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Topological protection from exceptional points in Weyl and nodal-line semimetals
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We investigate the topological protection of surface states in Weyl and nodal-line semimetals by characterizing
them as evanescent states when the band structure is extended to complex momenta. We find in this way a
sequence of exceptional points—that is, branch points with zero energy in the complex spectrum—allowing us to
identify the set of surface states with complex momentum signaling the decay into the 3D semimetal. From this
point of view, Weyl and nodal-line semimetals can be classified in two types depending on the way surface states
decay. Type A semimetals have surface states with smaller penetration length and oscillating decay while type
B semimetals have longer simple exponential decays. The difference between both types reflects in the way the
branch cuts in the spectrum accommodate in the complex plane. The stability of the surface states stems in this
approach from the complex structure that develops around the exceptional points, with a topological protection
which is based on the fact that the branch cuts cannot be closed by small perturbations. We check this property
when nodal-line semimetals are placed under circularly polarized light, where we observe that the exceptional
points survive the effect of such a perturbation, though appropriate boundary conditions for zero-energy surface
states cannot be satisfied in general due to the breakdown of time-reversal invariance by the radiation field.
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I. INTRODUCTION

Topological materials have become a primary target of
research in the last few years due to their exceptional properties
with high potential for applications [1,2]. The bulk-edge
correspondence and the topological protection of edge states
is on the basis of the interesting properties of systems with
topologically nontrivial band structure. In topological insula-
tors, the quantity controlling the topological protection is the
inverted gap between bands arising from the crystal structure
of the material. A perturbation must be strong enough to close
the gap in order to destroy the edge states of the material.

In band theory, a semimetal is usually defined as a material
with no gap in the band structure but with a very small overlap
between the valence and the conduction band, resulting in
a small density of states around the Fermi energy. A typical
example is bismuth which has intermediate properties between
an insulator and a metal [3]. In topological band theory,
however, it is customary to work with a more strict definition
by which a semimetal is a material with no gap but also no
Fermi surface, so the conduction and valence bands touch
only at isolated points. The semimetal so defined is really
a distinct phase intermediate between insulators and metals,
the most famous example being graphene [4]. Although the
Dirac nodes in the 2D Brillouin zone of graphene are not
topologically protected, in three dimensions we have the last
additions to the family of topological materials, which include
Dirac and Weyl semimetals with isolated Dirac or Weyl nodes
in the band structure [5–8], and the nodal-line semimetals with
a continuous line of nodes in the Brillouin zone [9].

The surface states corresponding to these topological
semimetals lie on constant energy contours which do not
form in general closed curves. In the case of the Weyl and
Dirac semimetals, the surface states lead to the celebrated
Fermi arcs joining the projection of the nodes onto the given
surface. For nodal-line semimetals, the surface states form
the so-called drumhead within the nodal circle [9–11]. In the
Weyl semimetals, such states are topologically protected and

Chern numbers can be defined in the planes lying between
Weyl nodes [12,13]. The physical quantity measuring this
protection is the separation of the nodes in momentum space.
The situation is less clear for Dirac semimetals in which a
simple application of bulk-surface correspondence does not
provide with an answer to whether or not the surface states
are topologically protected. Recent works have discussed the
stability of the surface states in 3D semimetals [14–16]. In this
regard, an alternative description of the topological protection
of surface states in 3D topological semimetals is very desirable.
Here, we provide such a description by extending the band
structure in momentum space to complex momenta.

The convenience of taking complex values of the mo-
mentum is motivated by the search of evanescent states in
the 3D semimetals. When the momentum is promoted to a
complex quantity, the Hamiltonian of the system becomes
non-Hermitian, but it is still possible to find exceptional points
in the spectrum, that is, branch points where the imaginary
part of the eigenvalue vanishes. This allows one to identify the
set of evanescent states with complex momentum that signals
the decay into the 3D semimetal. Such states are endowed
with topological protection, which arises naturally from the
fact they are attached to branch cuts that cannot be removed
under small perturbations. This description based on the
identification between evanescent states and exceptional points
was pioneered in a previous work describing surface states
in Weyl semimetals in the presence of circularly polarized
light [17]. Recently, rings of exceptional points have been
also found in dissipative systems which are based on Weyl
semimetals [18].

When looking for evanescent states in the spectrum of the
3D semimetals, we have found that these can be classified in
two different groups, depending on the pattern of the branch
cuts in the plane of complex momentum. Thus, there is a class
of 3D semimetals, that we denote as type A, where most part
of the branch cuts run in parallel crossing the real axis. The
corresponding exceptional points form then quartets belonging
to the same branch of the spectrum, with each member of a
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quartet in a different quadrant of the complex plane. In the
other class, that we denote as type B, all the branch cuts
can be disposed instead along the imaginary axis, lacking
the nontrivial realization of symmetry found in the type A
class. From the physical point of view, this introduces also an
important difference between the two classes, as the quartets
found in the type A semimetals provide a higher degree of
topological protection, quantified in terms of a larger length of
the branch cuts and a much smaller penetration length of the
evanescent states in the 3D semimetal.

Note that this classification has a different origin than the
classification into type I and type II Weyl semimetals, that
depends on whether the density of states vanishes at the nodal
points or has some extra contributions due to the tilting of the
Weyl cones [19,20]. Although we have only explored a model
describing a type I Weyl semimetal in this work, we expect
our classification to be supplementary to the classification into
type I and type II Weyl semimetals, that is, we expect to be
type A semimetals of type I and type II and type B semimetals
also of both type I and II.

The stability of the surface states stems in our approach
from the complex structure that develops for complex momen-
tum, where different bands can be seen as different branches of
the Riemann surface giving the spectrum. In this framework, a
pair of exceptional points and the respective evanescent states
can be only annihilated by merging the branch points, provided
they lie in the same branch of the spectrum. This picture
allows us to establish a connection with the usual account
of the topological protection of surface states, which requires
making a 2D projection of the 3D band structure to open a gap
in the spectrum. In our approach a gap also exists, but this is
now seen as the separation opened between different branches
along a branch cut in the complex spectrum. Such a gap can
be closed only as long as the exceptional points at the two
ends of the branch cut are made to coalesce, which provides
an alternative understanding of the topological protection in
the plane of complex momentum.

In this paper, we apply the complex structure developed
around the exceptional points to investigate the stability of
the surface states in 3D Weyl and nodal-line semimetals. We
are going to see that this approach provides a very robust
picture of the evanescent states in these systems. This will be
checked in particular in the case of the nodal-line semimetals
under circularly polarized light, which is an instructive
example since that may not be in general a small perturbation
of the semimetal. We will see that the exceptional points
survive indeed the effect of the electromagnetic field, though
appropriate boundary conditions for surface states cannot be
satisfied in general due to the breakdown of time-reversal
invariance by the radiation field.

The paper is organized as follows. In Sec. II, we consider
Weyl semimetals and their surface states on the light of our
approach to look for evanescent states with complex momen-
tum. Then, in Sec. III, we consider nodal-line semimetals,
their bulk and their surface states in cylindrical coordinates
which are well-suited to the problem. In Sec. IV, we use the
same approach to study the behavior of evanescent states in
the case of a periodic perturbation of the nodal-line semimetal
by circularly polarized light. We finish with some conclusions
of our study in Sec. V.

II. WEYL SEMIMETAL

We consider a simple model for a Weyl semimetal with
Hamiltonian

Hw = (m0 + m1∇2)σz − iv∂zσx − iv∂yσy. (1)

The energy-momentum dispersion as a function of the 3D
momentum k is given then by

ε = ±
√

(m0 − m1k2)2 + v2k2
y + v2k2

z . (2)

It turns out that the valence and conduction bands touch at
Weyl points located in the line ky = kz = 0 with

kx = ±
√

m0

m1
. (3)

In this model, we may look for surface states characterized
by wave functions decaying for instance in the z direction as

φ(x,y,z) ∼ eikzze−αzf (x,y), (4)

with α > 0 corresponding to the inverse of the penetration
length. The action of the Hamiltonian becomes particularly
simple if we concentrate on the set of states

φkx,kz,+(x,y,z) = eikxxeikzze−αz|+〉, (5)

φkx,kz,−(x,y,z) = eikxxeikzze−αz|−〉 (6)

with the spinor part corresponding to the eigenvectors of σy ,

|+〉 =
(

1
i

)
, |−〉 =

(
1
−i

)
. (7)

We get in this way

Hwφkx,kz,+ = (
m0 − m1

(
k2
x + k2

z − α2 + 2ikzα
)

+ iv(kz + iα)
)
φkx,kz,−, (8)

Hwφkx,kz,− = (
m0 − m1

(
k2
x + k2

z − α2 + 2ikzα
)

− iv(kz + iα)
)
φkx,kz,+. (9)

Then we can identify a collection of zero-energy modes in
the set of states {φkx,kz,+} by canceling out the right-hand side
of Eq. (8) (assuming that m0 > 0,m1 > 0,v > 0). This leads
to two types of solutions, either

α = v

2m1
, (10)

kz = ±
√

m0

m1
− k2

x − α2 (11)

or

α =
v ±

√
v2 − 4m1

(
m0 − m1k2

x

)
2m1

, (12)

kz = 0. (13)

For a given kx , two independent states with α � 0 exist as
long as k2

x � m0/m1. We note that the actual wave function
corresponding to a surface state must be a linear combination
of the solutions with + and − signs [in either (10) and (11)
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or (12) and (13)] in order to fulfill appropriate boundary
conditions (for example, in a semi-infinite plane, making
the wave function to vanish at z = 0). This collection of
evanescent states maps therefore the celebrated Fermi arcs
with |kx | �

√
m0/m1, which join the projection of the Weyl

points onto a given surface of the semimetal.
The solution corresponding to Eqs. (10) and (11) is valid

when 4m1m0 > v2. In this case, there is, however, a portion
of the Fermi arcs, closer to the endpoints, where the states
change to the form given by Eqs. (12) and (13). Thus, we
identify a class of Weyl semimetals that we denote as type
A (corresponding in our model to 4m1m0 > v2) in which
two different kinds of states coexist in the Fermi arcs, with
oscillatory decay along the z direction in the range

0 � |kx | <

√
m0

m1
− v2

4m2
1

(14)

and pure exponential decay in the range√
m0

m1
− v2

4m2
1

� |kx | <

√
m0

m1
. (15)

In this regime, we observe that the set of states with oscillatory
decay shrinks progressively as v grows, until they disappear
at v2 = 4m1m0. This variable proportion of evanescent states
with oscillatory decay and pure exponential decay is illustrated
in Fig. 1 in two different cases with 4m1m0 � v2 and
4m1m0 ≈ v2. The plots represent the lowest eigenvalue of Hw

when it is diagonalized in the space spanned by the basis
(5) and (6). The Hamiltonian becomes non-Hermitian as the
momentum in the z direction is extended to complex values
kz + iα, but one can still look for zero-energy modes in the
spectrum. In Figs. 1(a)–1(d), one can clearly see the lines in
which both the real and the imaginary part of the eigenvalue
vanish, mapping the different zero-energy evanescent states
along the Fermi arc with 0 � kx �

√
m0/m1.

Moreover, we find a complementary class of Weyl semimet-
als that we will refer to as type B (corresponding in our
description to 4m1m0 < v2) characterized by having Fermi
arcs where all the states have pure exponential decay. Their
wave function has in general a dependence on the z coordinate
given by

φ ∼ c1e
−α+z + c2e

−α−z, (16)

α± being the two solutions in (12). The smallest of the two
values of α dictates the inverse penetration length, which may
run from 0 up to v/2m1. This leads therefore to a slower decay
along the z direction in comparison to the evanescent states
with oscillatory behavior in the type A semimetals.

This distinction between the two mentioned classes is
relevant since the evanescent states with oscillatory decay
have a different phenomenology than the evanescent states
with pure exponential decay. This can be more easily realized
when we consider a slab of finite width W , with two opposite
faces of the material oriented perpendicularly with respect to
the z axis. If we have evanescent modes with opposite values
of kz, they can be superposed pairwise to form eigenstates with
a dependence on the z variable:

φ ∼ sin(kzz)e−αz. (17)

FIG. 1. [(a) and (b)] Representation of the absolute value of the
imaginary part and the real part of the lowest eigenvalue of Hw for
states with complex momentum kz + iα along the Fermi arc with 0 �
kx �

√
m0/m1, for m0 = 1.0 eV, m1/a

2 = 1.0 eV, and v/a = 0.8 eV
(a being a microscopic length scale in the model). The energy ε is
measured in units of eV. [(c) and (d)] Similar representation as in (a)
and (b) but for m0 = 1.0 eV, m1/a

2 = 1.0 eV, and v/a = 1.98 eV.
The plots map the distinctive zero-energy modes with constant α

(corresponding to states with oscillatory decay) and the bifurcation
into two zero-energy branches with variable α (representing the states
with pure exponential decay).

Then, it becomes possible to build surface states decaying
along the z direction with the right boundary conditions
(vanishing at the two faces of the material, say at z = 0 and
z = W ) in a way which does not require to know about the
surface states localized near the other face of the material (at
z = W ). This construction cannot be done, however, with the
evanescent modes having pure exponential decay. In that case,
eigenstates with a dependence like that in (16) may be chosen
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FIG. 2. Probability density in logarithmic scale across the z

direction of surface states in the Fermi arcs with kx = 0. We compare
two different cases, one with some oscillatory dependence in the z

direction corresponding to a type A Weyl semimetal (red line, m0 =
0.35 eV, m1 = 1.0 eV nm2, and v = 1.0 eV nm) and another with
pure exponential decay corresponding to a type B Weyl semimetal
(black line, m0 = 0.35 eV, m1 = 1.0 eV nm2, and v = 4.0 eV nm).
In the inset, the same figure is shown in normal scale.

to vanish at z = 0, but it cannot be avoided some leaking of
their amplitude to the opposite face at z = W . In other words,
evanescent states with pure exponential decay may still lead to
proper surface states in a slab, but they require necessarily the
mixing of modes localized at opposite faces of the material.

In Fig. 2, we show numerical calculations for an equivalent
tight-binding Hamiltonian in a slab of width W = 1000 nm in
the z direction, for two different examples pertaining to type A
and type B semimetals. The appearance of the band structure is
very similar in the two regimes, with the Fermi arcs joining the
projection of the Weyl nodes. However, in the type B regime
(4m1m0 < v2) the Fermi arc states have a penetration length
(1/α) that increases with the value of |kx | until it diverges
at the projection of the Weyl nodes. In the type A regime
(4m1m0 > v2), the states with k2

x < m0/m1 − v2/4m2
1 have a

very small penetration length 2m1/v, which would be typically
of the order of a few unit cells in real materials. However, the
probability density oscillates as it decays. For larger values of
k2
x , the penetration length grows until it diverges again at the

projection of the Weyl nodes, and the wave function for z is
just a decaying exponential without oscillations.

The different character of the states with oscillatory decay
and those with pure exponential decay has also a reflection
in the behavior of their energy in a slab. The surface states
of the type B semimetals have always nonvanishing energy
(measured with respect to that of the nodal points) as they
are built from the hybridization of evanescent waves at two
opposite faces of the slab. On the other hand, the energy of
the surface states of type A semimetals vanishes when the
condition of resonance is met along the finite dimension of
the slab, which implies a nonmonotonous dependence on the
width W as shown in Fig. 3. We note that this also leads in
general to different orders of magnitude when comparing the
energies of the surface states in type A and type B semimetals,
as seen in the figure.
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2
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FIG. 3. Energy in log scale of surface states at the midpoint of
the Fermi arc (kx = 0 in our model) as a function of the width W in
a slab geometry, comparing the behavior for a type A semimetal (red
line, m0 = 0.35 eV, m1 = 1.0 eV nm2, and v = 1.0 eV nm) and for
a type B semimetal (black line, m0 = 0.05 eV, m1 = 1.0 eV nm2,
and v = 1.0 eV nm).

Within this approach, we can also analyze the role that the
evanescent states play in the spectrum of the Hamiltonian Hw,
as this becomes a non-Hermitian operator acting on the basis
(5) and (6). In the subspace spanned by this set of states, the
eigenvalues of Hw turn out to be according to (8) and (9):

λ = ±
√(

m0 − m1
(
k2
x + (kz + iα)2

))2 + v2(kz + iα)2. (18)

It can be seen that the particular values satisfying the zero-
mode conditions (10), (11) and (12), (13) correspond to branch
points in the complex spectrum of Hw, both for 4m0m1 > v2

and 4m0m1 < v2. We find therefore that the evanescent states
we have identified correspond to so-called exceptional points
[21,22] in the spectrum of Hw, when this is mapped as a
function of the complex momentum kz + iα. This highlights
that there is a complex structure behind the surface states of the
Weyl semimetals, which has important implications for their
stability.

The structure of the branch cuts in the complex plane
kz + iα is different however, depending on whether we
consider the type A regime (4m0m1 > v2) or the type B
regime (4m0m1 < v2) of the Weyl semimetal. In the first
case, the states in the Fermi arcs with k2

x < m0/m1 − v2/4m2
1

correspond to branch points that are away from the imaginary
axis, as represented in Fig. 4, where it can be observed the
branch cuts that develop from the location of the zero-energy
modes. The branch cuts fall eventually into the imaginary
axis for k2

x > m0/m1 − v2/4m2
1, where we know that the

evanescent states must be in accordance with (12) and (13).
In the type B regime, however, the branch cuts are found in
the imaginary axis for all the states in the Fermi arcs, with a
typical structure represented in Fig. 5.

The different structure of the branch cuts in the type A and
type B regimes of the Weyl semimetal can be actually ascribed
to a different realization of the symmetries of the Hamiltonian
(1). This is in particular invariant under the spatial inversion,
which can be represented as an operator I with an action on
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FIG. 4. Contour plots of the absolute value of the imaginary part
(a) and the real part (b) of the eigenvalue in (18) for kx = 0 and m0 =
1.0 eV, m1/a

2 = 1.0 eV, and v/a = 0.2 eV, a being a microscopic
length scale in the model. kz and α are measured in units of a−1 and
the energy is in units of eV.

FIG. 5. Contour plots of the absolute value of the imaginary part
(a) and the real part (b) of the eigenvalue in (18) for kx = 0 and m0 =
0.5 eV, m1/a

2 = 1.9 eV, and v/a = 2.4 eV, a being a microscopic
length scale in the model. kz and α are measured in units of a−1 and
the energy is in units of eV.

the states φ(x,y,z) given by

I : φ(x,y,z) → σz φ(−x, − y, − z). (19)

The Hamiltonian (1) has moreover an enlarged symmetry
when the dynamics is constrained to states that do not depend
on the y coordinate, as in the above discussion. Then Hw

becomes invariant under a transformation T that acts like
time-reversal invariance, given in terms of the operation of
complex conjugation K as

T : φ(x,y,z) → Kσz φ(x,y,z). (20)

Thus, in the structure represented in Fig. 4 for the type A
regime of the Weyl semimetal, the two branch points related by
the inversion of the complex momentum kz + iα correspond
to states that are mapped onto each other by the action of I . On
the other hand, the transformation T is realized in the complex
plane as the inversion kz → −kz. This accounts for the fact that
the same state φ(x,y,z) (with y = const.) is found at the two
branch points related by such an inversion of the momentum kz.

The fact that one finds the same evanescent state at branch
points with momenta kz and −kz is important from the point
of view of the stability of the surface states. As already
mentioned, two independent states φ(x,y,z) are needed in
order to build a surface state that may vanish on the boundary
of the system, say for instance on the plane z = 0. This
requirement can be satisfied in the type A regime of the Weyl
semimetal from the symmetry enforced by the T operation.
Then, the surface states with kz �= 0 turn out to be protected
due to the particular structure of the branch cuts, which cannot
be undone unless the branch points are made to coalesce in
pairs. Such a kind of topological protection holds also in
the type B regime of the Weyl semimetal, with evanescent
states which correspond to branch points with more variable
separation along the imaginary axis and can merge in general
under weaker perturbations.

We find that the exceptional points endow in general the
surface states with topological protection, as the nontrivial
topology of the branch cuts cannot be modified with small
perturbations. The distinctive feature of the branch points is
that one needs to turn twice around them to return to the
original point in the spectrum, as observed in the 3D plot of
the complex dispersion in Fig. 6(a). This has a reflection in the
fact that the complex eigenvalues as well as the eigenfunctions
get a Berry phase of π after going around any of the branch
points.

Anyhow, the mathematical basis of the topological pro-
tection lies in our approach in the complex structure of the
eigenvalues, rather than in the behavior of the eigenfunctions
in the (kz,α) plane. As illustrated in Fig. 6(a) for the case of a
type B Weyl semimetal, there are two branch cuts in each of the
subbands of the spectrum (labeled here by the momentum kx).
In order to make a closed orbit in the complex spectrum, one
needs to enclose two branch points as sketched in Fig. 6(b).
Looking at the 3D plot, it becomes clear that this creates
noncontractible loops, making manifest that the Riemann sheet
does not have the topology of a sphere. Indeed, it is known
that a Riemann sheet with two branch cuts of square-root type
has the topology of a torus (once the space is compactified by
identifying the points at infinity). This is consistent with the
existence of two independent noncontractible orbits in the 3D
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FIG. 6. (a) 3D plot of the imaginary part of the eigenvalue in
(18) for kx = 0 and the same parameters as in Fig. 5 (m0 = 0.5 eV,
m1/a

2 = 1.9 eV, and v/a = 2.4 eV). kz and α are measured in units of
a−1 and the energy is in units of eV. (b) Contour plot of the absolute
value of the imaginary part of the eigenvalue in (18) for the same
parameters as in (a) and with the same units as in Fig. 5. The red
circles stand for the projection of two noncontractible loops around
the branch points in the spectrum.

plot of Fig. 6(a), which correspond actually to the two cycles
of the torus.

Although the nontrivial topology of the spectrum is best
visualized in the 3D plot for the type B Weyl semimetal,
similar considerations apply to the type A class with the branch
cuts shown in Figs. 4(a) and 4(b). As a generic feature, the
branch cuts are tied to the existence of a gap in the spectrum,
which corresponds to the distance between the two branches
of the Riemann sheet. We see that this gap is part of a more
involved structure in our approach, which unveils the nontrivial
topology of the spectrum. As in the conventional description
of the surface states in a Weyl semimetal, these are protected
as long as the gap persists in the spectrum, which is enforced
here by the impossibility to change its toroidal topology by
means of smooth perturbations.

III. NODAL-LINE SEMIMETAL

A. Bulk states

Our starting point is a model of nodal-line semimetal with
a Hamiltonian

HNL = (m0 + m1∇2)σz − iv∂zσx. (21)

In terms of the 3D momentum k, the eigenvalues of (21) are
given by

ε = ±
√

(m0 − m1k2)2 + v2k2
z . (22)

This model has then a line of nodes in the plane kz = 0, given
by the circular set

k2
x + k2

y = m0

m1
. (23)

When looking for energy eigenstates, we can concentrate
on modes with well-defined angular momentum, with wave
function ψ such that in polar coordinates (r,θ,z)

ψ(r,θ,z) ∼ eikzzeimθf (r). (24)

The spectrum can be obtained then by solving the eigenvalue
problem [

m0 + m1

(
1

r

∂

∂r

(
r

∂

∂r

)
− m2

r2
− k2

z

)]
× σzψ

(m)
kz

+ vkzσxψ
(m)
kz

= εψ
(m)
kz

. (25)

In the case of bulk zero-energy modes, we see from (25)
that they can be expressed in terms of Bessel functions Jm as

ψ
(m)
0,+(r,θ,z) = eimθJm(kr)|u〉, (26)

ψ
(m)
0,−(r,θ,z) = eimθJm(kr)|d〉 (27)

with k = √
m0/m1 and the spinor part given by the eigenvec-

tors of σz:

|u〉 =
(

1
0

)
, |d〉 =

(
0
1

)
. (28)

It turns out that, in this particular representation, the states
corresponding to the nodal line are labeled by the integer values
m of the projection of the angular momentum along the z

direction.

B. Surface states

We are interested in surface states that take the form
of evanescent waves localized at the boundary of the 3D
semimetal. It can be easily seen that there is a huge set of these
states characterized by the evanescence in the z direction, with
wave function χ decaying as

χ (r,θ,z) ∼ eikzze−αzeimθf (r). (29)

The zero-energy modes have to correspond in particular to
solutions of the equation[

m0 + m1

(
1

r

∂

∂r

(
r

∂

∂r

)
− m2

r2
− k2

z + α2 − 2ikzα

)]
× σzχ

(m)
kz

+ v(kz + iα)σxχ
(m)
kz

= 0. (30)

First of all, the imaginary terms must cancel out in (30).
This means that the solutions must be necessarily proportional
to the eigenvectors |±〉 of σy given in (7). Taking the first
spinor, one obtains the constraint

−2im1kzα + ivkz = 0, (31)
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which leads to either

α = v

2m1
(32)

or

kz = 0. (33)

Similarly to the case of the Weyl semimetals, the condition (32)
gives rise to evanescent states with oscillatory decay while
the condition (33) results in an exponential decay without
oscillations. If we choose otherwise the second spinor in (7),
that changes the sign of the last term in the left-hand side of
(30), which prevents the existence of evanescent states with
kz �= 0 (for v > 0, m1 > 0) and does not allow either to find
solutions with α > 0 when kz = 0 (as we see in what follows).

Taking the value of α in (32), it turns out that the evanescent
states are given by the solutions of Eq. (30):

χ
(m)
kz,+(r,θ,z) = eikzze−αzeimθJm(krr)|+〉 (34)

with

kr =
√

m0
m1

− k2
z − α2. (35)

If instead we adopt the condition (33), the corresponding
values of α become

α =
v ±

√
v2 − 4m1

(
m0 − m1k2

r

)
2m1

, (36)

which implies a penetration length 1/α diverging at the line of
nodes. The relation (35) only makes sense if 4m0m1 > v2,
while in the regime 4m0m1 < v2 all the evanescent states
are found using (36). As in the case of the Weyl semimetal,
this disjunctive allows us to distinguish between two different
classes of nodal-line semimetals, that we denote as type A
(for 4m0m1 > v2) and type B (for 4m0m1 < v2). The type A
corresponds to the regime that is expected to prevail for real-
istic materials providing examples of nodal-line semimetals.
For example, most part of the k · p Hamiltonians of the CaP3

family of materials (without taking into account spin-orbit
coupling) fall into that category [23]. From the physical point
of view, the two classes A and B can be discerned by the
different penetration of the drumhead surface states into the
material, which shows for a slab practically the same behavior
as represented in the case of the Weyl semimetal in Fig. 2.

From a formal point of view, the difference between type
A and type B nodal-line semimetals lies in the distinctive
complex structures that develop in the plane (kz,α). In a
type A nodal-line semimetal which has, for instance, a finite
circular section at the boundary z = 0, the values of kr become
quantized, which turns into the consequent quantization of
the momentum kz. It can be seen that the allowed values of
kz + iα leading to evanescent states emerge then as exceptional
points in the extension of the momentum kz to the complex
plane, as represented in Fig. 7. Those can be characterized
indeed as branch points in the spectrum of the Hamiltonian for
complex momentum, leading to branch cuts that run down to
homologous branch points with the reversed sign of α.

We observe in Fig. 7 that the exceptional points can
be grouped forming quartets, which is a consequence of

FIG. 7. Contour plots of the absolute value of the imaginary part
(a) and the real part (b) of the lowest eigenvalue in the spectrum of HNL

for evanescent states with angular momentum m = 0 in a semi-infinite
cylindrical geometry with radius R = 100a (a being the microscopic
length scale in the model), for m0 = 0.1 eV, m1/a

2 = 4.0 eV, and
v/a = 0.1 eV. The units are the same as in Fig. 4.

the invariance of the Hamiltonian (21) under the operations
defined by (19) and (20). We have actually

[HNL,I ] = 0, (37)

[HNL,T ] = 0. (38)

The invariance under T is responsible for the fact that each
pair of evanescent states with opposite sign of kz may have
the same wave function at z = 0. This symmetry is crucial in
order to enforce the boundary conditions for the surface states
at the edge of the semimetal, allowing to build for instance
linear combinations of evanescent states that vanish at z = 0.
Moreover, the stability of the surface states is also guaranteed
by the separation in the (kz,α) plane between evanescent states
related by the I and T operations, which lend topological
protection as the branch cuts running between the respective
branch points cannot be closed under small perturbations.

Such a nontrivial realization of the invariance under I and
T holds only in the case of the type A nodal-line semimetal, as
for type B all the evanescent states have kz = 0. In this latter
case, they correspond to exceptional points in the spectrum
of HNL which fall along the imaginary axis in the (kz,α)
complex plane. A representation of the sequence of branch
points for a type B nodal-line semimetal with cylindrical
geometry is shown in Fig. 8. We notice that the plot has a
series of discontinuities, which arise from the fact that the
lowest eigenvalue of HNL is found in different subbands as the
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FIG. 8. Plot of the absolute value of the real part (blue lines)
and the imaginary part (red lines) of the lowest eigenvalue in the
spectrum of HNL for evanescent states with angular momentum m =
0 in a semi-infinite cylindrical geometry with radius R = 100a (a
being the microscopic length scale in the model), for m0 = 0.1 eV,
m1/a

2 = 2.0 eV, and v/a = 1.0 eV. The units are the same as in
Fig. 4. The dashed lines are used to separate the dispersion of different
subbands, which correspond to the evolution of different eigenvalues
in the diagonalization of HNL.

value of α increases. In each continuous region, we observe a
clear characterization of the branch point as the location where
the real and the imaginary part of the eigenvalue vanish.

The plot in Fig. 8 highlights an important property that
applies both to type A and type B nodal-line semimetals.
As already mentioned, it is clearly observed in the figure
that exceptional points with different values of the complex
momentum belong in general to different subbands in the
spectrum of HNL. This can be also appreciated (though
less neatly) in the representation of Fig. 7, where a careful
inspection shows that a line of discontinuity exists in the
contour plot between each two consecutive branch cuts. From
the point of view of the complex structure, this means that
exceptional points with different values of kz + iα belong in
general to different branches of the Riemann sheet arising
from the diagonalization of HNL for complex momentum. This
implies that it is not possible in general to undo the branch cuts
by merging contiguous exceptional points. The only branch
points that can be made to coalesce are those that pertain to
the same branch in the complex structure—which, in the case
of a type A semimetal, are those connected precisely by the
I and T operations. This reassures once more the topological
stability of the collection of drumhead surface states, implied
in this framework by the underlying complex structure of the
spectrum.

IV. EVANESCENT STATES IN NODAL-LINE SEMIMETAL
UNDER ELECTROMAGNETIC RADIATION

A very interesting line of research is the control of quantum
properties by external ac fields [24–29]. In this search, it
has been found that the effect of electromagnetic radiation
may change the properties of 2D semimetals, opening a gap
in the bulk and leading to chiral currents at the boundary
of the electron system [30–36]. The effect of the radiation
has been also investigated in the case of 3D Dirac and Weyl
semimetals, finding that a circularly polarized photon field has
the ability to shift the Dirac or Weyl points in momentum space
[37–39]. New surface states have been also discovered in Weyl

semimetals illuminated by monochromatic radiation, forming
bands with macroscopic degeneracy and rotating currents [17].
Another interesting result is that, using circularly polarized
light in the proper direction, a nodal-line semimetal can be
transformed into a Weyl semimetal [40–42].

In this section, we show that the idea of describing the
surface states by exceptional points in the spectrum can be
generalized to the case of the nodal-line semimetals under
electromagnetic radiation. This is a relevant instance to check
the topological protection that arises when extending the
momenta to the complex plane, since the effects of the radiation
can be studied in regimes where it is not a small perturbation.

The coupling to the vector potential can be done in the usual
fashion, adopting the Peierls prescription k → k + A. In the
case of circularly polarized radiation sent along the z direction,
we have

A = (A cos(�t),A sin(�t),0). (39)

The Hamiltonian becomes then

H = (
m0 + m1

(
∂2
x + ∂2

y + 2iA cos(�t)∂x

+ 2iA sin(�t)∂y − A2 + ∂2
z

))
σz − iv∂zσx (40)

= (
m0 + m1

(
∂2
x + ∂2

y + iAei�t∂−

+ iAe−i�t ∂+ − A2 + ∂2
z

))
σz − iv∂zσx (41)

with

∂− = ∂x − i∂y, (42)

∂+ = ∂x + i∂y. (43)

We have the commutation rules with the angular momentum
Lz = −ix∂y + iy∂x :

[Lz,∂−] = −∂−, (44)

[Lz,∂+] = ∂+. (45)

From these relations, it can be easily seen that

eiLz�t ∂− e−iLz�t = e−i�t ∂−, (46)

eiLz�t ∂+ e−iLz�t = ei�t ∂+. (47)

We can now rely on Eqs. (46) and (47) to pass to a time-
independent Hamiltonian by applying the unitary transforma-
tion

U = e−iLz�t . (48)

We have

H̃ = U †HU − iU †∂tU

= (
m0 + m1

(
∂2
x + ∂2

y + iA∂− + iA∂+ − A2 + ∂2
z

))
× σz − iv∂zσx − �Lz. (49)

We can now perform an analysis of the evanescent states
under radiation, following that accomplished before for the
Hamiltonian HNL. The idea is to focus on evanescent states
decaying as

χ (r,θ,z) ∼ eikzze−αzf (r,θ ). (50)
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We look in particular for zero-energy modes, which must
correspond to solutions of the equation[

m0 + m1

(
1

r

∂

∂r

(
r

∂

∂r

)
+ ∂2

θ

r2
+ iA∂− + iA∂+ − A2

− k2
z + α2 − 2ikzα

)]
σzχkz

+ v(kz + iα)σxχkz

+ i�∂θχkz
= 0. (51)

We perform first a numerical analysis of the problem, in
which it is convenient to apply the gauge transformation

χkz
= e−iAx χ̃kz

. (52)

This converts Eq. (51) into[
m0 + m1

(
1

r

∂

∂r

(
r

∂

∂r

)
+ ∂2

θ

r2
− k2

z + α2 − 2ikzα

)]
× σzχ̃kz

+ v(kz + iα)σxχ̃kz
+ i�∂θ χ̃kz

−A� r sin(θ )χ̃kz
= 0. (53)

Then one can check that it is possible to adjust the values
of kz and α to obtain solutions of Eq. (53). The numerical
resolution can be done for instance in a cylinder with r < R,
in which there is a finite number of solutions depending on
the radius R. These can be more easily visualized computing
the spectrum of the operator in Eq. (53) in the complex plane
(kz,α), which leads in general to a picture like that represented
in Fig. 9.

FIG. 9. Contour plots of the absolute value of the imaginary part
(a) and the real part (b) of the lowest eigenvalue in the spectrum of
H̃ for evanescent states in a semi-infinite cylindrical geometry with
radius R = 100a (a being the microscopic length scale in the model)
for m0 = 0.01 eV, m1/a

2 = 0.5 eV, v/a = 0.01 eV, Aa = 0.05, and
� = 1.0 eV. The units are the same as in Fig. 4.

We observe that the zero-energy modes correspond once
again to exceptional points in a spectrum of complex eigen-
values, with a structure similar to that already found in the
absence of electromagnetic radiation. The exceptional points
are easily identified as branch points with a tail where the
lowest eigenvalue has zero imaginary part, and an opposite
tail where the real part of the eigenvalue vanishes. This is the
typical behavior for a square root singularity, which is also
consistent with the structure of the branch cuts connecting
homologous branch points across the kz axis, as seen in Fig. 9.

We can complement the numerical approach with an
analytic search of the solutions of Eq. (51) when the surface
has infinite size. We can start with the set of states spanned by
the basis

χ
(m)
kz,+(r,θ,z) = eikzze−αzeimθJm(k̂r r)|+〉, (54)

χ
(m)
kz,−(r,θ,z) = eikzze−αzeimθJm(k̂r r)|−〉, (55)

where

k̂r =
√

m0

m1
− k2

z + α2 − A2 − δ2. (56)

In this case, we keep α and δ as free parameters that we have to
adjust in order to find the solutions of Eq. (51). This provides
us with a very flexible collection of states, which proves to be
large enough to capture the evanescent zero-energy modes.

The action of the off-diagonal perturbations induced in (51)
by the radiation is given by

∂−σzχ
(m)
kz,± = k̂rχ

(m−1)
kz,∓ , (57)

∂+σzχ
(m)
kz,± = −k̂rχ

(m+1)
kz,∓ . (58)

Then, the states we obtain by the action of H̃ remain in the
subspace we have defined:

H̃χ
(m)
kz,+ = im1Ak̂rχ

(m−1)
kz,− − im1Ak̂rχ

(m+1)
kz,− + m1δ

2χ
(m)
kz,−

− (vα + i(2m1α − v)kz)χ
(m)
kz,− − m�χ

(m)
kz,+, (59)

H̃χ
(m)
kz,− = im1Ak̂rχ

(m−1)
kz,+ − im1Ak̂rχ

(m+1)
kz,+ + m1δ

2χ
(m)
kz,+

− (−vα + i(2m1α + v)kz)χ
(m)
kz,+ − m�χ

(m)
kz,−. (60)

One can check that, for not too large values of kz and A, it is
possible to find a point in the space of parameters (α,δ) where
the eigenvalue of H̃ becomes zero. This arises as a branch
point in the spectrum of complex eigenvalues, as represented
in Fig. 10. This procedure works up to certain limit values of
A and kz, beyond which the branch point is lost and there is
no signature of zero-energy modes. Such a limitation can be
explained from the expression of the momentum k̂r in (56). The
parameters α and δ become only comparable to A or kz when
these are relatively small, which means that we have in general
zero-energy modes for m0/m1 � k2

z + A2. Alternatively, we
can express this constraint in terms of k̂r as m0/m1 � k̂2

r + A2,
which may be seen as the requirement that the vector potential
does not shift the momentum away from the nodal ring.

If we plot the spectrum as a function of kz + iα, once the
appropriate value of δ is set, we get the image shown in Fig. 11.
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FIG. 10. Plot of the absolute value of the imaginary part (a) and
the real part (b) of the lowest eigenvalue of H̃ for evanescent states
with variable parameters α and δ, for kza = 0.2 and m0 = 1.0 eV,
m1/a

2 = 1.0 eV, v/a = 0.2 eV, Aa = 0.1, and � = 0.5 eV. The
units are the same as in Fig. 4.

We observe there a line of zero-energy modes, which may be
thought as the accumulation of the exceptional points already
found in the finite-size numerical approach. This shows that a
continuum of evanescent modes persist under the effect of the
electromagnetic radiation, arising as a result of the hybridiza-

FIG. 11. Plot of the absolute value of the imaginary part (a) and
the real part (b) of the lowest eigenvalue of H̃ for evanescent states
with complex momentum kz + iα, for m0 = 1.0 eV, m1/a

2 = 1.0 eV,
v/a = 0.2 eV, Aa = 0.1, and � = 0.5 eV. The units are the same as
in Fig. 4.

tion of drumhead states with different angular momentum and
being labeled by the component kz of the momentum.

We have to remark, however, that, in the present case, the
exceptional points we have found do not imply the existence of
zero-energy surface states attached to a given boundary of the
nodal-line semimetal. This is so as the evanescent eigenstates
of H̃ do not realize the symmetry required to build appropriate
linear combinations that may guarantee the vanishing of the
surface states at the boundary, say at z = 0. In the case of
the unperturbed nodal-line semimetal, we saw above that the
crucial symmetry for the existence of zero-energy surface
states was given by the T operation in (20). The introduction of
the radiation field breaks the time-reversal invariance, which
explains that the evanescent modes corresponding to momenta
kz and −kz have different wave functions at z = 0 in the
presence of the radiation. This stresses the significance of
the symmetry of the Hamiltonian to guarantee the stability
of the zero-energy surface states, together with the topological
protection already provided by the existence of the exceptional
points in the spectrum.

V. CONCLUSIONS

We have shown how the surface states in topological
semimetals are associated to exceptional points of the spectrum
in the extension of the Brillouin zone to complex values of
momenta. These exceptional points are very robust under
perturbations of the Hamiltonian as they can be only anni-
hilated by merging them in pairs to close the branch cuts in
the spectrum. This draws a useful way of understanding the
topological protection of evanescent states like those forming
the Fermi arcs in Weyl semimetals or the drumhead states
in nodal-line semimetals. In this regard, the mechanism of
topological protection seems to be rather different to that of
the nodes of the semimetals themselves (and different also to
that studied recently in the case of 3D Dirac semimetals [14]).

We have also shown that the evanescent states decay
exponentially into the semimetal, and we have illustrated
the dependence of the penetration length according to the
parameters of a model Hamiltonian for both Weyl and nodal-
line semimetals. The penetration into the semimetal can be
very short and oscillating, or longer and with pure exponential
decay, depending on the ratio between the linear and the
quadratic terms in the Hamiltonian. According to this ratio,
we have classified the topological semimetals as type A or
type B. In general we expect the quadratic terms in the model
to dominate and, thus, the type A (the short penetration with
oscillations) to be more common in real materials. However,
at least in the case of Na3Bi, a Dirac semimetal, the model
parameters computed through DFT simulations imply a type
B behavior, mainly due to the small absolute value of the mass
parameter M0 [43]. On the contrary, other published parameter
values lead to type A behavior, like in the Dirac and Weyl
semimetal family of XYBi (X=Ba, Eu; Y=Cu, Ag, and Au)
[44]. Also, in the proposals for artificial topological semimetals
in photonic or cold atom setups, both regimes could easily be
reached [45–48]. The distinction between type A and type B is
also formally related to the different way in which the branch
cuts corresponding to the exceptional points are arranged in
the complex plane.
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An important consequence of the shape of the evanescent
wave functions is that, for type B semimetals with pure
exponential decay of the surface states, it is not possible to
fulfill slab boundary conditions with a linear combination of
states on just one of the surfaces. In this case, surface states of
different chiralities will be coupled in the two surfaces of the
slab. This coupling will depend on the ratio between the decay
length of the evanescent waves and the total width of the slab.
On the contrary, in the case of type A topological semimetals
with oscillatory decay, it is possible to construct surface states
in one of the surfaces fulfilling the boundary conditions of
the slab. We expect this difference to have very important
consequences allowing to distinguish experimentally both
scenarios. Any local probe in one of the surfaces affecting
only surface states will have no effect on the opposite surface
for type A semimetals, while it will affect the other surface
for type B semimetals. A full evaluation of the implications
of these properties for experiments and applications is out of
the scope of this paper, but we expect that setups probing
tunneling, like two terminal conductance measurements, will
be qualitatively different between slabs of relatively small
widths (∼100 nm) of type A and type B semimetals.

Besides, a more direct way of measuring these differences
between the surface states may be to explore how different
properties evolve as a function of the width of a thin film,
as has been done recently for the topological surface states of
antimony [49]. For type B topological semimetals, we expect a
monotonous dependence of the properties of the surface states
as a function of the width of the thin film, while for type A
topological semimetals a non-monotonous dependence has to
be found. In particular, quasiparticle interference patterns can
be studied. They will show inter-surface coupling that will
depend nonmonotonously on the width of the film in the case
of type A topological semimetals. The energy dependence can
be used to extract the gap opened at the Fermi arcs due to

the finite width of the film. This gap is, in general, larger and
monotonous as a function of the width in type B semimetals
and smaller and showing deep minima for particular values of
the width in type A semimetals, as shown in Fig. 3.

In nodal-line semimetals, we have also studied the effect of
an external ac field on the surface states. Evanescent states with
different angular momentum are mixed by the external field.
Interestingly, the resulting states are still in correspondence to
exceptional points in the complex plane and they are protected
from small perturbations as such. These mixtures of states
with different angular momenta should carry a rotating current
similarly to that studied before in Weyl semimetals [17].
However, the reduction of symmetry from the ac field implies
that the zero-energy surface states of nodal-line semimetals are
in general not stable in the presence of radiation, as this breaks
the required invariance to comply with appropriate boundary
conditions.

We believe our work paves the way for an alternative
understanding of topological protection of edge states in
gapless systems, based on the extension of the band struc-
ture for complex values of the momenta. In this complex
momentum space, the surface states arise as exceptional points,
making possible to study their stability by discerning the
perturbations capable to close the branch cuts in the complex
band structure. It would be an interesting future avenue to
investigate the connection between this description of surface
states and the topological properties of photonic materials
or open quantum systems that can be described by actual
non-Hermitian Hamiltonians [50–54].
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