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Semiclassical theory of spin-orbit torques in disordered multiband electron systems
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We study spin-orbit torques (SOT) in nondegenerate multiband electron systems in the weak-disorder limit.
In order to have better physical transparency, a semiclassical Boltzmann approach equivalent to the Kubo
diagrammatic approach in the noncrossing approximation is formulated. This semiclassical framework accounts
for the interband-coherence effects induced by both the electric field and static impurity scattering. Using the
two-dimensional Rashba ferromagnet as a model system, we show that the antidamping-like SOT arising from
disorder-induced interband-coherence effects is very sensitive to the structure of disorder potential in the internal
space and may have the same sign as the intrinsic SOT in the presence of spin-dependent disorder. While the
cancellation of this SOT and the intrinsic one occurs only in the case of spin-independent short-range disorder.
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I. INTRODUCTION

Disorder effects to nonequilibrium properties of Bloch
electrons in solids is a basic issue in the condensed matter
physics. In many instances a relaxation time approximation
is employed to account for the disorder effects [1]. However,
this conventional treatment is not enough in some transport
phenomena related to the spin-orbit coupling such as the
spin Hall and anomalous Hall effects [2,3]. To explain these
phenomena, intriguing disorder-induced interband-coherence
effects have been discussed extensively [2–4].

In inversion-asymmetric materials with local magnetization
coupled to conduction electrons in spin-orbit coupled bands, an
electric field induces a nonequilibrium spin polarization, which
exerts a torque on the magnetization. This torque relies on
the spin-orbit coupling and is termed spin-orbit torque (SOT)
[5]. Disorder effects on the SOT have been treated in most
studies by just a constant lifetime approximation [6–11] or
a single transport relaxation time [12], leaving the disorder-
induced interband-coherence effects largely unexplored
[13].

The semiclassical Boltzmann transport theory which works
in the weak scattering limit with well-defined multiple-
band structure is appealing in its ability to obtain intuitive
pictures [1]. Existing semiclassical Boltzmann theories for
SOTs account for the intrinsic contribution [7,9] due to the
electric-field-induced interband-coherence effect [8,14] and a
fieldlike contribution proportional to the relaxation time or
electron lifetime [6,7,9]. However, the interband-coherence
effects induced by static impurity scattering cannot be treated
by the conventional Boltzmann equation where the only role of
scattering is to equilibrate the acceleration of electrons by the
electric field. Successful inclusion of disorder-induced inter-
band coherences into the semiclassical Boltzmann formalism
has recently been realized in the context of the anomalous Hall
effect [15–17], but that formalism cannot be directly applied
to study other spin-related nonequilibrium phenomena such as
the SOT.

In the present paper, we focus on SOTs in two-dimensional
(2D) Rashba ferromagnets with the magnetization perpendic-
ular to the 2D plane in the case of both Rashba bands partially
occupied in the weak-disorder limit. This isotropic model

enables us to obtain analytical results. We find that the an-
tidampinglike SOT arising from disorder-induced interband-
coherence may have the same sign as the intrinsic SOT in
the presence of spin-dependent disorder, and the cancellation
between them occurs only in the case of spin-independent
short-range (pointlike) disorder. Thus a careful analysis of
different structures of disorder potentials in the internal space
is indispensable for the study of SOT. Moreover, our results
imply that, for finite-range or long-range disorder, other fine
details of disorder also need to be carefully accounted for
beyond simple phenomenological treatment.

In order to have better physical transparency, we formulate
the analysis in a semiclassical Boltzmann framework taking
into account the interband-coherence effects due to both the
electric field and static impurities in nondegenerate multi-
band electron systems. Besides making use of the modified
semiclassical Boltzmann equation [16,17] developed in the
semiclassical theory of anomalous Hall effect, the scattering-
induced modification to conduction-electron states plays a
vital role in this formalism whose validity is not limited
to anomalous Hall effect and SOT. Regarding the disorder-
induced interband-coherence contributions, the equivalence
between the semiclassical theory and microscopic linear re-
sponse theory in the weak-disorder limit under the noncrossing
approximation is established.

The rest of the paper is organized as follows. The semi-
classical formulation is present in Sec. II, whereas model
calculations are given in Sec. III. We make some discussions
and conclude the paper in Sec. IV. Appendices A–C include
some supplementary discussions.

II. SEMICLASSICAL PICTURE

In the semiclassical version of linear response analysis,
the average value of an observable A (quantum mechanically,
Hermitian operator Â, which can represent a vector, scalar,
etc.) in the presence of a dc weak uniform electric field E and
weak static disorder is given by [1]

A =
∑

l

flAl. (1)
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Here, fl is the semiclassical Boltzmann distribution function
governed by the linearized semiclassical Boltzmann equation,
Al represents the amount of A carried by the conduction-
electron state denoted by index l. In the present paper, we
consider nondegenerate multiband electron (hole) systems in
the weak-disorder limit, and do not consider thermal related
effects. We will show that, by properly considering fl and Al ,
this semiclassical framework takes into account the interband-
coherence effects induced by both the electric field and static
impurities.

The presence of weak electric field and impurity scattering
modifies the conduction-electron state, making Al deviate
from its pure band value A0

l ≡ 〈l|Â|l〉. Here, |l〉 is the
eigenstate (Bloch state) of disorder-free Hamiltonian Ĥ0. In
equilibrium, Al is modified to Al = A0

l + δexAl , where δexAl

is related to the scattering-induced correction to Bloch state
|l〉. Thus the semiclassical expression for the equilibrium
value of A is A0 = ∑

l f
0
l (A0

l + δexAl) with f 0
l the Fermi

distribution function. Because δexAl is at least linear in
the impurity concentration, in the weak-disorder limit one
has the conventional expression A0 = ∑

l f
0
l A0

l . However,
in the presence of the electric field, the out-of-equilibrium
distribution function has a component inversely proportional
to the impurity concentration, and thus δexAl contributes to
nonequilibrium phenomena even in the weak-disorder limit.
Besides, the electric field also induces a correction δinAl to
Al related to the so-called intrinsic contribution [9,18]. As
will be explained in Sec. II B, in the linear response regime
and weak-disorder limit, δexAl and δinAl are independent. In
the rest of this section, we present formal expressions for fl

and Al , and describe how the interband-coherence effects are
included into the semiclassical formalism.

A. Semiclassical distribution function fl

In this section, we briefly describe the modified semiclassi-
cal Boltzmann equation proposed by Sinitsyn et al. [16,17]
to determine the distribution function fl . The linearized
semiclassical Boltzmann equation for electrons (charge e)
in nonequilibrium steady states in the presence of elastic
electron-impurity scattering takes the form [16]

eE · v0
l

∂f 0

∂εl

= −
∑

l′
ωl,l′

(
fl − fl′ − ∂f 0

∂εl

eE · δrl′,l

)
. (2)

Here, v0
l is the band velocity, ωl,l′ is the semiclas-

sical scattering rate (l′ → l) calculated by the golden
rule, δrl′,l denotes the coordinate shift [15] during
the scattering and reads δrl′,l = 〈ul′ |i∂k′ |ul′ 〉 − 〈ul|i∂k|ul〉 −
(∂k′ + ∂k) arg (〈l′|V̂ |l〉) in the lowest nonzero Born approxi-
mation [15]. |l〉 = |ηk〉 is the Bloch state with eigenenergy
εl ≡ ε

η

k , η is the band index and k the crystal momentum.
arg (. . . ) denotes the phase of a complex number.

The distribution function is decomposed into [16]

fl = f 0
l + gn

l + ga
l (3)

with gn
l equilibrating the acceleration of electrons in the

electric field between scattering events and the anomalous
distribution function ga

l describing the effect of electric field
working during the coordinate-shift process. The coordinate

shift is a disorder-induced interband-coherence effect [2,15–
17] (i.e., related to interband virtual transitions induced by
static impurity scattering) and can be directly related to the
momentum-space Berry curvature [19] in some simple cases
[15–17]. Thus the anomalous distribution function ga

l is also
related to the disorder-induced interband coherence.

Under the Gaussian disorder approximation (we restrict to
this approximation throughout this paper), gn

l can be further
divided into [17,20]

gn
l = g2s

l + gsk-in
l , (4)

where g2s
l is value of gn

l in the lowest Born approximation
(ωl,l′ → ω2s

l,l′ ), gsk-in
l is responsible for the so-called intrinsic

skew scattering arising in higher Born orders due to the
asymmetry ωl,l′ �= ωl′,l under the Gaussian disorder [17,20].
Here we mention that the intrinsic skew scattering is a delicate
disorder effects related also to the interband coherence (more
discussions can be found in Appendix B).

In the presence of pointlike scalar impurities, one can
easily verify that gsk-in

l and ga
l do not depend on either the

impurity density or the scattering strength [20], and g2s
l is

inversely proportional to the impurity density. A systematic
analysis of Eq. (2) under the noncrossing approximation in
isotropic 2D electron systems with multiple Fermi circles has
been presented in Ref. [20]. Anisotropy in band structures or
impurity potentials complicates the analytical treatment, but is
not a severe obstacle in numerical solutions [12].

B. Scattering and electric-field modified Al

In this section, we obtain the expression for Al taking
into account the interband-coherences induced by both the
electric field and static disorder. To do this, we firstly deal
with the case where there is only the electric field or only
disorder. The electric-field-induced correction to A0

l reads
δinAl = 2 Re〈l|Â|δEl〉, arising from the electric-field-induced
interband-virtual-transition correction

|δEl〉 = −ih̄eE·
∑
η′ �=η

|η′k〉〈uη′
k |v̂|uη

k〉/(εη

k − ε
η′
k )2

to the Bloch state |l〉 = |ηk〉. Here, |k〉 and |uη

k〉 are the plane-
wave and periodic parts of |ηk〉, respectively, v̂ is the velocity
operator, and δinAl is an interband-coherence effect induced
solely by the electric field.

Similarly, the scattering-induced correction δexAl stems
from interband-coherence effects in the scattering process. To
obtain this part, one can notice that the Bloch state is also mod-
ified by the scattering according to the Lippmann-Schwinger

equation |ls〉 = |l〉 + (εl − Ĥ0 + iε)
−1

T̂ |l〉. Here, T̂ = V̂ +
V̂ (εl − Ĥ0 + iε)

−1
T̂ is the T matrix, V̂ is the disorder po-

tential. Thus δexAl is related to 〈2 Re〈l|Â|δsl〉 + 〈δsl|Â|δsl〉〉c,
where |δsl〉 ≡ |ls〉 − |l〉 represents the scattering-induced cor-
rection to the Bloch state and 〈. . . 〉c denotes the average over
disorder configurations. Here we only consider [21] disorder
potential-free Â. By the Lippmann-Schwinger equation, in the
lowest nonzero order of the disorder potential, we get

〈〈δsl|Â|δsl〉〉c =
∑
l′l′′

〈Vll′Vl′′l〉c〈l′|Â|l′′〉
(εl − εl′ − iε)(εl − εl′′ + iε)
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and

〈2 Re〈l|Â|δsl〉〉c = 2 Re
∑
l′l′′

〈Vl′l′′Vl′′l〉c〈l|Â|l′〉
(εl − εl′ + iε)(εl − εl′′ + iε)

.

Both of them contain intraband and interband matrix elements
of Â in the band representation. In the weak-disorder limit,
the intraband terms will be ignored because they are just
trivial renormalization effects [16]. Only the interband terms
are left as nontrivial corrections to A0

l in the weak-disorder
limit, because they are interband-coherence effects induced
by impurities.

Now we turn to the case where both the electric field
and disorder are present. In equilibrium with disorder, Al =
A0

l + δexAl . The application of the electric field modifies
both A0

l and δexAl . However, in the linear response regime,
only the electric-field-induced correction to A0

l contributes
to nonequilibrium phenomena in the weak-disorder limit and
reads δinAl = 2 Re〈l|Â|δEl〉, just the same as that in the
absence of disorder. Therefore we conclude that in the linear
response regime and the weak-disorder limit, the effects of
electric field and disorder on Al are independent and thus
can be treated separately. Accordingly, taking into account
the electric-field- and scattering-induced interband-coherence
effects, Al can be written as

Al = A0
l + δexAl + δinAl. (5)

The intrinsic correction due to the electric-field-induced
interband-coherence is

δinAl = h̄e
∑
η′ �=η

2 Im〈ηk|Â|η′k〉〈uη′
k |v̂ · E|uη

k〉
(εη

k − ε
η′
k )2

, (6)

whereas the extrinsic correction due to the scattering-induced
interband-coherence reads

δexAl = δinter
1 Al + δinter

2 Al, (7)

with

δinter
1 Al =

∑
η′k′

∑
η′′ �=η′

〈〈ηk|V̂ |η′k′〉〈η′′k′|V̂ |ηk〉〉c〈η′k′|Â|η′′k′〉
(εη

k−ε
η′
k′ −iε)(εη

k−ε
η′′
k′ +iε)

(8)

and

δinter
2 Al

= 2 Re
∑
η′ �=η

∑
η′′k′′

〈〈η′k|V̂ |η′′k′′〉〈η′′k′′|V̂ |ηk〉〉c〈ηk|Â|η′k〉
(εη

k−ε
η′
k +iε)(εη

k−ε
η′′
k′′ +iε)

.

(9)

Under a local phase transformation, δexAl remains un-
changed for disorder potential [21] V̂ (r). In fact all the three
terms of Al in Eq. (5) are gauge invariant and can be regarded
as the basic ingredients of a semiclassical theory.

In the case of Â = v̂, Eq. (5) is just the velocity of
semiclassical electrons appeared in the semiclassical theory
of anomalous Hall effect [2,16]: v0

l is the band velocity, δinvl

is the Berry-curvature anomalous velocity [19], and one can
show that δexvl is consistent with the semiclassical side-jump
velocity vsj

l proposed by Sinitsyn et al. [15–17] as well as

Luttinger’s quantum transport theory on the anomalous Hall
effect [22] (detailed discussions are present in Appendix A).
This consistency indicates that the so-called side-jump velocity
can also be understood as arising from scattering-induced
modifications to the Bloch state.

More importantly, this consistency implies that δexAl pro-
vides a generalization of the semiclassical side-jump velocity
into physical quantities besides the electric current (velocity).
In the spin Hall effect where the spin is not conserved in
spin-orbit-coupled bands, a semiclassical Boltzmann analysis
of disorder-induced interband coherences is still absent. This
is partly due to, in our opinion, the lack of a spin-current
counterpart of the side-jump velocity [23]. Similarly, the lack
of a SOT-counterpart of the side-jump velocity has impeded
the development of semiclassical Boltzmann theories to SOT.
Now the identification of δexAl provides the counterpart of
the side-jump velocity for the case of physical quantities
besides the electric current. Also the identification of δexAl

helps establish the equivalence between the semiclassical
theory on the disorder-induced interband-coherence transport
and diagrammatic perturbation theories in the weak-disorder
limit under the noncrossing approximation, as demonstrated
in Appendix B.

C. Semiclassical expression of linear response in the
weak-disorder limit

In the linear response regime, we get the following
semiclassical Boltzmann expression for δA ≡ A − A0:

δA =
∑

l

(
A0

l + δexAl

)(
fl − f 0

l

) +
∑

l

(δinAl)f
0
l . (10)

The first and second terms on the right-hand side (rhs) are
extrinsic and intrinsic [18] contributions, respectively.

In the weak-disorder limit up to the zeroth order of total
disorder concentration and scattering strength, one has

δA =
∑

l

A0
l g

2s
l +

∑
l

A0
l

(
ga

l + gsk-in
l

)

+
∑

l

(δexAl)g
2s
l +

∑
l

(δinAl)f
0
l . (11)

The first term on the rhs is the conventional Boltzmann result in
the lowest Born order, the second term includes contributions
from the anomalous distribution function and intrinsic skew
scattering. The last two terms arise from interband-coherence
corrections to the semiclassical value of Al in Eq. (1).

Below, we label the terms on the rhs of Eq. (11) as
δ2sA = ∑

l A
0
l g

2s
l , δsjA = ∑

l (δexAl)g2s
l , δadisA = ∑

l A
0
l g

a
l ,

δsk-inA = ∑
l A

0
l g

sk-in
l and δinA = ∑

l (δinAl)f 0
l . As stated

in the past two subsections, disorder-induced interband-
coherence effects are included in δexAl , ga

l and gsk-in
l , the

disorder-induced interband-coherence contribution (labeled
by δSJ A) to δA is thus

δSJ A = δadisA + δsk-inA + δsjA. (12)

In the presence of pointlike scalar impurities, all the three terms
are independent of both the impurity density and scattering
strength [20].
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In the semiclassical theory of the anomalous Hall effect
formulated recently by Sinitsyn et al. [17], the disorder-
induced interband-coherence contribution (called side-jump
effect in that context [2,4]) comprises three ingredients: a
side-jump velocity vsj

l , the anomalous distribution function
ga

l and intrinsic skew scattering gsk-in
l . As our δexvl coincides

with vsj

l , when applied to the anomalous Hall effect the present
semiclassical formalism is consistent with that by Sinitsyn
et al.

Furthermore, we establish (see Appendix B) an one-to-one
correspondence between the three semiclassical terms on
the rhs of Eq. (12) and special sets of Feynman diagrams
representing the disorder-induced interband-coherence trans-
port contributions in the band-eigenstate basis under the
noncrossing approximation in the weak-disorder limit. This
also confirms the validity of our semiclassical framework.

Equation (11) can then be casted into

δA = δ2sA + δSJ A + δinA. (13)

Here we can mention that, in the weak scattering limit the
widely-used classification of SOT into interband and intraband
parts does not take into account δSJ A, i.e., the disorder-induced
interband-coherence effects far beyond the relaxation time
approximation [24].

III. MODEL CALCULATION

We consider the case where the SOT is related to
the nonequilibrium conduction-electron spin polarization δS,
which is coupled to the local magnetization via the s-d
exchange coupling. In the simplified treatment adopted here,
one only calculates δS in the presence of the driven electric
field and disorder [6–10]. In this section, we focus on SOTs in
2D Rashba ferromagnets with the magnetization perpendicular
to the 2D plane. In Appendix C, we also analyze the case of
in-plane magnetization and scalar pointlike impurities.

The 2D model Hamiltonian is Ĥ = Ĥ0 + V̂ (r), where

Ĥ0 = p̂2

2m
+ αR

h̄
σ̂ · (p̂ × ẑ) − Jexσ̂ · M̂. (14)

Here, m is the in-plane effective mass of conduction electron,
p̂ = h̄k̂ the 2D momentum, σ̂ = (σ̂x,σ̂y,σ̂z) are the Pauli
matrices, αR is the Rashba coefficient, Jex the exchange
coupling. M̂ is the direction of the local magnetization
and chosen to be M̂ = ẑ for the in-plane isotropic model.
|uη

k〉 = 1√
2
[
√

1 − η cos θ, − iη exp (iφ)
√

1 + η cos θ]
T

is the

inner eigenstate, where η = ±, tan φ = ky

kx
, cos θ = Jex/�k ,

�k = √
α2k2 + J 2

ex. We only consider the case εF > Jex,
i.e., both Rashba bands partially occupied. For any energy
ε > Jex, there are two iso-energy rings corresponding to the
two bands: k2

η(ε) = 2m

h̄2 (ε − η�η(ε)), where �η(ε) ≡ �kη(ε) =√
ε2
R + J 2

ex + 2εRε − ηεR and εR = m( αR

h̄
)2. The density of

states in η band is Dη(ε) = D0
�η(ε)

�η(ε)+ηεR
with D0 = m

2πh̄2 .
Hereafter, the electric field is applied in the y direction. The

intrinsic nonequilibrium spin polarization reads

δinS =
∑

l

(δinSl)f
0
l = −eEy

h̄

2

JexαRD0

J 2
ex + 2εRεF

ŷ, (15)

which is parallel to the electric field and contributes an intrinsic
antidamping-like SOT.

It was found in the context of the anomalous Hall effect
that the structure of short-range disorder potential (do not
consider spin-orbit scattering) in the internal space (internal
degrees of freedom such as spin and valley) strongly affects
the disorder-induced interband-coherence response [25]. For
the in-plane isotropic Rashba model where Ŝ = h̄

2 σ̂ , according
to the structure of the disorder potential in the 2 × 2 internal
space, the pointlike disorder [21,26] can be classified following
the recipe of Yang et al. [25] as class A V̂ = VAσ̂0, class B
V̂ = VBσ̂z, and class C V̂ = Vcσ̂±/

√
2. Here, σ̂± = σ̂x ± iσ̂y ,

σ̂0 is the 2 × 2 identity matrix. Details about the theoretical
consideration on this classification in in-plane isotropic sys-
tems with 2 × 2 internal space and the realizations of these
scattering classes in practice have been given in Secs. II and
IV of Ref. [25], respectively. It was shown that the disorder-
induced interband-coherence contribution to the anomalous
Hall effect in in-plane isotropic systems with 2 × 2 internal
space due to class A disorder is quite different from that due
to classes B and C disorder, even with opposite signs [25,27].
While contributions due to class B and class C disorder are
qualitatively similar [25,28]. Thus we only take into account
class A and class B disorder to calculate the SOT.

A. Class A disorder

According to Eqs. (7)–(9), we obtain δinter
2 Sl = 0 and

δexSl = δinter
1 Sl = − h̄

2

h̄

τ

ηJex

J 2
ex + 2εRε

αRkη(ε)

2�η(ε)
. (16)

δexSl contributes a nonequilibrium spin polarization,

δsj S =
∑

l

g2s
l δexSl = eEy

h̄

2

αRJexD0

J 2
ex + 2εRεF

ŷ, (17)

which completely cancels the intrinsic contribution. For class
A disorder, g2s

l = (−∂εf
0)eE · h̄kη(ε)

m
τ has been obtained be-

fore [20], with τ = (2πnA
imV 2

AD0/h̄)
−1

the lifetime of Rashba
electron with nA

im the density of class A disorder. Moreover,
Ref. [20] has shown that the anomalous distribution and
the distribution function for the intrinsic skew scattering
cancels each other: ga

l + gsk-in
l = 0. Thus δadisS+ δsk-inS = 0

and the disorder-induced interband-coherence contribution is
just δSJ S = δsj S, then the total (electric-field-induced plus
disorder-induced) interband-coherence contribution to the
nonequilibrium spin polarization vanishes:

δSJ S + δinS = 0. (18)

Thereby δS = δ2sS = ∑
l g

2s
l S0

l = −eαRD0τEy x̂, which is
magnetization independent and coincides with the well-known
Edelstein result in the nonmagnetic 2D Rashba model with
class A disorder [29]. This δS perpendicular to both the
magnetization and electric field contributes a fieldlike SOT.

B. Class B disorder

In this case, the electron lifetime is still independent
of energy and band, and is given by τ = (

∑
l′ ω

2s
l′,l)

−1 =
( 2π

h̄
nB

imV 2
BD0)

−1
with nB

im the density of class B disorder.
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According to Eqs. (7)–(9), we get δinter
2 Sl = 0 and

δexSl = δinter
1 Sl = h̄

2

h̄

τ

ηJex

J 2
ex + 2εRε

αRkη(ε)

2�η(ε)
. (19)

We note that, for the same kη(ε) the sign of δexSl is opposite
to that in the case of class A disorder.

The Boltzmann equation (2) is solved following the recipe
given by Ref. [20]. After lengthy calculations, we get

g2s
η (ε) = (−∂εf

0)eE · h̄kη(ε)

m
τ

�2
−η(ε) + εRε

J 2
ex + 3εRε

,

ga
η (ε) = (−∂εf

0)(ẑ × eE) · kη(ε)
ηJexα

2
R

2�η(ε)
(
J 2

ex + 3εRε
) ,

gsk-in
η (ε) = J 2

ex + εRε

J 2
ex + 3εRε

gadis
η (ε). (20)

Then the disorder-induced interband-coherence contributions
to the nonequilibrium spin polarization in Eq. (12) are given
by

δsj S =
∑

l

g2s
l δexSl = J 2

ex + εRεF

J 2
ex + 3εRεF

δinS, (21)

δadisS =
∑

l

ga
l S0

l = − εRεF

J 2
ex + 3εRεF

δinS, (22)

and

δsk-inS =
∑

l

gsk-in
l S0

l = J 2
ex + εRεF

J 2
ex + 3εRεF

δadisS. (23)

Thus the total disorder-induced interband-coherence contribu-
tion reads

δSJ S =
[

2

(
J 2

ex + 2εRεF

J 2
ex + 3εRεF

)2

− 1

]
δinS. (24)

In the large exchange-coupling limit Jex 	 √
εRεF , one

has δSJ S 
 δinS, the disorder-induced interband-coherence
contribution approximately doubles the intrinsic nonequilib-
rium spin polarization and the corresponding antidampinglike
SOT. While in the opposite limit Jex � √

εRεF , δSJ S 

− 1

9δinS, and the contribution from disorder-induced interband-
coherences partly cancels the intrinsic nonequilibrium spin po-
larization. In particular, δSJ S = 0 when J 2

ex = (
√

2 − 1)εRεF .
The total interband-coherence contribution to the nonequi-

librium spin polarization reads

δinS + δSJ S = −h̄eαRD0
Jex

(
J 2

ex + 2εRεF

)
(
J 2

ex + 3εRεF

)2 Ey ŷ, (25)

which exerts an antidampinglike torque on the magnetization.

Besides, δ2sS = −eαRD0τ
J 2

ex+εRεF

J 2
ex+3εRεF

Ey x̂ leads to a fieldlike
torque proportional to τ .

C. Competition between classes A and B

When the dominant scattering class is tuned (by doping
or by varying temperature [25]), rich behaviors of SOT
are expected even in the weak-disorder limit. In the pres-
ence of both class A and class B impurities, we assume
[25] 〈VAVB〉c = 0, and only the main results are given

FIG. 1. χyy vs ζ = τA/τB for fixed values of εF /Jex. χyy is
measured in units of −eαRD0h̄/Jex. The plot shows the crossover
from the class A dominated regime to the class B dominated regime
as ζ increases. Here, we set εR/Jex = 0.1.

in this case. Due to
∑

η

Dη

�η
= 0, the electron lifetime is

given by τ = τA/(1 + ζ ) = (τ−1
A + τ−1

B )
−1

, where 1/τA(B) =
2πnA(B)

im V 2
A(B)D0/h̄, ζ = τA/τB .

In this section, we write δSα = χαβEβ , with α,β = x,y.
Lengthy calculations lead to

χxy = −eαRD0τ
1 − I1

1 − 1−ζ

1+ζ
I1

,

χyy = −h̄eαRD0
Jex

J 2
ex + 2εRεF

ζ

1+ζ(
1 − 1−ζ

1+ζ
I1

)2 , (26)

where I1 = εRεF

J 2
ex+2εRεF

.
One can observe that in the limit ζ → 0 or ζ → ∞, our

previous results in Secs. III A and III B are recovered, and the
values of nonequilibrium spin polarizations (and thus SOTs)
vary continuously as ζ changes between these two limits. In
Fig. 1, we plot χyy as a function of ζ for fixed values of εF .
One can see that χyy increases monotonically as ζ increases
from the class A dominated regime to the class B dominated
regime. The class B dominated regime is reached at smaller
ζ for larger εF . In Fig. 2, we plot χyy as a function of εF for
different values of ζ . As ζ increases from zero, the curve of
χyy is shifted upward from the class A dominated regime due
to the increasing contribution from class B scattering. For the
chosen parameter εR/Jex = 0.1, we find that ζ = 10 is quite
approaching the class B dominated case ζ = 10 000. This is
consistent with the trend shown in Fig. 1.

FIG. 2. χyy vs εF for fixed values of ζ . χyy is measured in units
of −eαRD0h̄/Jex and εF is measured in units of Jex. We have chosen
εR/Jex = 0.1 in plotting the curves.
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IV. DISCUSSION AND CONCLUSION

A. Comparison to other theories

In the context of the anomalous Hall effect, it has
been realized [16,20,30,31] that, in the weak-disorder limit
under the noncrossing approximation, the semiclassically
obtained disorder-induced interband-coherence contribution
(side jump) is equivalent to the ladder vertex correction to
the bare bubble representing the intrinsic contribution [32]
in the nonchiral basis (just the spin-σz basis for two-band
models such as the Rashba model [20,31] and Dirac model
[16,30], while the chiral basis means the band-eigenstate
basis [4,16]) in Kubo diagrammatic theories. Only few papers
addressed vertex corrections to the intrinsic SOT [33–36],
and these calculations do not give pictures of interband-
coherence effects due to employment of the nonchiral
basis.

Regarding the present model, the cancellation between the
intrinsic and disorder-induced interband-coherence contribu-
tions in the case of scalar short-range disorder is consistent
with that obtained by calculating the vertex correction in
quantum transport theories [33,34]. For the case of class
B disorder, we have also performed a Kubo diagrammatic
calculation [37] under the noncrossing approximation and
obtained the same weak-disorder-limit result for the SOT as
that of the present semiclassical theory.

B. Relative magnitude of antidamping-like and field-like SOTs

In the Rashba system with both bands partially occu-
pied, under the good-metal condition (εF τ/h̄ 	 1), there
are still two different limits often discussed in literatures.
One is the weak-disorder limit where the disorder broad-
ening is much smaller than the band splitting due to
Rashba and exchange couplings [6,9,10], the other is the
opposite limit—diffusive limit [38]. If the Rashba and ex-
change couplings are both weak, the system may be near
the diffusive limit, where the Boltzmann theory does not
work.

In the weak-disorder limit, the antidampinglike SOT
from the intrinsic and disorder-induced interband-coherence
contributions is smaller than the fieldlike one. However,
unlike the longitudinal conductivity whose leading contribu-
tion under the good-metal condition is always proportional
to εF τ/h̄, the fieldlike SOT (proportional to χxy) is not
proportional to εF even in the weak-disorder limit. Thus,
as the system evolves from the weak-disorder limit to the
diffusive limit, while the longitudinal electric conductivity
remains large, the fieldlike SOT may become much smaller
and may not remain dominant over the antidampinglike one.
This attracting possibility will be investigated in a separate
paper.

C. Neglected contributions

Very recently, the diagrammatic calculation of the anoma-
lous Hall effect under the Gaussian disorder has been improved
by going beyond the noncrossing approximation [39]. The
resulting additional contribution is also independent of both
disorder density and scattering strength in the case of scalar

pointlike impurities in the weak-disorder limit. There should
also be corresponding additional contribution to the SOT. This
issue is left for future discussion.

We assumed Gaussian disorder as in Refs. [4,33–35]. Non-
Gaussian disorder is not included in this paper. In the context
of the anomalous Hall effect, non-Gaussian disorder leads to
skew scattering contributions which depend on the scattering
time [2]. In the field of the SOT, the effects of non-Gaussian
disorder can be calculated by the same method as that applied
to the anomalous Hall effect [2].

D. Summary

In summary, we have studied spin-orbit torques in non-
degenerate multiband electron systems by formulating a
semiclassical Boltzmann framework in the weak-disorder
limit. This semiclassical formulation accounts for interband-
coherence effects induced by both the electric field and
static impurity scattering and is equivalent to the Kubo
diagrammatic approach under the noncrossing approximation
in the weak-disorder limit. Using the 2D Rashba ferromagnets
as an example, we showed that the disorder-induced interband-
coherence effects contribute an antidampinglike torque, which
is very sensitive to the structure of disorder potential in the
internal space (spin space for the considered model) and may
have the same sign as the intrinsic spin-orbit torque in the
presence of spin-dependent disorder.

We expect these findings are helpful also in under-
standing spin-orbit torques in the 2D antiferromagnetic
Rashba model [40]. The semiclassical framework proposed
in this paper can be employed to treat other nonequilibrium
phenomena related to disorder-induced interband-coherence
effects.
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APPENDIX A: CONSISTENCY OF OUR FORMULAS
AND THE SIDE-JUMP VELOCITY

In the well-established semiclassical Boltzmann theory of
anomalous Hall effect [15,16], the side-jump velocity is ob-
tained by linking it to the coordinate-shift vsj

l = ∑
l′ ω

2s
l′,lδrl′,l .

Here we prove that our δexvl = δinter
1 vl + δinter

2 vl is consistent
with this vsj

l . Due to [21] v̂ = 1
ih̄

[r̂,Ĥ0], we have

δinter
1 vl =

∑
l′,l′′ �=l′

1

ih̄

〈
Vll′ 〈l′|r̂|l′′〉Vl′′l

εl − εl′ − iδ

εl′′ − εl′

εl − εl′′ + iδ

〉
c

= 2 Re
∑

l′,l′′ �=l′

i

h̄

〈
Vll′

〈l′|r̂|l′′〉Vl′′l

εl − εl′ − iδ

〉
c

(A1)
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and

δinter
2 vl = Re

∑
l′ �=l,l′′

2

ih̄

〈
εl′ − εl

εl − εl′ + iδ

〈l|r̂|l′〉Vl′l′′Vl′′l

εl − εl′′ + iδ

〉
c

= 2 Re
∑

l′ �=l,l′′

i

h̄

〈
〈l|r̂|l′〉 Vl′l′′Vl′′l

εl − εl′′ + iδ

〉
c

= 2 Re
∑

l′,l′′ �=l

−i

h̄

〈
〈l′′|r̂|l〉 Vl′l′′Vll′

εl − εl′ − iδ

〉
c

, (A2)

thus

δexvl = 2 Re
∑

l′,l′′ �=l′

i

h̄

〈
Vll′

〈l′|r̂|l′′〉Vl′′l

εl − εl′ − iδ

〉
c

+ 2 Re
∑

l′,l′′ �=l

−i

h̄

〈
Vll′

〈l′|V̂ |l′′〉〈l′′|r̂|l〉
εl − εl′ − iδ

〉
c

. (A3)

Only the interband matrix elements (in the band-eigenstate
basis) of the position operator are relevant here. Utilizing
〈ηk|r̂|η′k′〉 = i ∂

∂kδkk′δηη′ + Jll′ with Jll′ = 〈uη

k| ∂
∂k |uη′

k 〉δkk′ and
Jl ≡ Jll , we get

δexvl = Re
∑

l′

2

h̄

〈
Vll′

[V,J]l′l
εl − εl′ − iδ

〉
c

+
∑

l′

2π

h̄
〈|Vll′ |2〉cδ(εl − εl′)[iJl′ − iJl], (A4)

where we define [V,J]l′l ≡ ∑
l′′ [Vl′l′′Jl′′l − Jl′l′′Vl′′l]. This

quantity can be greatly simplified by using 〈ηk|r̂|η′k′〉 =
i ∂

∂kδkk′δηη′ + Jll′ :

[V,J]l′l = −i〈l′|[V̂ ,r̂]|l〉 +
∑
l′′

[∂k(Vl′l′′δkk′′δηη′′ )

+ ∂k′ (δk′k′′δη′η′′Vl′′l)] = (∂k + ∂k′)Vl′l , (A5)

thereby

δexvl =
∑

l′

2π

h̄
〈|Vll′ |2〉cδ(εl − εl′)[iJl′ − iJl]

+ Re
∑

l′

2

h̄

〈
Vll′D̂Vl′l

εl − εl′ − iδ

〉
c

(A6)

with D̂ = ∂k + ∂k′ . This quantity is just the second term of
Eq. (2.38) in Luttinger’s classical paper on the quantum
transport theory of anomalous Hall effect [22]. In fact, the
first term of Luttinger’s equation (2.38) just corresponds to
the Berry-curvature anomalous velocity. Luttinger called his
Eq. (2.38) the off-diagonal velocity because its calculation
involved interband matrix elements of the velocity operator. On
the other hand, the second term of Luttinger’s equation (2.38)
has been cited by Sinitsyn et al. [15] to confirm the validity of
their pictorial definition of semiclassical side-jump velocity
vsj

l = ∑
l′ ω

2s
l′,lδrl′,l , which contributes an anomalous Hall

current jsj = ∑
l vsj

l g2s
l . The validity of this definition of the

side-jump velocity is finally confirmed by the correspondence
to Luttinger’s quantum transport theory [22] and by one-to-one

correspondence to special sets of Feynman diagrams [2,4,16]
as well as by successful calculations of anomalous Hall effect
in some model systems [16,20]. The last term of Eq. (A6) can
be split into two terms with one related to Im 〈Vll′D̂Vl′l〉c and
the other related to D̂〈|Vll′ |2〉c. The first one is related to the
phase of the disorder potential and is thus nontrivial. While
the latter one, which does not break any symmetry, is just a
trivial renormalization to v0

l . It does not contribute to the Hall
current in the leading order of perturbation theory and can be
ignored [15,41]. In fact, in Rashba model (14) with short-range
disorder and both bands partially occupied, this term vanishes.
Then one gets the relation δexvl = vsj

l :

δexvl =
∑

l′

2π

h̄
〈|Vll′ |2〉cδ(εl − εl′)[iJl′ − iJl − D̂ arg Vl′l]

≡
∑

l′
ω2s

ll′ δrl′l .

As an example, considering the anomalous Hall effect
in model (14) with both bands partially occupied. By
〈uη

k|v̂|u−η

k 〉 = αR

h̄
ẑ × 〈uη

k|σ̂ |u−η

k 〉 and Eqs. (6)–(9), we get

δinvl = αR/h̄

h̄/2
ẑ × δinSl , δexvl = αR/h̄

h̄/2
ẑ × δexSl . (A7)

For class A impurities, one thus obtains zero anomalous Hall
current under the Gaussian disorder and

δexvl = η
h̄kη(ε)

m
× ẑ

JexεR(
J 2

ex + 2εRε
) h̄

2�η(ε)τ
. (A8)

This result coincides with the side-jump velocity obtained in
Ref. [20] from the expression vsj

l = ∑
l′ ωl′,lδrl′,l .

APPENDIX B: CORRESPONDENCE BETWEEN
SEMICLASSICAL BOLTZMANN CONTRIBUTIONS AND

FEYNMAN DIAGRAMS IN THE BAND REPRESENTATION

In the context of the anomalous Hall effect, the one-to-
one correspondence between semiclassical contributions and
special sets of Feynman diagrams in the band-eigenstate basis
under the noncrossing approximation in the weak disorder
limit has been established [4,16]. The diagrams in the band
representation for the disorder-induced interband-coherence
contributions to the anomalous Hall effect are presented in
Fig. 1 of Ref. [4]. The correspondence between these dia-
grams and semiclassical contributions was clearly presented
in Refs. [2,16]. The upper four “interband diagrams” with
an interband velocity vertex on the rhs of each diagram
correspond to the semiclassical contribution due to the anoma-
lous distribution function ga

l , the six “intraband diagrams”
correspond to the semiclassical contribution due to the intrinsic
skew scattering gsk-in

l . Whereas the lower four “interband
diagrams” with an interband velocity vertex on the left-hand
side of each diagram are just the semiclassical contribution
due to the side-jump velocity vsj

l .
In our case, this kind of correspondence remains un-

changed, provided that the left velocity vertex of all these
diagrams in the case of the anomalous Hall effect are replaced
by the Feynman vertex of A. δadisA, and δsk-inA, arising from
ga

l and gsk-in
l , are thus represented by the upper four “interband
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diagrams” and the six “intraband diagrams,” respectively. As
for δsjA which is related to δexAl , comparing the structure
of Eqs. (8) and (9) with the left interband vertices and the
interband-scattering disorder lines in the lower four interband
diagrams, one can verify the correspondence. This correspon-
dence is expected also because δexAl is a generalization of the
side-jump velocity.

The correspondence to the diagrammatic analysis es-
tablishes the equivalence between the semiclassical theory
and microscopic linear response theories regarding disorder-
induced interband-coherence responses under the noncrossing
approximation in the weak-disorder limit. According to this
correspondence, it is clearly seen that δadisA and δsjA are both
related to one interband and one intraband vertex, and are thus
interband-coherence disorder effects. While δsk-inA is related
to two intraband vertices, it also contains interband-coherence
disorder effects, i.e., interband off-shell scattering processes,
as shown by the middle part of the six intraband diagrams
in Fig. 1 of Ref. [4]. This point can be easily appreciated
by considering the case of 2D massive Dirac model [16,35],
where the interband impurity scattering can only be virtual
transition.

APPENDIX C: SOT IN A 2D RASHBA FERROMAGNET
WITH IN-PLANE MAGNETIZATION AND SCALAR

IMPURITIES

The model Hamiltonian is [6] H = h̄2k2

2m
+ αRσ̂ · (k × ẑ) −

Jexσ̂ · M̂ + VA, with M̂ = cos θM x̂ + sin θM ŷ the direction of
the in-plane magnetization. The eigenenergy of the pure sys-
tem is ε

η

k = h̄2k2

2m
+ η�k, where �k = |αR(k × ẑ) − Jexσ̂ · M|.

Note that k ≡ k(φ) still depends on φ due to the anisotropy
of the bands arising from the interplay of Rashba effec-

tive magnetic field and in-plane magnetization. The spinor
eigenstate reads |uηk〉 = 1√

2
[1, − iη exp (iγk)]T with cos γk =

Jex sin θM+αkx

�k
and sin γk = −Jex cos θM+αky

�k
. In order to make

analytical progress, we focus on the limit [6] h̄/τ � αkF �
Jex � εF . The following expressions are obtained by expand-
ing to the first order of αRk/Jex:

�k 
 Jex

[
1 + αRk

Jex
sin(θM − φ)

]
,

cos γk 
 sin θM + αRk

Jex
[cos φ − sin θM sin(θM − φ)],

sin γk 
 − cos θM + αRk

Jex
[sin φ + cos θM sin(θM − φ)],

and sin (γk′ − γk) 
 αk′
Jex

cos (θM − φ′) − αk
Jex

cos (θM − φ),
cos (γk′ − γk) 
 1.

Under a weak uniform electric field applied in x direction,
the intrinsic nonequilibrium spin polarization is given by
δinS 
 h̄

2 eD0
αR cos θM

Jex
Ex ẑ. As for δexSl , in the weak scattering

limit, the nonzero component in the first order of αRk/Jex

is δexSl 
 h̄
2 η h̄

2Jexτ
αRk
Jex

cos (θM − φ)ẑ. Thus in the o(αRk/Jex)

contribution of δsj S = ∑
l δ

exSlg
2s
l the distribution function

can be obtained from the Boltzmann equation in the zeroth
order of αRk/Jex, just yielding g2s

η (ε,φ) = eE · h̄kη

m
τ (−∂εf

0).
With only in-plane magnetization there is no anomalous
distribution function and intrinsic skew scattering. Then
the scattering-induced interband-coherence contribution is
obtained as δSJ S = δsj S = −δinS, which cancels the intrinsic
nonequilibrium spin polarization. This vanishing interband-
coherence contribution to the nonequilibrium spin polarization
is consistent with the result in Ref. [33].
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