across polyethylene-solid interfaces do find a
much more pronounced dependence on the cross-link density.)
Quantitatively, however, the experimental data differ consid-
erably from the simulation results. Carwile and Hoge [20]
review essentially all thermal conductivity data obtained on
natural rubber up to 1966. Overall, also the experimental data
differ significantly. Carwile and Hoge discuss these references
and reach the conclusion that the curves shown here for soft
and hard rubber are the most reliable. With respect to the
difference to our simulation results, we can only speculate that
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FIG. 13. Relation between frequency and temperature of the
segment relaxation peak (α process) for polyisoprene. The simulated
points are compared to results obtained via dielectric spectroscopy
[(i), (ii), (iii)] as well as mechanical measurements (iii). Experimental
molecular weights are between 97.0 kg mol−1 and 504.0 kg mol−1.
This figure is taken from Meyer et al. [39].

these differences may be due to possible additives enhancing
the thermal conductivity of the compound.

Finally, we want to address the issue of frequency. As we
point out above, the stretching of the samples in the simulations
occurs at frequencies of around 10 GHz. In order to connect
these high frequencies to the experimentally relevant limit of
vanishing frequency, we can make use of temperature-time
superposition. Meyer et al. [39] have tracked the position of
the segment relaxation peak (α process) in an almost identical
polymer system. The only differences are that the number
of monomers per chain is 200 and the sulfur content is about
14 phr. These simulation results are shown in Fig. 13 including
experimental results obtained with different methods.

The simulation data points are obtained by measuring the
drag force on and the attendant dissipative loss of a spherical
silica nanoparticle while it undergoes a cyclic displacement
inside the polymer matrix. The force is measured using a
specially designed force gauge, which measures the force on
the particle via the extension of a virtual harmonic spring
attached at the center of the particle. This measurement in
Ref. [39] is obtained as a by-product of simulations aimed
at determining the interaction between silica nanoparticles
embedded in a polymer matrix.

Even though the simulations cover a comparatively small
range, the data tie nicely to the experimental data. Thus
the figure permits us to relate the simulation results via the
temperature-time-superposition principle to technically more
relevant frequencies. We notice that in the present case we must
subtract roughly 190 K from the temperature in the simulation
to obtain the corresponding experimental temperature in the
limit of vanishing frequency. It is important to note that the
measurement of the thermal conductivity itself requires a
very short time interval only (cf. Figs. 6 and 7); i.e., this
measurement is quite independent of the strain rate applied in
our simulations.

But what is the significance of the temperature-time or
temperature-frequency superposition in the present context?
Figure 12 shows that the thermal conductivity depends on
temperature only slightly. The experimental conductivity
changes by about 10% over the entire temperature range

above the glass transition. In Fig. 13 this temperature range
corresponds to three decades in frequency. If we apply this
to thermal conductivity, then we expect a similarly small
change when the strain frequency is lowered by three orders
of magnitude from the frequency used in our simulation.
In Ref. [8] the authors observe a 20% increase of thermal
conductivity when they reduce their strain rate from 109 Hz
to 108 Hz; i.e., their rate reduction is much more moderate by
comparison. On the other hand, their system contains a large
number of loose chain ends, which do affect the dynamical
behavior (they also show this by comparing systems with
chains of different length).

IV. CONCLUSION

We study the thermal conductivity tensor in an atomistic
model of vulcanized cis-1,4-polyisoprene rubber via molecular
dynamics simulations. The systems are subjected to volume-
conserving uniaxial strain of variable amplitude. Using the
Green-Kubo approach we obtain the diagonal components
of the thermal conductivity tensor as a function of strain at
T = 300 K and P = 1 bar. We observe an increase of the
thermal conductivity in the direction of elongation in overall
good accord with experimental data of Tautz [21]. In addition
we present results for the thermal conductivity coefficient at
zero strain but for a wide range of cross-link densities and
temperatures. Here the agreement with experimental data from
the literature is qualitative rather than quantitative.

We conduct an analysis of the heat flux autocorrelation
functions, including those in a Lennard-Jones system at two
different state points and liquid water at ambient conditions.
This leads to the conclusion that the thermal conductivity
in PI is governed by short-lived phonon modes at low
wave numbers due to deformation of the monomers along
the polymer backbone. Application of uniaxial strain to the
polymer sample causes increased orientation of monomers
along the strain direction. This in turn enhances the ther-
mal conductivity in this direction, whereas a simultaneous
decline of thermal conductivity is observed in the orthogonal
directions. Specifically, we find an exponential increase of
the conductivity in stretch direction in terms of an attendant
orientation order parameter. Increasing the cross-link density
in the unstrained system yields (on average) a slight increase
of the thermal conductivity. Qualitatively this is in accord with
experimental data. A more noticeable increase in response to
higher cross-link density is observed when strain is applied, but
only at the highest stresses. This increase cannot be attributed
to orientation but appears to be due to enhanced coupling
between chains.

APPENDIX A: DERIVATION OF THE
GREEN-KUBO RELATION

The following derivation of the Green-Kubo relation, used here
to compute the thermal conductivity tensor elements �αβ , is
primarily based on the (macroscopic) transport equation

Jα(�r,t) = −�αβ∂βδT (�r,t) = −V
�αβ

CV

∂βδe(�r,t) (A1)
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in conjunction with the continuity equation

∂αJα(�r,t) = −∂tδe(�r,t), (A2)

where

δe(�r,t) =
N∑

i=1

δei(t)δ(�r − �ri(t)). (A3)

Here Jα(�r,t) is the α component of the heat current inside a
volume element at position �r and at time t inside the volume V .
This current occurs in response to δe(�r,t), the fluctuation of the
internal energy density in the same volume element and at the
same time. Notice that the temperature fluctuation δT (�r,t) is
related to the energy density fluctuation via CV /V = δe/δT ,
where CV /V is the heat capacity per unit volume. In addition
we make use of the summation convention.

The �ri are atomic positions and δei(t) is the deviation of the
energy of atom i from its expectation value 〈ei〉, i.e.,

δei(t) = 1

2
mivi,α(t)vi,α(t) + 1

2

N∑
j (
=i)=1

uij (t) − 〈ei〉. (A4)

The first term, where mi is the mass of atom i and vi,α is the α

component of its velocity, is the kinetic energy of atom i and
the second term is its potential energy due to pair interaction
with atoms j . Notice that 〈ei〉 = 1

Nsteps

∑Nsteps

k=1 ei(k �t), where
Nsteps is the total length of the simulation expressed in terms
of time steps of size �t .

(A) First we derive the mean heat current components
Jα(t) expressed in atomic quantities: Inserting the Fourier
transforms

Jα(�r,t) = 1

(2π )3

∫
d3kĴα(�k,t)e−ikσ rσ (A5)

and

δ(�r − �ri(t)) = 1

(2π )3

∫
d3ke−ikσ (rσ −ri,σ (t)) (A6)

into the continuity equation yields

−ikαĴα(�k,t) = −∂t

N∑
i=1

δei(t)e
ikσ ri,σ (t). (A7)

Next we expand the exponential on the right-hand side,
i.e., exp[ikσ rσ,i(t)] = 1 + ikσ rσ,i(t) + O(k2). In conjunction
with

∑N
i=1 δei(t) = 0 and after taking the limit �k → 0

we obtain

Ĵα(0,t) = ∂t

N∑
i=1

δei(t)rα,i(t). (A8)

Finally, with Ĵα(0,t) = ∫
d3rJα(�r,t) = V Jα(t) follows the

desired result:

Jα(t) = 1

V
∂t

N∑
i=1

δei(t)rα,i(t). (A9)

It is somewhat tedious but straightforward to work out Jα(t)
based on Eq. (A4). The result is

Jα(t) = 1

V

N∑
i=1

vα,i(t)δei(t)

+ 1

2V

N∑
i,j = 1
i 
= j

rα,ij (t)fβ,ij (t)vβ,i(t). (A10)

Notice that fβ,ij is the β component of the force on atom i due
to atom j .

(B) The derivation of the actual Green-Kubo relation
utilizes the �k-space representations of the continuity equation
combined with the transport equation:

ikαĴα(�k,t) = δ ˙̂e(�k,t)

= − V

CV

kαkβ�αβδê(�k,t) ≡ −�δê(�k,t). (A11)

Here the dot indicates the derivative with respect to time. In
addition it is useful to define the Laplace transform

S̃(�k,ω) ≡
∫ ∞

0
dtŜ(�k,t)e−ωt , (A12)

where

Ŝ(�k,t) ≡ 〈δê(�k,t)δê(−�k,0)〉. (A13)

Thus we may write

−�S̃(�k,ω)
(A12),(A11)=

∫ ∞

0
dt ˙̂S(�k,t)e−ωt

= |∞0 Ŝ(�k,t)e−ωt︸ ︷︷ ︸
=−Ŝ(�k,0)

−
∫ ∞

0
dtŜ(�k,t)(−ω)e−ωt

︸ ︷︷ ︸
=−ωS̃(�k,ω)

. (A14)

And therefore

S̃(�k,ω) = Ŝ(�k,0)

ω + �
. (A15)

Next we use (A11), i.e.,

�2Ŝ(�k,t)
(A11),(A13)= 〈δ ˙̂e(�k,t)δ ˙̂e(−�k,0)〉
= kαkβ〈Ĵα(�k,t)Ĵβ(−�k,0)〉. (A16)

Integration of both sides with respect to time yields

�2
∫ ∞

0
dt Ŝ(�k,t)

︸ ︷︷ ︸
=S̃(�k,0)

(A15)= �−1Ŝ(�k,0)

= kαkβ

∫ ∞

0
dt 〈Ĵα(�k,t)Ĵβ(−�k,0)〉. (A17)

Thus

�αβŜ(�k,0) = CV

V

∫ ∞

0
dt 〈Ĵα(�k,t)Ĵβ(−�k,0)〉 (A18)

and in the limit �k → 0

�αβŜ(0,0) = CV

V
V 2

∫ ∞

0
dt 〈Jα(t)Jβ(0)〉. (A19)
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Notice that

Ŝ(0,0) = 〈δê(0,0)δê(0,0)〉.
Using

δê(�k,t) =
∫

d3rδe(�r,t) exp[ikσ rσ ]

we have

Ŝ(0,0) =
∫

d3rd3r ′〈δe(�r,0)δe(�r ′,0)〉 = kBT 2CV (A20)

and therefore

�αβ = V

kBT 2

∫ ∞

0
dt 〈Jα(t)Jβ(0)〉. (A21)

APPENDIX B: EFFICIENT EVALUATION OF THE
AUTOCORRELATION FUNCTION

Autocorrelation functions of the type

〈Jα(t)Jβ(0)〉 = 〈Jα(k�t)Jβ(0)〉

= 1

n − k

n−k∑
i=0

Jα((i + k)�t)Jβ(i�t) (B1)

are computed efficiently via the following O(n log(n)) algo-
rithm using DFT (discrete Fourier transform) or FFT (fast
Fourier transform). Here �t is the time step. Expressing
Eq. (B1) in matrix form, using ai ≡ Jα(i�t) and bi ≡ Jβ(i�t),
we have⎛
⎜⎜⎝

〈a0b0〉
〈a1b0〉

...
〈an−1b0〉

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
n

0 · · · 0
0 1

n−1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎝

a0 a1 · · · an−1

a1 a2 · · · 0
...

...
. . .

...
an−1 0 · · · 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

b0

b1
...

bn−1

⎞
⎟⎟⎠. (B2)

Multiplication with the diagonal matrix is an O(n), whereas
the matrix-vector product requires O(n2) multiplications. The
computational effort is significantly reduced using the convo-
lution theorem for circulant matrices Z, which is common in
signal processing, i.e.,

�a′ ∗ �b′ = Z�b′ ⇔
DFT(�a′ ∗ �b′) = DFT(�a′) � DFT(�b′) = DFT(Z�b′).

This yields

Z�b′ = iDFT(DFT(�a′) � DFT(�b′)), (B3)

where the operation � means a component-wise multiplica-
tion. Because the above convolution requires circulant matri-
ces, we must transform the matrix in Eq. (B2) accordingly:

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 · · · an−1 0 · · · 0
...

. . .
...

...
. . .

...

an−1 · · · 0 0 · · · an−2

0 · · · 0 a0 · · · an−1

...
. . .

...
...

. . .
...

0 · · · an−2 an−1 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first row in each new column is shifted by one element to
the left. Choosing

�b′ = (
b0, . . . , bn−1, 0, . . . , 0

)t

yields for Z�b′ the first n elements of the matrix multiplication
in (B2). The choice

�a′ = (
a0, 0, . . . , 0, an−1, . . . , a1

)t

yields the same result if it is determined via (B3). We remark
that the result is invariant with respect to cyclic permutation of
the components of �a′ to the left, provided the same number of
cyclic permutations to the right are applied to �b′. Notice that
the computational effort of the DFT is reduced via the divide
et impera algorithm (FFT) from O(n2) to O(n log(n)).
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