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Quantum electron transport in magnetically entangled subbands
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Transport properties of highly mobile two-dimensional (2D) electrons in symmetric GaAs quantum wells
with two populated subbands placed in tilted magnetic fields are studied at high temperatures. Quantum positive
magnetoresistance (QPMR) and magneto-intersubband resistance oscillations (MISO) are observed in quantizing
magnetic fields, B⊥, applied perpendicular to the 2D layer. QPMR displays contributions from electrons with
considerably different quantum lifetimes, τ (1,2)

q , confirming the presence of two subbands in the studied system.
MISO evolution with B⊥ agrees with the obtained quantum scattering times only if an additional reduction of the
MISO magnitude is applied at small magnetic fields. This indicates the presence of a yet unknown mechanism
leading to MISO damping. Application of an in-plane magnetic field produces a strong decrease of both QPMR
and MISO magnitude. The reduction of QPMR is explained by spin splitting of Landau levels indicating a g

factor, g ≈ 0.4, which is considerably less than the g factor found in GaAs quantum well with a single subband
populated. In contrast to QPMR, the decrease of MISO magnitude is largely related to the in-plane magnetic
field induced entanglement between quantum levels in different subbands that, in addition, increases the MISO
period.
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I. INTRODUCTION

The orbital quantization of electron trajectories and spec-
trum in magnetic fields significantly affects the electron trans-
port in condensed materials [1,2]. Spin degrees of freedom
further enrich the electron response [3]. Shubnikov–de Haas
(SdH) resistance oscillations [1] and the quantum Hall effect
(QHE) [4] are famous examples of the quantization effect
on electron transport at temperatures T less than the energy
�c = h̄ωc separating Landau levels. Here ωc is the cyclotron
frequency. At high temperatures T � h̄ωc, SdH oscillations
are absent due to the spectral averaging of the oscillating
density of states (DOS) in the energy interval δε ∼ T near
the Fermi energy EF . In this high temperature regime other
quantum effects exist.

Two-dimensional electron systems with multiple populated
subbands exhibit additional quantum resistance oscillations
[5–10]. These magneto-intersubband oscillations (MISO) of
the resistance are due to an alignment between Landau levels
from different subbands i and j with corresponding energies
Ei and Ej . Resistance maxima occur at magnetic fields at
which the gap between the bottoms of subbands, �ij =
Ei − Ej , equals a multiple of the Landau level spacing, h̄ωc:
�ij = kh̄ωc, where k is an integer [11–14]. At this condition
electron elastic scattering on impurities is enhanced due to
the possibility of electron transitions between the aligned
quantum levels of the ith and j th subbands. At magnetic
fields corresponding to the condition �ij = (k + 1/2)h̄ωc the
intersubband electron scattering is suppressed. This spectral
overlap between two subbands oscillates with the magnetic
field and leads to MISO, which are periodic in the inverse
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magnetic field. In contrast to SdH oscillations, MISO are
significantly less sensitive to temperature and exist at kT �
h̄ωc.

Recently MISO in wide (56 nm) GaAs quantum wells with
three subbands populated were investigated in tilted magnetic
fields [15]. An application of in-plane magnetic field produces
dramatic changes in MISO and the corresponding electron
spectrum. Three regimes have been identified. At h̄ωc � �12,
the in-plane magnetic field increases considerably the gap �12,
which is consistent with the semiclassical regime of electron
propagation. In contrast, at strong magnetic fields h̄ωc � �12

relatively weak oscillating variations of the electron spectrum
with the in-plane magnetic field have been observed. At
h̄ωc ≈ �12, the electron spectrum undergoes a transition
between these two regimes through magnetic breakdown
[16–24]. In this transition regime MISO with odd quantum
number k terminate, while MISO corresponding to even k

evolve continuously into the high-field regime corresponding
to h̄ωc � �12. The observed results are found to be in an
excellent agreement with the theory [22], considering the wide
quantum well to be two parallel two-dimensional (2D) electron
systems coupled by a tunneling with an amplitude t0 through
a barrier of width d. The observed complex behavior of MISO
in the tilted magnetic field was quantitatively understood in
the terms of the entanglement of the orbital electron motion
in different subbands induced by the in-plane magnetic field.
Indeed, due to the in-plane magnetic field each level of a
subband interacts directly with two levels of another subband,
leading to an entangled mesh of the couplings between
quantum levels [15]. No effects of electron spin degree of
freedom were detected in this study.

With a decrease of the width of a quantum well, the
gap �12 increases. At �12 > EF only a single subband is
populated in the quantum well. These quantum wells do
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not demonstrate MISO but continue to display a quantum
positive magnetoresistance (QPMR). This effect is due to
enhanced electron scattering on impurities that results from
the increasing amplitude of the electron wave function in
stronger magnetic fields. The latter is a direct consequence of
the reduction of the electron orbit (size of the wave function)
with B⊥. QPMR is in some respect similar to MISO and reflects
the enhancement of the intrasubband impurity scattering due to
the quantization of the electron spectrum [13,14,25]. QPMR
has been observed in electron systems with two populated
subbands [26] and in narrow (13 nm) quantum wells with
a single subband populated [27]. The later was recently
investigated in tilted magnetic fields [28]. These investigations
have demonstrated that the QPMR magnitude decreases
significantly with application of an in-plane magnetic field.
The QPMR decrease is found to be strongly correlated with
the reduction of SdH amplitude, indicating the spin origin
of the effect. This considerable effect of the spin degree of
freedom on the electron-impurity scattering was unexpected,
since it is widely accepted that in GaAs high mobility quantum
wells most impurities are not magnetic.

In the present paper we report a study of transport properties
of high quality GaAs quantum wells of an intermediate width,
d0 = 26 nm. The goals of this study are to detect effects of the
spin degree of freedom on MISO, which have not been seen, as
well as to investigate the effect of the spin splitting on QPMR
[28] in a 2D system with two subbands populated. Experiments
presented below demonstrate a significant reduction of the
QPMR with the application of the in-plane magnetic field,
which is in good agreement with the modification of the
electron spectrum via the Zeeman effect with g factor g ≈
0.43 ± 0.07. The observed g factor is, however, significantly
less than the enhanced electron g factor observed in GaAs
quantum wells with a single subband populated.

MISO also have demonstrated a strong reduction of
magnitude with the in-plane magnetic field. However, in
contrast to the QPMR decrease, the MISO reduction is found
to be predominantly related to a modification of the electron
spectrum via the orbital coupling of two subbands induced
by the in-plane magnetic field. The Zeeman term provides a
subleading contribution to the MISO reduction. The in-plane
magnetic field induced entanglement between wave functions
in two subbands also leads to variations of MISO period which
are found to be in good agreement with our experiments. This
agreement provides the basis for a new method to measure the
width of quantum wells.

At small magnetic fields MISO indicate the presence of
a yet unknown mechanism of additional damping. We found
that a quite small nonparabolicity of the electron spectrum
could explain the additional MISO damping at zero in-plane
magnetic field. However an overly strong reduction of the
numerically computed MISO amplitude with the magnetic
field tilt does not allow us to firmly identify the nonparabolicity
of the electron spectrum as the only cause of the observed
additional MISO decrease.

Finally a cross-comparison of QPMR and classical mag-
netoresistance in perpendicular magnetic fields shows good
mutual agreement with the quantitative theory [14,25,29]
and indicates the dominant contribution of the intersubband
impurity scattering to the electron transport. An analysis

of the MISO amplitude shows significantly less effect of
the scattering between subbands, which destroys the overall
agreement with theory.

II. EXPERIMENTAL SETUP

The studied GaAs quantum wells were grown by molecular
beam epitaxy on a semi-insulating (001) GaAs substrate. The
material was fabricated from a selectively doped GaAs single
quantum well of width d0 = 26 nm sandwiched between
AlAs/GaAs superlattice barriers. The studied samples were
etched in the shape of a Hall bar. The width and the length
of the measured part of the samples are W = 50 μm and L =
250 μm. AuGe eutectic was used to provide electric contacts to
the 2D electron gas. Two samples were studied at temperature
4.2 kelvin in magnetic fields up to 9 tesla applied in situ
at different angle α relative to the normal to 2D layers and
perpendicular to the applied current. The angle α was evaluated
using the Hall voltage VH = B⊥/(enT ), which is proportional
to the perpendicular component, B⊥ = B cos(α), of the total
magnetic field B. The total electron density of sample N1,
nT ≈ 7.97 × 1011 cm−2, was evaluated from the Hall mea-
surements taken at α = 0◦ in classically strong magnetic fields
[30]. An average electron mobility μ ≈ 1.2 × 106 cm2/V s
was obtained from nT and the zero-field resistivity. An analysis
of the periodicity of MISO in the inverse magnetic field yields
the gap �12 = 15.15 meV between bottoms of the conducting
subbands, Fermi energy EF = 21.83 meV, and electron
densities n1 = 6.1 × 1011 cm−2 and n2 = 1.87 × 1011 cm−2

in the two populated subbands. Sample N2 had density
nT ≈ 8.6 × 1011 cm−2, mobility μ ≈ 1.0 × 106 cm2/V s, and
the gap �12 = 15.10 meV. Both samples demonstrated very
similar quantum electron transport in magnetic fields. Below
we present data for sample N1.

Sample resistance was measured using the four-point probe
method. We applied a 133 Hz ac excitation of Iac = 1 μA
through the current contacts and measured the longitudinal
(in the direction of the electric current, x direction) and
Hall ac (along the y direction) voltages (V ac

xx and V ac
H ) using

two lock-in amplifiers with 10 M� input impedances. The
measurements were done in the linear regime in which the
voltages are proportional to the applied current.

III. EXPERIMENTAL RESULTS

Figure 1 presents dependences of the dissipative resistance
of 2D electrons on the perpendicular magnetic field B⊥, taken
at different angles α between the direction of the total magnetic
field �B and the normal to the 2D layer. At α = 0 degrees and
B⊥ < 0.025 T the magnetoresistance demonstrates a small
increase related to classical magnetoresistance [14,26,29–31].
At a higher magnetic field the magnetoresistance slowly
increases, oscillating at B⊥ > 0.07 T. These oscillations are
MISO. MISO maxima correspond to the condition

�12 = j h̄ωc, (1)

where �12 = E2 − E1 is the energy difference between
bottoms of two occupied subbands and the index j is a positive
integer [13,14]. At even higher magnetic fields (h̄ωc > kT ,
corresponding to B⊥ > 0.4 tesla at T = 4.2 K) there are SdH
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FIG. 1. Dependence of the dissipative resistance Rxx of 2D
electrons on a perpendicular magnetic field taken at different angles
α = 0, 86, 87, 88.1, and 88.6 degrees between magnetic field B and
the normal to the 2D layer. Curves at angles α < 88.6 degrees are
shifted up for clarity. The inset shows magnetoresistance in a parallel
magnetic field.

oscillations (not shown). In this paper we focus on the low
magnetic field (high temperature) regime, h̄ωc � kT , where
SdH oscillations are absent.

The most observable property of the angular evolution of
the magnetoresistance is the significant reduction of MISO
amplitude at high angles α. Another striking effect is a
variation of the MISO frequency with angle α, which can be
seen by a comparison of the maximum positions at high B⊥.
Other variations of the magnetoresistance are less obvious and
required more accurate comparison.

The inset in Fig. 1 presents the dependence of the resistance
on magnetic field B which is parallel to the 2D electron layer.
The in-plane magnetic field of 8 T increases the resistance by
10–15 percent. This small increase occurs at B⊥ = 0 T and,
thus, is not relevant to the quantization of the electron motion
and spectrum induced by the perpendicular magnetic field.
This in-plane magnetoresistance is driven by a mechanism
that is different from the Landau quantization leading to
MISO and QPMR. Since observed quantum contributions
to the resistivity (QPMR and MISO) are relatively small, it
makes sense to expect that an application of the perpendicular
magnetic field may provide a very small contribution (if any)
to the observed small in-plane magnetoresistance. Below we
assume that the magnetoresistance shown in the inset in-plane
does not depend on the perpendicular magnetic field.

Using this assumption, we have subtracted numerically
the contribution of the in-plane magnetic field from the
original experimental data shown in Fig. 1. Figure 2 presents
the result of the subtraction normalized by the resistance
at zero magnetic field, RD = Rxx(B = 0T ). The modified
resistance, Rm

xx , is computed using the following formula:
Rm

xx(B⊥) = Rxx(B⊥) − R
‖
xx(B‖), where R

‖
xx is the in-plane

magnetoresistance shown in the inset in Fig. 1 and B‖ =
tan(α)B⊥ is the in-plane magnetic field applied to the sample.

FIG. 2. Magnetic field dependence of the normalized resistance
without the effect of the parallel magnetic field on the resistance
presented in the inset in Fig. 1. The B‖ contribution is subtracted
numerically from the curves shown in Fig. 1. Obtained curves are
offset for clarity. The inset presents the same curves without offset. At
B⊥ < 0.025 T the inset demonstrates classical magnetoresistance in
two subband systems that is independent of the angle α while at B⊥ >

0.025 T progressive deviation between curves at different angles is
observed and related to the quantum positive magnetoresistance.

The applied procedure yields an observable effect on
the dependencies at large angles at which B‖ is large. In
particular, the modified magnetoresistance Rm

xx at α = 88.6
degrees decreases with the perpendicular field, while the
original dependence does increase at B⊥ > 0.05 T. The most
impressive outcomes of the applied procedure are the collapse
of the classical magnetoresistance obtained at different angles
in perpendicular magnetic fields below 0.025 T and the
progressive decrease of the magnetoresistance with the angle
at B⊥ > 0.025 T. This is shown in the inset in Fig. 2. Both
outcomes are very similar to the ones obtained in 2D electron
systems with a single subband populated [28]. Below we
analyze quantitatively the angular evolution of the oscillating
(MISO) and nonoscillating (related to QPMR) contents of the
magnetoresistance.

Figure 3(a) presents the nonoscillating content of the nor-
malized magnetoresistance, R∗

QPMR/RD , obtained at different
angles in a broad range of perpendicular magnetic fields.
The noticeable property of the obtained angular evolution
is the fact that angular variations of the electron transport
start quite sharply at B⊥ ≈ 0.025 T at which the classical
magnetoresistance starts to saturate, indicating the regime
of the classically strong magnetic fields [29,30]: ωcτtr � 1,
where τtr is the transport scattering time. This result agrees
with the beginning of the quantization of the electron motion,
ωcτq ∼ 1, since in the studied system a small angle scattering
dominates: τq � τtr [32].

The angular variations of the nonoscillating content of
the magnetoresistance at B⊥ > 0.025 T are related to the
angular evolution of the quantized electron spectrum leading
to QPMR. Figure 3(a) shows progressively stronger angular
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FIG. 3. Figure (a) shows nonoscillating content of magnetoresi-
tance related to QPMR at various angles. From the top to the bottom
α = 0, 80, 82.5, 85, 86, 87, 88.1, and 88.6 degrees. Figure (b) presents
oscillating content of the magnetoresistance at the same set of angles
as in Figs. 1 and 2.

variations of QPMR at higher B⊥. This is in agreement with the
progressively stronger quantization of the electron spectrum
at higher B⊥. We have found that the strong increase of the
angular variations of QPMR with B⊥ is in good quantitative
agreement with the model presented below. The comparison
between the experiment and model has revealed that the
dominant mechanism leading to the angular decrease of QPMR
is spin (Zeeman) splitting of Landau levels in magnetic fields.
This result agrees with the one obtained in systems with a
single populated subband [28].

Figure 3(b) presents the oscillating content of the mag-
netoresistance, which is related to MISO. The figure shows
strong decrease of MISO at high angles. In contrast to the
angular variations of QPMR presented below, quantitative
analysis indicates that the angular variations of MISO are pre-
dominantly due to the modifications of the electron spectrum
via an entanglement of the electron orbital states induced by
the in-plane magnetic field. The observed spin contribution to
the decrease of the MISO amplitude is subdominant. Below
we present a theoretical framework describing the angular
evolution of quantum electron transport.

IV. MODEL OF QUANTUM ELECTRON TRANSPORT

A microscopic description of both QPMR and MISO
in perpendicular magnetic fields (at α = 0◦) is presented
in papers [13,14,25] neglecting any spin related effects in
particular the Zeeman term. An account of the Zeeman splitting
for QPMR is proposed in Ref. [28] for 2D systems with
a single subband populated. The proposed model utilizes
a similarity of QPMR and magneto-intersubband resistance
oscillations (MISO) [5,6,13–15]. The model considers two
spin subbands shifted with respect to each other by the
Zeeman effect. In each spin subband the energy spectrum
evolves in accordance with Landau quantization. A scattering
assisted spin mixing between different subbands is postulated
to provide the correlation between the angular evolutions of

SdH oscillations and QPMR observed in the experiment [28].
Within this model the absence of the scattering between spin
subbands would lead to the absence of an angular evolution of
the QPMR associated with the Zeeman effect, in contrast to
the angular dependence of SdH oscillations. The origin of the
spin mixing requires further investigations.

A mixing between different spin subbands has been re-
ported in Si metal-oxide-semiconductor field-effect transistors
(MOSFETs) [33]. The experiments show sizable contributions
of the product of spin-up and spin-down density of states to
quantum resistance oscillations. Furthermore, investigations
of the resistivity tensor in tilted magnetic fields have revealed
an independence of the Hall coefficient on the spin subband
populations while the electron mobility in each spin subband
was substantially affected by the in-plane magnetic field [34].
This behavior has been interpreted as a mixing between
spin subbands due to electron-electron interaction [35]. Spin-
orbit coupling can also provide a mixing via local impurity
scattering [3,28].

In this section the recent model [28], describing the angular
evolution of QPMR in 2D electron systems with a single
populated subband, is generalized to 2D systems with two
populated subbands. The spatial subbands are the result of
quantization of the electron wave function in the z direction.
The z axis is perpendicular to the 2D electron layer (x-y
directions) of a width d. Index i = 1 (2) labels the low (high)
subband with the energy E1 (E2) at the subband bottom. The
subband separation is �12 = E2 − E1.

A. Response in perpendicular magnetic field, B‖ = 0

At the beginning we consider the magnetic field applied
perpendicularly to 2D electron systems (α = 0 degrees).
In the simplest case of small quantizing magnetic fields
ωcτq < 1, the main contribution to both MISO and QPMR
comes from the fundamental harmonic of quantum oscillations
of the density of states (DOS) corresponding to spin-up (↑) and
spin-down (↓) subbands. The DOS of the ith spatial subband,
νi(ε), reads [2,28]

ν1(ε � 0)

ν0
=

[
1 − 2δ1 cos

(
2πε

h̄ωc

)
cos

(
π�

(1)
Z

h̄ωc

)]
,

ν2(ε��12)

ν0
=

[
1 − 2δ2 cos

(
2π (ε − �12)

h̄ωc

)
cos

(
π�

(2)
Z

h̄ωc

)]
,

(2)

where ν0 = m/(πh̄2) is the DOS at zero magnetic field,
δi = exp ( − π/ωcτ

(i)
q ) is the Dingle factor, �

(i)
Z = μgiB is

the Zeeman splitting, and τ (i)
q is the quantum scattering time

in the ith subbands.
The 2D conductivity σ is obtained from the following

relation:

σ (B) =
∫

dε σ (ε)

(
−∂f

∂ε

)
. (3)

The integral is an average of the conductivity σ (ε) taken
essentially for energies ε inside the temperature interval kT

near the Fermi energy, where f (ε) is the electron distribution
function at a temperature T [2].
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The following expression approximates the conductivity
σ (ε) at small quantizing magnetic fields:

σ (ε) = σ
(1)
D ν̃1(ε)2 + σ

(2)
D ν̃2(ε)2 + σ

(12)
D ν̃1(ε)ν̃2(ε), (4)

where ν̃i(ε) = νi(ε)/ν0 are normalized total densities of states
in each spatial subband. Parameters σ

(1)
D (B⊥) and σ

(2)
D (B⊥)

are Drude like conductivities related to contributions of an
effective intrasubband scattering, while the factor σ

(12)
D (B⊥)

accounts contributions of the inter-subband scattering [13,14].
The main assumption of this model is utilized in Eq. (4).

Namely, the impurity scattering within a spin sector is
considered to be comparable with the impurity scattering
between spin-up and spin-down sectors, when the energies
of the spin sectors are the same. In other words a spin up
(spin-down) electron has equal probability to scatter into a
spin-up or spin-down quantum state [28].

A substitution of Eqs. (4) and (2) into Eq. (3) yields the
following relation for the conductivity:

σ (B) = σD + σQPMR + σMISO, (5)

where σD(B) = σ
(1)
D + σ

(2)
D + σ

(12)
D is the Drude (classical)

conductivity in a magnetic field. The last two terms in Eq. (5)
describe quantum contributions to the electron transport in
the high temperature regime: h̄ωc � kT . The term σQPMR

describes quantum positive magnetoresistance:

σQPMR = 2

[
σ

(1)
D δ2

1 cos2

(
π�

(1)
Z

h̄ωc

)
+ σ

(2)
D δ2

2 cos2

(
π�

(2)
Z

h̄ωc

)]
.

(6)

At �Z = 0, Eq. (6) reproduces QPMR in perpendicular
magnetic fields [14,25,27].

The term σMISO is related to magneto-intersubband resis-
tance oscillations:

σMISO = 2σ
(12)
D δ1δ2 cos

(
π�

(1)
Z

h̄ωc

)
cos

(
π�

(2)
Z

h̄ωc

)

× cos

(
2π�12

h̄ωc

)
. (7)

At �
(i)
Z = 0, Eq. (7) reproduces MISO in perpendicular

magnetic fields yielding Eq. (1) for MISO maxima [13,14].

B. Effect of in-plane magnetic field

With no in-plane magnetic field applied, the spatial sub-
bands are coupled to each other via elastic scattering. An
in-plane magnetic field, B‖, provides an additional coupling
via Lorentz force coming from the last term in Eq. (8).
This additional B‖ coupling preserves the degeneracy of the
quantum levels but induces variations of the electron spectrum,
which, due to a relativistic origin of Lorentz force, are
dependent on the energy (velocity). These spectrum variations
destroy the exact energy periodicity of the spectral overlap
between different subbands existing at zero in-plane magnetic
field and leading to MISO. In particular, in contrast to the
B‖ = 0 T case, the energy independent condition for the
MISO maximum presented by Eq. (1) is not relevant anymore
since the intersections of the quantum levels of low and high

subbands do not occur at the same perpendicular magnetic
field if an in-plane magnetic field is applied.

To estimate this effect quantitatively we compute numer-
ically the electron spectrum of an ideal two subband system
in a tilted magnetic field, neglecting the impurity scattering.
The impurity scattering is introduced then by a broadening of
the bare quantum levels using the Gaussian shape of the DOS
with the preserved level degeneracy. Finally, the conductivity
is numerically evaluated via Eqs. (3) and (4) using the
computed DOS.

In the comparison between the model and experiment,
we found that the Zeeman effect provides a subleading
contribution to the resistance. We did not find any indication
of the dependence of the Zeeman splitting on the energy in
the vicinity of Fermi energy. Our results are reasonably well
described by an energy independent Zeeman term: �

(i)
Z =

μgiB. Numerical computations of the electron spectrum start
with a spinless Hamiltonian describing a 2D electron in a tilted
magnetic field. The Zeeman term splits the obtained quantum
levels. In the spectrum computations, spin-orbital interactions
are neglected and the Zeeman term is assumed to be the same
in both spatial subbands.

We consider a quantum well of a width d in the z

direction formed by a rectangular electrostatic potential
V (z) with infinitely high walls and placed in a tilted mag-
netic field �B = (−B‖,0,B⊥). Electrons are described by the
Hamiltonian [15]

H = h̄2k2
x

2m∗ + e2B2
⊥

2m∗ x2 + h̄2k2
z

2m∗ + V (z)

+ e2B2
‖

2m∗ z2 + e2B⊥B‖
m∗ xz, (8)

where m∗ is electron effective mass. To obtain Eq. (8) we have
used the gauge (0,B⊥x + B‖z,0) of the vector potential and
applied the transformation x → x − h̄ky/eB⊥.

The first four terms of the Hamiltonian describe the
2D electron system in a perpendicular magnetic field.
The corresponding eigenfunctions of the system are |N,ξ 〉,
where N = 0,1,2, . . . represents the N th Landau level
(the lateral quantization) and ξ = S, AS describes the
symmetric (S) and antisymmetric (AS) configurations of
the wave function in the z direction (vertical quan-
tization): |N,S〉 = |N〉(2/d)1/2 cos(πz/d) and |N,AS〉 =
|N〉(2/d)1/2 sin(2πz/d).

Using functions |N,ξ 〉 as the basis set, one can present the
Hamiltonian in matrix form. The matrix contains four matrix
blocks: Ĥ = (ÊS,T̂ ; T̂ ,ÊAS), where the semicolon separates
rows. The diagonal matrices, ÊS and ÊAS , represent energy of
the symmetric and antisymmetric wave functions in different
orbital states N :

ES
mn = δmn

[
h̄ωc

(
(n − 1) + 1

2

)
+ e2B2

‖d
2
[

1
12 − 1

2π2

]
2m∗

]
,

EAS
mn = δmn

[
h̄ωc

(
(n − 1) + 1

2

)
+ �12+

e2B2
‖d

2
[

1
12 − 1

8π2

]
2m∗

]
,

(9)
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where �12 = E2 − E1 is the energy difference between bot-
toms of two spatial subbands and indexes m = 1,2, . . . ,Nmax

and n = 1,2, . . . ,Nmax enumerate rows and columns of the
matrix, respectively. These indexes are related to the orbital
number N : n,m = N + 1, since the orbital number N =
0,1,2, . . . . In numerical computations the maximum number
Nmax is chosen to be about twice larger than the orbital number
NF corresponding to Fermi energy EF . Further increase of
Nmax show a very small (within 1%) deviation from the
dependencies obtained at Nmax ≈ 2NF .

The first term in Eq. (9) describes the orbital quantization of
electron motion. The last term in Eq. (9) describes diamagnetic
shift of the quantum levels and is related to the fifth term
in Eq. (8). In the basis set |N,ξ 〉 the diamagnetic term is
proportional to 〈ξ |z2|ξ 〉. The diamagnetic terms do not depend
on N .

The off-diagonal matrix T̂ is related to the last term in
Eq. (8), which mixes symmetric and antisymmetric states.
Since x = lB⊥(a∗ + a)/

√
2 includes the raising a∗ and lower-

ing a operators of the Landau orbits, the last term in Eq. (8)
couples Landau levels with orbital numbers different by 1.
Here lB⊥ = (h̄/eB⊥)1/2 is the magnetic length in B⊥. As a
result, for n > m the matrix element Tmn between states |N,S〉
and |N + 1,AS〉 is

Tmn = δm+1,n

e2B‖B⊥lB⊥
m∗ 〈N |a

∗ + a√
2

|N + 1〉〈S|z|AS〉

= δm+1,nh̄ωc

[
16B‖d

9π2B⊥lB⊥

]
(n/2)1/2. (10)

The matrix T̂ is a symmetric matrix: Tmn = Tnm. The Hamil-
tonian Ĥ is diagonalized numerically at different magnetic
fields B⊥ and B‖. To analyze the spectrum, the obtained
eigenvalues of the Hamiltonian are enumerated in ascending
order using positive integer index l = 1,2, . . . . Equations (8),
(9), and (10) yield the electron spectrum obtained in a rigid
electrostatic potential V (z), which provides a good agreement
with experimental data. We relate this agreement to a large gap
�12 between subbands indicating strong electrostatic potential
V (z) in the system. The electron transport depends on the
distribution of the quantum levels in the interval kT near
the Fermi energy EF [30]. Below we focus on this part
of the spectrum.

Figure 4 presents variations of the electron spectrum with
the perpendicular magnetic field in the vicinity of EF at two
different angles α as labeled. Two subbands provide two
sets of Landau levels moving at a different rates with B⊥.
At α = 0 degrees (B‖ = 0 T) these two sets intersect at the
same perpendicular magnetic field, as emphasized by the two
vertical dashed lines. These level intersections lead to MISO
maxima and correspond to the relation Eq. (1).

At α = 88 degrees a finite in-plane is applied. The most
apparent transformation the electron spectra is the absence of
a coherent intersection of two subbands. In fact at this angle
only two levels are intersecting at a given B⊥ in the shown
energy interval in the vicinity of EF . The absence of coherent
intersections of Landau levels within the kT interval near EF

leads to a significant reduction of the conductivity σ in Eq. (3),
since the two spectra do not overlap well.

FIG. 4. Panel (a) presents the electron spectrum at α = 0 degrees
in the vicinity of Fermi energy EF . Vertical dashed lines indicate that
intersections between all subband levels occur at the same magnetic
field. Panel (b) presents the electron spectrum at α = 88 degrees in
which intersections of the quantum levels are not aligned anymore.

Another apparent property of the angular evolution of these
spectra is the increase of the interval of the magnetic field
between consecutive intersections of a level with the levels
in the other subband. This evolution suggests an increase
of the MISO period at higher parallel fields. The numerical
computations indicate that the main contributions to the
level misalignment in tilted magnetic fields are due to the
entanglements of the Landau levels via off-diagonal terms
described by Eq. (10).

The obtained quantum levels εi have been split by the Zee-
man term, �Z = μgB, into two levels εis labeled by spin index
s =↑,↓ and then broadened by the Gaussian function Gs(ε) =
(m/2πh̄2)(ωcτq)1/2 exp[−(ε − εis)2/(h̄2ωc/πτq)], preserving
the degeneracy of the levels [36,37]. The obtained DOS is
used in Eqs. (4) and(3) to compute MISO. These numerical
computations are compared with experiments in Sec. VI.

V. QPMR IN TILTED MAGNETIC FIELD

In this section we discuss the angular evolution of QPMR
in two subband systems. In Fig. 5(a) solid lines represent
dependence of normalized QPMR on reciprocal magnetic
field, 1/B⊥, at different angles α between the direction of
the magnetic field and the normal to the sample. Similar
to the case of the quantum wells with a single populated
subband [15], QPMR is obtained by a subtraction of the
magnetoresistance at the critical angle αc corresponding to the
condition �Z/h̄ωc = 1/2 [15,38]. At this condition quantum
levels are equally separated by h̄ωc/2 and the fundamental
harmonic of DOS is absent. At small magnetic fields (ωcτq <

1) this condition leads to a nearly constant density of states
and, thus, the absence of QPMR. In practice in the vicinity
of the critical angle the angular variations of the resistance
become negligibly small in comparison with the overall
angular variation. These small variations limit the accuracy
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FIG. 5. In panel (a) solid lines present normalized QPMR,
RQPMR/RD = (R∗

QPMR − Rmin)/RD at different angles. From the top
to the bottom α = 0, 85, 86, 87, 87.9, and 88.1 degrees. Symbols
show theoretical fit to the data using Eq. (11). Panel (b) shows
the dependence of the fitting parameters Ai on the ratio B/B⊥,
which is compared with the dependence following from Eq. (6) at
g1 = g2 = 0.43. Panel (c) shows dependence of the quantum lifetimes
in both subbands on the ratio B/B⊥ ∼ �Z/h̄ωc.

at which the QPMR can be obtained at large angles α. In
this study we use αc = 88.6 degrees. Shown in Fig. 3(a), the
curve at αc = 88.6 degrees is labeled Rmin and is related to
classical contributions to the magnetoresistance [27,29,30].
The subtraction of Rmin from the nonoscillating content of the
magnetoresistance yields QPMR: RQPMR = R∗

QPMR − Rmin.
A normalized QPMR, RQPMR/RD , is presented in Fig. 5(a),
where RD is the resistance in zero magnetic field.

Figure 5(a) shows that the decrease of the QPMR with the
angle α is considerable and roughly uniform in the reciprocal
magnetic field, 1/B⊥, indicating a consistent reduction of the
cosine functions in Eq. (6) due to the increase of the ratio
�Z/h̄ωc with the angle. At α = 0 degrees QPMR follows
a curved line, suggesting the presence of two exponential
terms expected from Eq. (6), which is rewritten below in the
following form:

σQPMR

σD

= A1 exp

(
− 2π

ωcτ
(1)
q

)
+ A2 exp

(
− 2π

ωcτ
(2)
q

)
,

(11)
where coefficient Ai = 2(σ (i)

D /σD) cos2 [(π�
(i)
Z )/(h̄ωc)]. Us-

ing four fitting parameters Ai and τ (i)
q , we fit the dependences

presented in Fig. 5(a) using Eq. (11) and relation σQPMR/σD ≈
RQPMR/RD , which is valid in strong magnetic fields (see
Sec. VII).

Figure 5(b) shows the angular dependence of the parameters
Ai . Both parameters A1 and A2 decrease significantly with the
tilt of the magnetic field. The coefficient A1 is approximately
ten times larger than the coefficient A2 for all angles, leading
to the ratio σ

(1)
D /σ

(2)
D ≈ 10. Taking into account the electron

density in two bands, n1,(2) = 6.1(1.87) × 1011 cm−2, we
have obtained the ratio between transport scattering times:

τ
(2)
tr /τ

(1)
tr ≈ 3. The data thus indicate three times higher

mobility in the upper subband. This mobility increase can be
partially related to the reduced carrier velocity, v

(2)
F ∼ (n2)1/2

in the upper subband, leading to an increase of the mean free
time between scattering events: τtr = lp/vF , where lp is the
mean free path.

The decrease of coefficients A1 and A2 roughly follows the
same dependence, suggesting approximately the same g factor
in both subbands. This experimental dependence is close to
the dependence expected from Eq. (6) at αc = 88.6 degrees
corresponding to gQPMR = 0.43, which is represented by the
solid line in the figure. The g factor obtained from the angular
evolution of MISO (see next section) is gMISO = 0.15–0.25.
The obtained g factors are close to the bare g factor in
GaAs quantum wells [39,40] and significantly smaller the one
obtained from QPMR [28] and SdH oscillations [41–43] in
GaAs quantum wells with a single populated subband.

Figure 5(c) shows the angular dependence of the quantum
scattering times τ (i)

q . The experiments indicate an increase of
the quantum scattering time at high angles. We relate this
increase to the reduction of the impurity assisted spin flip
scattering at high magnetic fields due to the Zeeman splitting
of the Landau levels. The observed overall increase of the
quantum scattering times approximately by a factor of 2
correlates with the decrease of the density of state by about two
times due to the spin splitting of separated Landau levels, that
leads to the proportional reduction of the quantum scattering
rate [15].

VI. MISO IN TILTED MAGNETIC FIELD

In this section we present a comparison of the angular
evolution of MISO shown in Fig. 3(b) with the model.
Two MISO properties have been identified: decrease of the
MISO amplitude at large angles and variations of the MISO
period in tilted magnetic fields. Below we discuss these main
properties and indicate an additional MISO property which is
not understood.

Figure 6 presents the dependence of MISO period in
the reciprocal magnetic field, 1/B⊥, on the strength of the
parallel magnetic field. Different symbols show the period
in the vicinity of different perpendicular magnetic fields as
labeled. The experiment demonstrates that the MISO period
depends mostly on the strength of the parallel magnetic field.
At different B⊥ the dependencies overlap well, indicating no
obvious dependence on B⊥. The period is in a good agreement
with the numerical computations of the MISO period in tilted
magnetic fields at d = 33 nm, which is represented by the
solid curve in the figure. For a comparison there are two
dependencies of the MISO period computed numerically for
similar rectangular quantum wells but with other widths: 40
and 20 nm. These dependencies deviate significantly from the
experiments.

The obtained width d = 33 nm is in a good agree-
ment with the one estimated at α = 0 degrees via ana-
lytical evaluations of the bottoms of the subband energy
spectra. For the rectangular potential well, V (z), used
in the model [see Eq. (8)], the eigenfunctions |0,S〉 =
|0〉(2/d)1/2 cos(πz/d) and |0,AS〉 = |0〉(2/d)1/2 sin(2πz/d)
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FIG. 6. Symbols present dependence of MISO period in the
reciprocal magnetic field, 1/B⊥, on the parallel magnetic field
taken in the vicinity of different perpendicular magnetic fields as
labeled. Lines represent theoretical dependences of the MISO period
obtained via numerical computations of the electron spectrum in tilted
magnetic fields, using Eq. (8), for different widths d of the quantum
well as labeled.

correspond to the eigenvalues E1 = h̄ωc/2 + h̄2π2/(2m∗d2)
and E2 = h̄ωc/2 + h̄24π2/(2m∗d2) at the bottom of the bands,
leading to �12 = E2 − E1 = (3π2/d2)(h̄2/2m∗). This relation
yields d2 = (3π2T12/2)(h̄/e), where T12 is the MISO period
shown in Fig. 6 at B‖ = 0 T. The last relation yields dth =
32.6 nm, which is very close to the d = 33 nm obtained
in the fitting shown in Fig. 6. We note that the obtained
values of the quantum well width are slightly larger than the
actual width, d0 = 26 nm, measured during the sample growth.
Our experiment suggests that the electron wave function
penetrates by about 3 nm into AlAs/GaAs superlattice barriers
sandwiching the quantum well.

We have determined that the dominant contribution to the
increase of the MISO period is provided by the B‖-induced
coupling between spatial subbands. This coupling in due to the
Lorentz force and is described by the off-diagonal matrix Tmn

in Eq. (10). Figure 4 indicates that the application of in-plane
magnetic field increases the interval between consecutive
intersections of a Landau level, which is the major effect
leading to the increase of MISO period. The diamagnetic shifts
of the subbands [last terms in Eq. (9)] provide subleading
contributions, reducing the main effect. In particular, in the
absence of the diamagnetic terms, the correspondence shown
in the Fig. 6 between the experiment and model occurs at
d = 31 nm.

Figure 7 presents a dependence of the normalized swing
of MISO on the reciprocal magnetic field, 1/B⊥, at different
angles α as labeled. In accordance with Eq. (7), at B‖ = 0 T the
MISO amplitude is proportional to the product δ1δ2 of Dingle
factors in two subbands. In the semilogarithmic scale used
in Fig. 7, a straight line should represent this dependence. In
contrast, at α = 0 degrees the observed dependence deviates
significantly from a straight line that has been seen previously

FIG. 7. Solid lines represent normalized swing of MISO at
different angles α as labeled. Dashed lines represent theoretical
dependencies of the MISO swing on the reciprocal perpendicular
magnetic field obtained at the following fitting parameters: A∗

MISO =
AMISOAb = 0.38 cos(0.091/B⊥), 1τ (1)

q = 1/τ (2)
q = 125 GHz, used

for all angles and different g factors shown in the inset. The dotted
line represents theoretical dependence at α = 88.1 degrees, ignoring
the Zeeman splitting.

[9]. An attractive mechanism, which may lead to these
deviations, is a nonparabolic spectrum of 2D electrons due
to the presence of the valence band. The nonparabolicity
makes the quantized spectrum be not periodic with the
energy, leading to a breakdown of the perfect spectral overlap
between subbands at MISO maxima described by Eq. (1). This
breakdown decreases the MISO amplitude.

Our numerical simulations of MISO in systems with a
nonparabolic spectrum indicate good agreement with the
experiment at α = 0 degrees. However, a considerable dis-
agreement is found in the tilted magnetic field. The numerical
simulations indicate that the B‖ induced entanglement between
nonparabolic subbands leads to a stronger reduction of MISO
amplitude than is seen in the experiment.

A better overall agreement is obtained by assuming an
additional angular independent beating between two MISO.
This beating could be due to a small difference between two
masses in two parabolic bands and/or due to fluctuations
of the gap �12 in the quantum well with nonideal bound-
aries. In this paper we have used the angular independent
MISO beating, which is described by a phenomenological
amplitude factor, Ab = cos(0.091/B⊥). This beating leads to
the additional reduction of the normalized MISO amplitude
in high reciprocal fields, 1/B⊥: A∗

MISO = AMISOAB , where
AMISO = 2σ

(12)
D /σD is normalized Drude factor in Eq. (7).

Figure 7 shows good agreement between experiment and
numerical computations of the MISO amplitude at α = 0
degrees. The computations use the electron spectrum obtained
numerically as described in Sec. IV B. Small angular variations
of MISO are observed at α < 85 degrees. The largest angular
changes in MISO amplitude are found at α > 85 degrees. The
numerical computations have captured most of the changes,
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especially in high reciprocal magnetic fields. The shape of the
numerical dependences on 1/B⊥ is similar to the one of the
experimental curves.

Two main competing factors determine the MISO mag-
nitude in tilted fields. One is the product of the Dingle
factors, δ1δ2, decreasing with 1/B⊥ in accordance with Eq. (7).
Another factor is the misalignment of the intersections of the
quantum levels due to the B‖-induced entanglement of the
levels, which is shown in Fig. 5. The misalignment breaks
the perfect spectral overlap between subbands, described by
Eq. (1), and leads to a decrease of the MISO amplitude at high
B‖. A competition between these two mechanisms produces a
maximum in MISO amplitude, which can be seen in Fig. 7 at
the angle α = 87.9 degrees in both experiment and simulation.

The obtained fitting parameters, AMISO = 0.38 and
1/τ (1)

q = 1/τ (2)
q = 125 GHz, are quite reasonable. The nor-

malized Drude factor AMISO = 2σ
(12)
D /σD indicates about

20% contribution of the effective intersubband scattering to
the total Drude conductivity, σD , of the 2D system [14]. In
accordance with Eq. (7), the sum of the quantum scattering
rates in two subbands, 2/τMISO

q = 1τ (1)
q + 1/τ (2)

q = 250 GHz,
determines the exponential MISO decrease with 1/B⊥. This
value is in fair agreement with the one obtained in the QPMR
analysis and presented in Fig. 5: 2/τQPMR

q = 1τ (1)
q + 1/τ (2)

q =
130–190 GHz.

The Zeeman splitting provides a subdominant contribution
leading to a uniform decrease of the MISO amplitude. In
Fig. 7 the dotted line represents the numerical simulation
neglecting the Zeeman term and the dashed line represents
the simulation taking into account the Zeeman contribution
at α = 88.1 degrees. There is a small vertical displacement
between these two curves, indicating that the Zeeman splitting
provides a subleading contribution to the overall decrease of
MISO amplitude with the tilt of the magnetic field. Using the
Zeeman term as a fitting parameter, we have obtained a better
agreement between experiment and simulation. The inset in
the figure presents the electron g factor extracted from the fit.
The obtained g factor is smaller than the one found in QPMR
analysis, gqpmr = 0.4–0.5, and significantly smaller than the
one obtained from transport measurements in quantum wells
with a single populated subband [15,42]. The small value of
the electron g factor suggests that, in contrast to quantum
wells with one subband populated, the exchange interaction
contributions to the spin susceptibility are significantly smaller
in quantum wells with two populated subbands.

At a small 1/B⊥, consistent deviations between the ex-
periment and numerical simulations are evident. The MISO
simulations demonstrate a stronger angular decrease than the
experiment. The origin of these deviations could be related to
a specific shape of the DOS used in the simulations. This issue
has not been studied.

VII. CLASSICAL MAGNETORESISTANCE

As presented in the previous sections, the angular evolution
of the quantum contributions to the electron conductivity
agrees with the semiquantitative model, postulating a strong
scattering between spin subbands [15]. We note that this
model has not specified any particular relations between

FIG. 8. Dependence of normalized dissipative resistance on the
perpendicular component of a magnetic field at two different angles
α between the magnetic field and normal to the sample as labeled.
Open symbols represent classical magnetoresistance expected from
Eq. (12) at νs = 22.26 GHz and νr = 41 GHz.

coefficients σ
(1)
D , σ (2)

D , and σ
(12)
D in Eq. (4). This section presents

a quantitative comparison of our results with the existing quan-
titative theory of the magnetoresistance in the perpendicular
magnetic field (α = 0 degrees) [13,14,25,29]. Below we have
found that QPMR and the classical magnetoresistance agree
quantitatively with the theory. An inclusion of MISO into the
consideration leads to a significant quantitative disagreement
between the experiment and the theory.

At B⊥ < 0.03 T the magnetoresistance presented in Fig. 2
demonstrates a few percent increase with the magnetic field,
which is independent of the in-plane magnetic field. Figure 8
shows this part of the magnetoresistance in detail for two
angles as labeled. The experiment indicates that at high tilt of
the magnetic field (α = 88.6 degrees), at which the modulation
of the electron spectrum is suppressed by the Zeeman splitting
of Landau levels, the magnetoresistance saturates above 0.03 T.
At α = 0 degrees the magnetoresistance shows a tendency to
the saturation. The two dependencies deviate from each other
at B⊥ > 0.03 T, indicating the presence of QPMR. At B⊥ <

0.03 T two dependencies coincide, suggesting the absence of
DOS modulations. The increase at small magnetic fields is
related to the classical magnetoresistance expected in electron
systems with several subbands populated [29,30].

The mechanism of the classical positive magnetoresistance
(CMR) is similar to that for two groups of carriers with
different mobilities [30]. However, in a two-subband system,
due to the intersubband coupling via scattering, the classical
resistivity ρclass is not reduced simply to the contribution given
by two independent groups of carriers from the first and second
subbands [29]. The classical resistivity can be conveniently
presented as [26]

ρclass = m

e2n

ω2
cνs + ν∗ν2

r

ω2
c + ν2

r

, (12)

where n = n1 + n2 is the total electron density and n1 and n2

are the electron densities in the subbands. This contribution
increases with the magnetic field, starting from the zero-field
value ρD = mν∗/e2n, and saturates at ωc � νs with the value
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ρsat = mνs/e
2n. The characteristic rates νs , νr , and ν∗ are

given by

νs = (n1/n)νtr
11 + (n2/n)νtr

22 + νtr
12,

νr = (n2/n)νtr
11 + (n1/n)νtr

22 + 2ν12 − νtr
12,

ν∗ =
(
νtr

11 + ν12
)(

νtr
22 + ν12

) − (
ν12 − νtr

12

)2
n2/4n1n2

νr

, (13)

where νij (νtr
ij ) are quantum (transport) scattering rates [14].

In small quantizing magnetic fields, ωcτ
(i)
q < 1, the QPMR

and MISO can be presented as [14,26]

ρQPMR = 2m

e2n

[n1

n
νtr

11e
−2α1 + n2

n
νtr

22e
−2α2

]
,

ρMISO = 2m

e2n

[
νtr

12e
−α1−α2 cos

2π�12

h̄ωc

]
, (14)

where αi = π/(ωcτ
(i)
q ) = π (νii + ν12)/ωc are the Dingle ex-

ponents.
In Fig. 8 the open symbols present the normalized classical

magnetoresistance coming from Eq. (12). The figure indicates
a good agreement between experiment at α = 88.6 degrees and
the theory. The fit yields two parameters: the scattering rate
in classically strong magnetic fields νs = 22.26 ± 0.03 GHz
and νr = 41 ± 0.03 GHz. The value of the resistivity at
B = 0 T yields the scattering rate at zero magnetic field,
ν∗ = 21.6 ± 0.02 GHz. Equation (14) provides a quantitative
relation between coefficients Ai used to fit QPMR [see
Eq. (11)]: Ai = (2n1/n)(νtr

ii /ν∗), yielding νtr
11 = 7.05 GHz and

νtr
22 = 2.3 GHz. A substitution of these values into the relation

for νs in Eq. (13) yields the intersubband scattering rate,
νtr

12 = 16.32 GHz. The substitution of the obtained transport
scattering rates into the relation for νr in Eq.(13) leads to the
intersubband quantum scattering rate, ν12 = 26.95 GHz. The
intrasubband quantum scattering rates νii now can be found
from the total quantum scattering rates, 1/τ (i)

q = νii + ν12,
obtained from the comparison of QPMR with Eq. (14) and
presented in Fig. 5. The intrasubband rates are found to
be ν11 = 106 GHz and ν22 = 18 GHz. Using the obtained
scattering rates, we have computed the total scattering rate ν∗
expected from Eq. (13) at zero magnetic field, νth

∗ = 20.4 GHz,
which is close to one seen in the experiment, ν∗ = 21.6 GHz.
Thus the cross-comparison of QPMR, CMR, and the theory
indicates a good mutual agreement.

The comparison of QPMR and CMR demonstrates the
dominant contribution of the intersubband scattering to the
electron transport. Indeed the intersubband transport scat-
tering rate, νtr

12 = 16.3 GHz, is the main part of the total
transport scattering rate, νs = 22.26 GHz, of electrons in
strong magnetic fields. This can be related to the fact that,
in contrast to the quantum intrasubband scattering leading to
a small displacement of the cyclotron orbit in the studied
system, any intersubband quantum scattering event leads
to a significant (∼R(1)

c ) displacement of the center of the
electron orbit resulting in a high dissipative conductivity. The
large orbital displacement is due to the substantial difference
in the cyclotron radii R(i)

c of electrons at Fermi energy in
two subbands with very different electron densities. This
observation is in agreement with the obtained result: ν12 ≈

νtr
12. Furthermore, in the limit where intersubband scattering

dominates, ν12 ≈ νtr
12 � νtr

ii , the total transport scattering rate
in strong magnetic fields, νs ≈ νtr

12, is close to the total
scattering rate at zero magnetic field, ν∗ ≈ (ν12)2/νr ≈ ν12, in
the agreement with the experiment. Indeed Fig. 8 demonstrates
that the classical magnetoresistance is weak (about 3 percent
variation) despite the large difference in the intrasubband
scattering rates νtr

ii .
An inclusion of MISO in the consideration destroys the

obtained agreement. The comparison of the MISO amplitude
with the theory, which is presented in Fig. 7, yields AMISO ≈
0.38, leading, in accordance with Eq. (14), to the intersubband
transport scattering rate νtr

MISO ≈ 4.2 GHz. The obtained value
is about four times less that the νtr

12 found via analysis of
QPMR and CMR. In contrast, the sum of the total quantum
scattering rates obtained from the MISO analysis, νMISO =
1/τ (1)

q + 1/τ (2)
q ≈ 250 GHz (see the caption of Fig. 7) agrees

reasonably well with the one obtained from QPMR: νQPMR ≈
133 + 45 = 178 GHz (see Fig. 5).

The observed strong quantitative discrepancy in MISO
amplitude suggest that some scattering processes may not been
taken correctly in the theoretical consideration of MISO. In
particular, recent experiments on QPMR in tilted magnetic
fields [15] indicate the importance of spin flip processes
(spin mixing) in the studied 2D systems. Such processes
are ignored by the existing quantitative theory. While the
spin mixing seems to be not important for QPMR in the
perpendicular magnetic field [15], the magnitude of MISO
may have substantial dependence on the spin mixing between
different spatial subbands. In particular, if we assume that
the spin mixing between spatial subbands is absent then the
magnitude of MISO in Eq. (7) should be reduced by factor of
2. This follows from the replacement of the products of the
total density of states ν1ν2 = (ν1↑ + ν1↓)(ν2↑ + ν2↓) in Eq. (3)
by ν1↑ν2↑ + ν1↓ν2↓ corresponding to the absence of the spin
flip intersubband scattering.

VIII. SUMMARY

Quantum positive magnetoresistance (QPMR) and
magneto-intersubband resistance oscillations (MISO) of
highly mobile 2D electrons in symmetric GaAs quantum
wells with two populated subbands have been studied in tilted
magnetic fields. In the perpendicular magnetic field QPMR
displays contributions from two subbands with considerably
different electron quantum lifetimes and intrasubband mo-
bilities. MISO evolution with B⊥ agrees with the obtained
quantum scattering times only if an extra reduction of the
MISO magnitude is applied at small magnetic fields. This
indicates the presence of an additional mechanism leading to
the MISO damping. A weakly nonparabolic electron spectrum
provides a MISO damping, which is comparable to the one
seen in the experiments at α = 0 degree. A simple beating
of two MISOs provides a similar result but fits better the
experiments in tilted magnetic fields.

Application of the in-plane magnetic field produces a
strong decrease of both QPMR and MISO magnitude. The
reduction of QPMR is explained by the spin splitting of
Landau levels indicating a g factor, gQPMR ≈ 0.4–0.5, which
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is considerably less than the g factor found in a GaAs quantum
well with a single subband populated. In contrast to QPMR,
the decrease of MISO magnitude is largely related to the in-
plane magnetic field induced entanglement between quantum
levels in different subbands that, in addition, increases the
MISO period. Zeeman spin splitting provides a subleading
contribution to the MISO decrease, indicating an even smaller
g factor: gMISO ≈ 0.2.

Cross comparison of the classical magnetoresistance and
QPMR in perpendicular magnetic fields with existing quan-
titative theory indicates good mutual agreement. The MISO
amplitude is found to be significantly less than the one expected

from the theory. Taking into account the recent findings
[15], which indicate the importance of spin mixing (spin
flip scattering) in the studied systems, we suggest that spin
degrees of freedom, which are ignored by the existing theory,
are relevant for MISO.
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