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We compare the two-dimensional (2D) plasmon dispersion relations for monolayer graphene when the sample
is doped with carriers in the conduction band and the temperature T is zero with the case when the temperature
is finite and there is no doping. Additionally, we have obtained the plasmon excitations when there is doping
at finite temperature. The results were obtained in the random-phase approximation which employs energy
electronic bands calculated using ab initio density functional theory. We found that in the undoped case the finite
temperature results in appearance in the low-energy region of a 2D plasmon which is absent for the T = 0 case.
Its energy is gradually increased with increasing T . It is accompanied by expansion in the momentum range
where this mode is observed as well. The 2D plasmon dispersion in the �M direction may differ in substantial
ways from that along the �K direction at sufficiently high temperature and doping concentrations. Moreover,
at temperatures exceeding ≈300 meV a second mode emerges along the �K direction at lower energies like it
occurs at a doping level exceeding ≈300 meV. Once the temperature exceeds ≈0.75 eV this mode ceases to exist
whereas the 2D plasmon exists as a well-defined collective excitation up to T = 1.5 eV, a maximal temperature
investigated in this work.
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I. INTRODUCTION

Graphene, consisting of a single layer of carbon atoms,
is an ideal realization of a system in which electrons,
confined in two dimensions, are quantum mechanically en-
hanced [1–5]. Moreover, recent advances in fabrication and
micromechanical extraction techniques for graphite structures
now make it possible for such exotic two-dimensional (2D)
electron systems to be probed experimentally. The collective
quasiparticle phenomena giving rise to the plasmon excitation
spectra may display interesting features which are accessible
experimentally [6–9]. Additionally, their behavior is expected
to differ substantially from the well-understood plasmonic
properties for quantum wells in conventional semiconduc-
tor heterostructures, including group-IV compounds, binary
systems of group III-IV elements, metal chalcogenides, and
complex oxides [10,11]. This difference is due to the unique
electronic properties of graphene which possesses electron-
hole (e-h) degeneracy and zero carrier effective mass near
the K point at the corner of the Brillouin zone (BZ) [12].
Indeed, at zero temperature T , a low-frequency 2D plasmon
mode with energy dispersion ω2D ∝ q1/2 has been obtained
[13,14] for doped graphene with the use of an isotropic Dirac
cone approximation (DCA). We note that the electronic states
of graphene at the Dirac point can be described within the
framework of basic numerical schemes. Graphene consists of
a flat layer of carbon atoms arranged in a hexagonal lattice
with two carbon atoms per unit cell. Of the four valence
states, three sp2 orbitals form a σ state with three neighboring
carbon atoms. One p orbital emerges as delocalized π and π∗
states which constitute the highest occupied valence and the
lowest unoccupied conduction bands. The π and π∗ states for

graphene are degenerate at the K point corners of the BZ. This
degeneracy occurs at the Dirac point energy which coincides
with the Fermi level at half filling, resulting in a pointlike
Fermi surface. The DCA works very well for doping levels less
than ≈300 meV and allows one to describe the 2D plasmon
properties correctly in the fields of graphene plasmonics and
photonics with respect to experimental data [15–21].

However, in recent papers [22–25], where realistic energy
band dispersion of graphene was taken into account, some
anisotropy in the 2D plasmon dispersion at T = 0 was reported
for doped graphene. Additionally, it was found [23,25,26] that
for momentum transfer along the �K direction, a distinctive
second plasmon branch evolves from the Dirac point at zero
temperature as the Fermi level is located at energies exceeding
≈300 meV. Characteristically, this mode starts to appear at
high frequency and extends downward as its intensity is
increased at longer wavelength. Its origin was traced to the
trigonal warping of the energy bands forming the Dirac cone
in the graphene band structure [27,28]. This results in a
two-component electron system with different Fermi velocities
for which such an additional mode may exist [29,30].

While a square-root-like dispersion of the 2D plasmon
has been reported for free-standing graphene and graphene
adsorbed on dielectric substrates [16,17,31–35], experiments
carried out on monolayer graphene grown on metals exhibit a
linear dispersion due to screening experienced by a metallic
substrate. Specifically, experiments for graphene on Pt(111)
[36–39] and on Ir(111) [40] have shown a nearly identical
dispersion relation [41]. The work of Ref. [42] concerns
evaluating the probability function for single layer graphene
and comparing it with the integrated (over wave vector)
energy-loss spectra in Ref. [43].
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Generally, the theoretical and experimental study of plas-
mon modes of free-standing graphene and graphene on metals
at finite temperature merits special attention. This would
be a key step toward engineering plasmonic application of
graphene. However, so far, the theoretical investigation of
the impact of temperature on the 2D plasmon in graphene
in the framework of a DCA was performed [44]. Whereas the
high-energy π and π + σ plasmons are marginally affected
by T , it was shown that temperature plays an important
role in the low-frequency dielectric properties of graphene
since the density of free carriers ρ > 0 at T �= 0 due to a
gapless energy spectrum. Due to a linear energy dispersion
of the π and π∗ bands in the vicinity of the Dirac point, the
2D plasmon frequency at low T goes [44] as ω2D ∼ T 1/2

maintaining a characteristic for a 2D system [45] ∼q1/2

dependence on the momentum magnitude as well. At the
same time, there has been no detailed theoretical investigation
of plasmons involving the temperature and anisotropy of
graphene considering its electronic band structure beyond the
DCA. In fact, electron collective excitations, apart from their
dependence on the magnitude of transferred momentum, may
also strongly depend on its direction, and the doping could
further affect the anisotropy. The results we obtain in this paper
demonstrate the anisotropy of the plasmon spectrum along
symmetry directions within the BZ and would be suitable for
verification in experiments where the transferred momentum
or temperature is held fixed.

Here, we report on a theoretical investigation of the
anisotropy of low-energy graphene plasmon excitations which
may be induced by finite temperature in either the presence
or absence of carrier doping. Adjusting the chemical potential
with the use of an electric-field effect, we observe an unusual
plasmon second branch whose intensity and linewidth at finite
temperature may differ from its zero-temperature counterpart.
This paper is organized as follows: In Sec. II, we describe
details of the ab initio calculation of the graphene dielectric
and loss functions. The calculated results and their discussion
are reported in Sec. III. The main conclusions of this work are
given in Sec. IV. Unless otherwise stated explicitly, atomic
units (h̄ = e2 = me = 1) are used throughout the paper.

II. CALCULATION DETAILS

Excitations in an electron system are characterized by
the transferred momentum q and excitation frequency ω,
which determine the dielectric function [46]. In this work we
calculate the dielectric function for free-standing graphene at
arbitrary temperature T for several choices of the chemical
potential μ, including the μ = 0 case. Due to its inherent
initial ∼√

q energy dispersion in the long-wavelength limit,
the 2D plasmon can be expected to interact with intrinsic
graphene and the substrate optical phonons, thereby resulting
in coupled plasmon-phonon modes [47–50]. As a matter of
fact, such an effect was observed when graphene was absorbed
on different substrates [38,39,51–54]. Since in this work we
are interested in the intrinsic 2D plasmon properties, such an
interaction is not considered. We would also like to stress that
the temperatures under study (up to T = 1.5 eV) refer to the
electronic system of graphene, which can be realized in the
ultrafast regime by optical pumping [55–58]. As a reference,

it has been predicted that the graphene lattice can be heated up
to temperatures above 0.4 eV [59,60]. In recent pump-probe
experiments, electronic temperatures exceeding 0.4 eV were
detected [56,57].

Our starting point is the electronic band structure evaluated
in a periodically repeated (and well separated) graphene
sheets geometry. Based on such a three-dimensional (3D)
geometry the imaginary part of the density response function
of noninteracting electrons in reciprocal space is expressed as

Im
[
χ0

GG′(q,ω)
] = 2

�

BZ∑
k

∑
nn′

(fnk − fn′k+q)

×〈nk|e−i(q+G)·r|n′k + q〉〈n′k

+q|ei(q+G′)·r|nk〉δ(εnk − εn′k+q + ω). (1)

In this notation, G ≡ {g,gz} is a 3D reciprocal-lattice vector, g
and q are in-plane 2D reciprocal-lattice vector and wave vector
in the first BZ, respectively. In Eq. (1) the factor 2 accounts
for spin, � is a normalization volume, the sum over wave
vectors k is performed in the first BZ, n and n′ are the energy-
band indices, fnk = 1/[e(εnk−μ)/T + 1] are the temperature-
dependent Fermi occupation factors, and μ is the chemical
potential. The eigenvectors |nk〉 and eigenenergies εnk are the
self-consistent solutions of the Kohn-Sham Hamiltonian of
the density functional theory taking the exchange-correlation
potential in the Ceperley-Alder form [61]. The Troullier-
Martin nonlocal norm-conserving ionic potential [62] was
taken for description of the electron-ion interaction. In Eq. (1)
we employed a 720 × 720 × 1k mesh for summation over the
BZ. In numerical calculations performed by using our own
code [63], the δ function in Eq. (1) was represented by a
Gaussian with a broadening parameter of 25 meV. The real
part of χ0 was obtained from Im[χ0] via the Kramers-Kronig
relation by numerical integration. For this, the Im[χ0] matrices
were calculated on a discrete energy mesh in the 0–20-eV
interval with a step of 1 meV.

In order to proceed, one should obtain the density re-
sponse function for interacting electrons χ which in the
time-dependent density functional theory [64,65] obeys the
integral Dyson equation, χ = χ0 + χ (υ + Kxc)χ0, where υ

is the Coulomb potential and Kxc accounts for the dynamical
exchange correlations. In this work we employed the random-
phase approximation (RPA) [66], i.e., setting Kxc to zero. A
major problem in solving the Dyson equation for the artificial
3D superlattice used here is the appearance of a spurious
long-range Coulomb interaction between the collective charge
oscillations in the different graphene sheets. Whereas such
interaction does not influence notably the calculated properties
of the conventional surface and acoustic plasmons [67–69],
it alters severely the 2D plasmon dispersion which becomes
qualitatively wrong in the q → 0 limit [70]. In order to
solve this problem we followed the recipe proposed recently
by Nazarov [71]. As a result of such a procedure, in the
evaluated χGG′(q,ω) matrix the spurious Coulomb interaction
between graphene sheets is eliminated and the respective
inverse dielectric function defined as

ε−1
GG′(q,ω) = δGG′ + υGG′(q)χGG′(q,ω) (2)
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FIG. 1. Emergence of the 2D plasmon upon increasing the temperature of the electron system in undoped graphene. The excitation spectra,
L(q,ω), in the �M and �K directions evaluated at temperatures of (a) 0, (b) 50, (c) 100, and (d) 200 meV are presented. Atomic units (a.u.)
are used for the momentum transfer. The borders of a region corresponding to the interband e-h pair excitations are maintained almost intact
upon variation of T , whereas those for the intraband e-h excitations rapidly expand with T increase. A 2D plasmon (2DP) is observed at all
chosen finite temperatures with frequency dispersion ω2DP ∝ q1/2 at small q’s. Additionally, in (d) a signature of the acoustic plasmon (AP)
can be discerned.

contains information regarding the electron excitations in
a single free-standing graphene sheet only. For such ε−1,
we evaluated the 2D dielectric function ε(q,ω) and the
corresponding energy-loss function L(q,ω) ≡ Im[ε−1(q,ω)]
used in the following for analysis of the excitation spectrum of
graphene. A peak in the energy-loss function may be identified
as a collective mode or single-particle-like excitation. The
former corresponds to a zero point in Re[ε(q,ω)] at which
Im[ε(q,ω)] is zero or very small, while the latter relates
to a finite value of Im[ε(q,ω)]. In particular, the plasmon
energy at certain q corresponds to the energy position of the
dominating sharp peak in the loss function L(q,ω). The peak
is a function of the in-plane wave vector q and temperature.
The critical momentum value qc is defined as that at which
the plasmon dispersion passes and enters the single-particle
mode excitation region, and is clearly identified at very low
temperature. Also, it is useful to analyze the behavior of the
corresponding dielectric function ε(q,ω), since the plasmon
occurs at the energy at which the conditions Re[ε] = 0 and
Im[ε] = 0 (or the presence of a local minimum in Im[ε]) are
realized.

It is important to note that the chemical potential position
depends on temperature. At low T , this dependence is
approximately given as

μ ≈ EF

[
1 − π2

6

d ln(ρ(EF ))

d ln(EF )

(
kBT

EF

)2

+ · · ·
]
, (3)

where ρ(EF ) is the density of states at the Fermi energy EF .
For graphene, we have ρ(ε) = ε/[π (h̄vF )2], where vF is the
Fermi velocity. Furthermore, in calculating the temperature
dependence of the χ0 at low temperature (kBT  EF ), one
can apply f0(ε; T ) ≈ θ (EF − ε) − (kBT )δ(ε − EF ) in terms
of the Heaviside step function θ (x).

In evaluating χ0 at finite temperature, the following
transformation of Maldague [72] relating its values in the
absence (T = 0) and presence of a heat bath can be employed,
i.e.,

χ0(q,ω; T ) =
∫ ∞

0
d E

χ0
T =0,EF =E(q,ω)

4kBT cosh2
[

E−μ(T )
2kBT

] . (4)

This approach is useful for carrying out analytical calcula-
tions at low T as was demonstrated in the case of graphene
[44]. However, it does not provide any advantage in the
numerical calculations based on incorporation of the full
energy band structure since it requires evaluation of χ0, at
least, at several Fermi-level positions. Therefore, in the current
work we numerically calculate the χ0 matrices according to
Eq. (1) explicitly taking into account the finite T via the Fermi
occupation factors. The extrinsic doping level variation is
simulated by placing the chemical potential in a given position.

III. CALCULATION RESULTS

In Fig. 1, we demonstrate how the 2D plasmon emerges in
undoped graphene when the temperature of its electron system
is increased. Figure 1(a) shows that at T = 0 the excitation
spectrum for low energies is governed by the incoherent e-h
pairs involving interband transitions between the π and π∗
energy bands which are the only excitations permitted in
this energy interval. However, at finite temperature the 2D
plasmon starts to emerge on the low-energy side. Thus, from
Fig. 1(b), it is clear that at T = 50 meV there is a peak in
the loss function at energies below approximately 150 meV.
The dispersion of this mode presents a clear behavior of a 2D
plasmon mode, i.e., its energy goes to zero with the momentum
magnitude q reduction as ∝q1/2 which is a characteristic of
a 2D plasmon. However, there is a substantial difference in
comparison with the conventional 2D plasmon case. It consists
in that intrinsically the 2D plasmon peak in the finite T case
has finite linewidth (e.g., finite lifetime) at any q, whereas
in the conventional 2D electron gas [45] there is an energy
threshold below which the 2D plasmon has infinite lifetime
(zero linewidth). This difference is explained by the fact that
in the finite-T case the restrictions on the phase space for the
e-h pair excitations are relaxed in comparison with the T = 0
case with the free carriers [45,73]. From Fig. 1(b) it is evident
that the finite width of the 2D plasmon peak is due to decay
into interband e-h pairs since its dispersion occurs above the
intraband e-h pair continuum, as it appears in a conventional
2D electron gas at T = 0. However, even though at finite T

there is not a well-defined low-energy border for the interband
region, it is seen in Fig. 1(b) how the 2D plasmon width
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FIG. 2. Evolution of the 2D plasmon dispersion relation upon increasing the temperature of the electron system in undoped monolayer
graphene. The excitation spectra, L(q,ω), in the �M and �K directions evaluated at T equal to (a) 0.5, (b) 0.75, (c) 1.0, and (d) 1.5 eV. Atomic
units (a.u.) are used for the momentum transfer. A 2D plasmon (2DP) is observed for all these chosen temperatures with energy dispersion
ω2DP ∝ q1/2. Peaks corresponding to the acoustic plasmon are denoted as AP. Green dashed lines demonstrate the 2D plasmon dispersion
obtained in the DCA [44] and occurring at q’s smaller than a cutoff momentum qc.

is increased as its energy is increased. Finally, at ω around
150 meV, the decay into the interband e-h pairs becomes
so efficient that at larger energies this mode ceases to be a
well-defined collective excitation.

Upon increasing the temperature, the number of free
carriers in the system is also increased. This fact is reflected
in the 2D plasmon dispersion relation which is blueshifted
as one can see from comparison of the T = 50-, 100-, and
200-meV plots presented in Figs. 1(b)–1(d), respectively. Even
though the region for the intraband e-h excitations is expanded
when T is increased, the dispersion relation of 2D plasmons
occurs over an expanded phase space as T grows. Therefore,
in Figs. 1(c) and 1(d), one can resolve a well-defined peak
corresponding to the 2D plasmon up to energies of ≈350 and
≈650 meV for the T = 100- and 200-meV cases, respectively.

From Fig. 1, it is easy to perceive that the shape of the e-h
continua for the intra- and interband e-h pair excitations are
visibly anisotropic in this momentum-energy range. However,
the 2D plasmon dispersion relation for the corresponding
temperatures is almost isotropic and is in good agreement with
results from a simple model employing the DCA [44]. This
may be explained by noting that the 2D plasmon dispersion
relation for small momenta transfer is determined [45] by the
total number of free carriers which does not depend on the
momentum direction for the Dirac cone at low energies and
the role played by other factors such as the interband transitions
is of less importance.

Upon further T increase, there are significant changes in the
excitation spectrum of undoped graphene. These are produced
by the strong trigonal warping of the energy bands forming
the Dirac cone at energies exceeding ≈300 meV. In Fig. 2,
we compare the excitation spectrum calculated at T = 0.5,
0.75, 1.0, and 1.5 eV. By noting the dissimilarity between
Fig. 2(a) with Fig. 1(d), one notices that an increase in T

from 200 to 500 meV drastically increases the size of the
region for the intraband e-h transitions with a corresponding
increase in the number of free carriers in the systems. This
results in an increase in the 2D plasmon strength at T = 0.5 eV
accompanied by a notable upward shift in its energy. Despite
the increase in the number of e-h excitations in this region,
the 2D plasmon peak is well defined over an extended energy
range up to ≈1.5 eV. In Fig. 2, we also plot the 2D dispersion
evaluated in the framework of a DCA. One can see in Fig. 2(a)

that our 2D plasmon dispersion relation almost coincides
with the DCA model predictions of Ref. [44]. Moreover, the
momentum range where this mode can be a well-defined
collective excitation is almost the same in both models.
This demonstrates that the DCA is capable of describing the
2D plasmon behaviors even at such elevated temperatures.
However, upon further increase of T , notable deviations in our
calculated 2D plasmon dispersion relations from the simple
model predictions become noticeable. Thus, in Fig. 2(b), one
can see that our calculated 2D plasmon dispersion relation
goes to slightly higher energy in comparison with the DCA
model curve represented by green dashed lines. Moreover, at
such elevated temperatures, some anisotropy in the 2D plas-
mon dispersion becomes evident. Upon further temperature
increase, these main deviations of our 2D plasmon dispersion
relation from the simple model curves increase as evidenced
from the loss function for T = 1.0 and 1.5 eV reported in
Figs. 2(c) and 2(d), respectively. Thus, in the T = 1.5-eV case
of Fig. 2(d), our calculated 2D energy dispersion exceeds that
obtained in the simple model by about 15%. We attribute this

FIG. 3. The real and imaginary parts of the dielectric function
ε(q,ω) as well as the energy-loss function L(q,ω) for some values
of temperature at μ = 0. The data are for wave vector directed along
the �K directions with q = 0.038 a.u. In the upper panel at energies
below 0.6 eV the blue lines show the loss function multiplied by a
factor 10. Blue vertical arrow marks the energy position of the AP
mode. Red vertical arrows mark the energy positions of the 2DP.
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FIG. 4. The real and imaginary parts of the dielectric function
ε(q,ω) as well as the energy-loss function L(q,ω) for some values
of temperature at μ = 0. The data are for wave vector directed along
the �M directions with q = 0.044 a.u. The red vertical arrows mark
the energy positions of the 2DP.

deviation of our 2D plasmon dispersion to the predictions
in Ref. [44] to the presence of other energy bands in the
graphene band structure which are thermally populated at
such elevated T ’s. As a result, the number of carriers at
finite T is increased additionally due to a partial occupation
of the σ bands, high density of states in the π and π∗
bands in the vicinity of the M point, and image states [74].
Also, the anisotropy of the 2D plasmon dispersion becomes
more notable with the temperature increase. This behavior
can also be explained by increased deviation of the density of
states in graphene [25] at increasing energy separation from
the Dirac point in comparison with that assumed in the DCA.

Close examination of Fig. 1(d) reveals that for momentum
transfers in a 0.02–0.07-a.u. range along the �K direction
a faint peak referred to as an acoustic plasmon (AP) mode
appears at energies below the 2D plasmon. We explain its
presence by the fact that at such temperature some amount of
slow carriers can be excited in addition to those moving with
vF ≈ 0.4 a.u. as can be seen in Fig. 4(d) of Ref. [25]. As a

result, a two-component electron-gas scenario may be realized
in graphene at this T even in the case when the chemical
potential is pinned at the Dirac point. As demonstrated by the
models, the dispersion of the AP mode [29] should have an
acousticlike law, i.e., its energy decays as ∼q upon reduction of
momentum magnitude q. From Fig. 1(d), it is clear that the AP
plasmon dispersion relation in graphene deviates significantly
from such behavior. Nevertheless, in order to stress its origin
we apply the term “acoustic plasmon” to this mode as well.
When the temperature is increased, the number of both slow
and fast carriers increases as well, making the phenomenon of
the AP even more clear as evidenced from the loss spectrum for
T = 0.5 eV of Fig. 2(a), where an AP peak can be discerned
along the �K at q’s exceeding ≈0.03 a.u.

In order to demonstrate the origin of the AP mode, we
present in Fig. 3 the ω dependence of the real and imaginary
parts of the dielectric function as well as the loss function
calculated for μ = 0 and various temperatures T at q = 0.038
a.u. along �K . The zeros of Re[ε] correspond to the plasmon
excitation frequencies while the Im[ε] gives the Landau
damping. As a matter of fact, an undamped plasmon mode
occurs at a frequency when both the real and imaginary parts
of the dielectric function are zero. However at the chosen
temperatures the imaginary part of the dielectric function
is zero only for T = 0 at energies below the threshold
ωt = 0.35 eV for the interband π -π∗ transitions for this q. In
all other cases, it is finite at the nonzero ω’s. Nevertheless,
the energy-loss function displays peaks, each arising at a
frequency where there is either a 2D plasmon or an AP mode.
The height of each peak for the loss function is representative
of the intensity of the plasmon excitation mode. We note that
the imaginary part of ε(q,ω) in Fig. 3 becomes larger on
the low-energy side as the temperature is increased, which
reflects the increasing number of charge carriers. There is a
corresponding modification of the real part. A consequence
of this behavior is a rapid increase in the energy of the 2D
plasmon when the temperature is raised. In the low-energy part
of Im[ε] at T = 0.5 eV of Fig. 3 one can see that instead of a
single peak seen at ω = 0.42 eV in the T = 0 case there are
two peaks at energies below 1 eV. Their appearance is related,

FIG. 5. Excitation spectra, L(q,ω), in the �M and �K directions evaluated at μ = 0.5 eV and T of (a) 0, (b) 0.5, and (c) 1.0 eV. Atomic
units (a.u.) are used for the momentum transfer. The 2D plasmon (2DP) and acoustic plasmon (AP) dispersions are denoted by corresponding
labels. Yellow dashed lines show the undamped 2DP dispersion. Green dashed lines demonstrate the 2D plasmon dispersion obtained in the
DCA model [44].
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FIG. 6. Excitation spectra, L(q,ω), in the �M and �K directions evaluated at μ = 1.0 eV and T of (a) 0, (b) 0.5, and (c) 1.0 eV. Atomic
units (a.u.) are used for the momentum transfer. The 2D plasmon (2DP) and acoustic plasmon (AP) dispersions are denoted by corresponding
labels. Yellow dashed lines show the undamped 2DP dispersion. Green dashed lines demonstrate the 2D plasmon dispersion obtained in the
DCA model [44].

as explained above, to the intraband transitions involving two
kinds of carriers moving with different group velocities in
the �K direction [25]. This makes the real part of ε cross
the zero axis additionally twice in this energy interval. Such
zero crossings together with existence of a local minimum in
Im[ε] leads to the appearance of a peak in the loss function
at ω = 0.35 eV that signals the existence of the AP mode at
this energy. Upon the increase in temperature, the strength of
both peaks in Im[ε] gradually increases due to an increased
number of free carriers in the system. This is accompanied by
the upward shift of Re[ε] at ω less than 0.45 eV as seen in the
curves corresponding to T = 0.75 and 1.0 eV. Consequently,
the condition for the existence of a well-defined collective AP
mode is relaxed. This is confirmed by a gradual reduction of the
spectral weight of the AP peak in the loss function at these T ’s.

Viewing closely the loss spectra in Figs. 1 and 2 reveals that
a peak corresponding to the AP mode does not appear along
the �M direction. As in the case for extrinsic doping which
was considered in Ref. [25] and in what follows, its absence in
this direction is attributed to the presence of only one kind of
carrier moving in this direction for the energy interval from −1

to +1 eV as seen in Fig. 4(d) of Ref. [25]. This is confirmed
by Fig. 4 where we report the real and imaginary parts of
the dielectric function and the loss function calculated for
μ = 0 and various temperatures T at q = 0.044 a.u. along
�M . Since in this direction there is only one kind of carrier,
the Im[ε] presents only a single intraband peak at finite T ’s.
Consequently, the real part of ε crosses the zero axis only
once at energies around ω = 0.45 eV where Im[ε] possesses a
peak. As a result, the corresponding mode cannot be realized
since it is Landau damped. This is confirmed by the absence
of any peak in the nearby energy region in the loss function.
Instead, in it only the peak corresponding to the conventional
2DP mode is observed at higher energies.

It is interesting to compare the spectra reported in Fig. 2
with those corresponding to the cases with nonzero doping μ

upon the temperature change. These data for μ = 0.5, 1.0, and
1.5 eV are reported in Figs. 5–7, respectively. Figures 5(a),
6(a), and 7(a) demonstrate the behavior of the energy-loss
spectra at zero temperature as the doping level is increased
from 0.5 to 1.5 eV, i.e., expanding the 0–1.0-eV energy range
explored at zero temperature in previous publication [25].

FIG. 7. Excitation spectra, L(q,ω), in the �M and �K directions evaluated at μ = 1.5 eV and T of (a) 0, (b) 0.5, and (c) 1.0 eV. Atomic
units (a.u.) are used for the momentum transfer. The 2D plasmon (2DP) and acoustic plasmon (AP) dispersions are denoted by corresponding
labels. Yellow dashed lines show the undamped 2DP dispersion. Green dashed lines demonstrate the 2D plasmon dispersion obtained in the
DCA model [44].
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From the 1.5-eV panel in Fig. 7(a), it is clear that the 2D
plasmon also exists even at such a high doping level. At small
momenta, the 2D plasmon dispersion frequency is enhanced
due to an increased carrier number at the corresponding Fermi
level. In contrast to the loss spectra for μ = 0 and T �= 0 of
Fig. 2 the 2D plasmon peak in Figs. 5(a), 6(a), and 7(a) has
zero width over the extended phase space momentum-energy
region, as highlighted by yellow dashed line. One can observe
how this region where the 2D mode is undamped is gradually
increased upon shifting the position of μ at energy as high as
1.5 eV. At such doping level the 2D plasmon does not decay
into e-h pairs up to energy of ≈2 eV. In Figs. 5(a), 6(a), and 7(a),
with green dashed lines we show the 2DP dispersion predicted
by the DCA model [44] which clearly does not depend on the
momentum direction. From comparison of the 2DP dispersion
calculated here with these curves one can observe its notable
asymmetry. Moreover, apparently the momentum (and energy)
range where this mode is a well defined collective excitation is
significantly smaller than that predicted employing the DCA.
It may signal that this model underestimates the decay rate of
the 2DP into e-h pairs.

Additionally, from the excitation spectrum reported in
Fig. 7(a), one can deduce that the AP mode also exists at
μ = 1.5 eV along the �K direction, even though the width of
the corresponding peak in the loss function is notably increased
in comparison to the μ = 0.5- and 1.0-eV cases indicating
that with the doping level greater than 1.0 eV, this mode more
efficiently decays into incoherent e-h pairs. Its dispersion is
linear at values of q reaching 0.25 a.u. which is in contrast to
the μ = 0.5- and 1.0-eV cases, where it starts to deviate from
the linear dispersion at significantly lower q’s.

Figures 5–7 explore the combined effect of temperature and
doping on the Coulomb excitations in monolayer graphene.
These results clearly demonstrate the importance of our studies
through our modeling and extensive numerical calculations.
Our comprehensive studies predict an unusual and diverse
behavior of the many-body properties for doped and undoped
graphene at finite temperature. There is a 2DP mode in all
panels for both �M and �K directions for all values of doping
and temperature studied here. For some finite values of T

our calculated 2DP dispersion can be compared with the one
predicted by the DCA approximation of [44]. In general, the
agreement between two models is rather good, although a
prominent anisotropy in the 2DP dispersion obtained in the
full calculations is evident. Another observation in Figs. 5–7
consists of that at finite T ’s the 2DP dispersion obtained here
is always blueshifted in comparison to that predicted by the
DCA. We explain such behavior by the deviation of graphene
band structure from the DCA upon energy separation from
the Dirac point. Interestingly, in the T = 0 case of Figs. 5–7,
our 2DP dispersion over extended momentum range goes at
slightly lower energies in comparison with that generated by
the DCA model.

In Fig. 8(a), we present some detailed results for the real
and imaginary parts of the dielectric function along with
the energy-loss function for doping μ = 0.5 eV and various
temperatures. Again, the location of the peak in the loss
function for the 2D plasmon excitation energy gets shifted
upward rapidly as the temperature is increased due to a
substantial increase in the Drude peak of Im[ε], which is

FIG. 8. The real and imaginary parts of the dielectric function
ε(q,ω) as well as the energy-loss function, L(q,ω), for some values
of doping and temperature. The data are for wave vector directed
along the �M direction with q = 0.044. The chemical potential level
μ and temperature T are as follows: (a) μ = 0.5 eV and various T ,
(b) T = 0 and various μ, (c) T = 0.5 eV and various μ. Red vertical
arrows mark the energy positions of the 2DP.

indicative of a swift increase in the number of carriers that
are thermally excited. This may be accounted for by the
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corresponding shift in the density of states away from the Dirac
point. The dependence of the dielectric properties of graphene
upon doping at T = 0 K is also worth investigating. Figure 8(b)
(again, data for q = 0.044 a.u. along �M) shows this for
undoped graphene along with four chosen doping values.
Regarding the combined effect arising from temperature and
doping on the 2D plasmon excitation spectrum, we present
Fig. 8(c). In general, when T and μ are increased, the 2D
plasmon frequency is increased.

In Figs. 5–7 one can observe how the AP peak in the
loss function corresponding to the acoustic plasmon mode
gradually washed out from the calculated loss spectra upon the
T increase. In these figures the AP branch is suppressed when
the values for the doping and temperature are simultaneously
large. Additionally, one can see that the intensity of the AP
branch is decreased as the doping level exceeds 1.0 eV. A
general tendency is that this mode ceases to exist at a lower
T value as the doping level is increased. Thus, in Fig. 5 at
μ = 0.5 eV the AP peak can be detected at all the temperatures
reaching 1.0 eV. In Fig. 6 one can see that at μ = 1.0 eV the
AP peak is well defined at T = 0, being strongly damped
at T = 0.5 eV. Its presence in the T = 1.0 eV spectrum is
barely visible, demonstrating that it cannot exist at such
combination of μ and T . From Fig. 7 corresponding to the case
of 1.5 eV doping, the AP peak is completely removed from the
T = 1.0-eV loss spectrum of Fig. 7(c). At such elevated doping
level the peak originally corresponding to the AP mode is so
broad at T = 0.5 eV of Fig. 7(b) that it cannot be considered
as a well-defined collective excitation. Disappearance of the
AP mode in graphene at significantly lower temperature upon

increase of the doping level (accompanied by the strong
increase of number of carriers at the Fermi level) correlates
with effective destruction of the AP mode in bulk Pd at
significantly lower temperatures as was reported recently [75].

IV. CONCLUDING REMARKS

In summary, we have employed the density functional
method to calculate the electronic energy bands for graphene.
Using these results, we calculated the longitudinal wave vector
and frequency-dependent dielectric function at arbitrary tem-
perature. In our calculations, the entire energy-band spectrum
was included. This ensures the correctness of the dielectric
function in the RPA and consequently the plasmon intensity
and its frequency. We presented the plasmon excitation
spectra at various temperatures and doping concentrations
which may be achieved experimentally. Our method may
also be applicable to other rare 2D materials with Dirac
cones such as silicene, germanene, and graphyne over a wide
range of temperature and doping. Our numerical results may
be validated by inelastic light-scattering or high-resolution
electron-energy loss spectroscopy which has been successfully
applied to the two-dimensional electron-gas system.
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Phys. Rev. B 87, 075447 (2013).
[25] M. Pisarra, A. Sindona, P. Riccardi, V. M. Silkin, and J. M.

Pitarke, New J. Phys. 16, 083003 (2014).
[26] A. Politano and G. Chiarello, Carbon 71, 176 (2014).
[27] J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).
[28] J. W. McClure, Carbon 7, 425 (1969).
[29] D. Pines, Can. J. Phys. 34, 1379 (1956).
[30] V. M. Silkin, A. Garcia-Lekue, J. M. Pitarke, E. V. Chulkov, E.

Zaremba, and P. M. Echenique, Europhys. Lett. 66, 260 (2004).
[31] Y. Liu, R. F. Willis, K. V. Emtsev, and T. Seyller, Phys. Rev. B

78, 201403 (2008).

045423-8

https://doi.org/10.1103/PhysRevB.10.3602
https://doi.org/10.1103/PhysRevB.10.3602
https://doi.org/10.1103/PhysRevB.10.3602
https://doi.org/10.1103/PhysRevB.10.3602
https://doi.org/10.1143/JPSJ.40.761
https://doi.org/10.1143/JPSJ.40.761
https://doi.org/10.1143/JPSJ.40.761
https://doi.org/10.1143/JPSJ.40.761
https://doi.org/10.1103/PhysRevB.44.13237
https://doi.org/10.1103/PhysRevB.44.13237
https://doi.org/10.1103/PhysRevB.44.13237
https://doi.org/10.1103/PhysRevB.44.13237
https://doi.org/10.1103/PhysRevB.43.4579
https://doi.org/10.1103/PhysRevB.43.4579
https://doi.org/10.1103/PhysRevB.43.4579
https://doi.org/10.1103/PhysRevB.43.4579
https://doi.org/10.1103/PhysRevB.46.4531
https://doi.org/10.1103/PhysRevB.46.4531
https://doi.org/10.1103/PhysRevB.46.4531
https://doi.org/10.1103/PhysRevB.46.4531
https://doi.org/10.1002/pssb.2220810124
https://doi.org/10.1002/pssb.2220810124
https://doi.org/10.1002/pssb.2220810124
https://doi.org/10.1002/pssb.2220810124
https://doi.org/10.1103/PhysRevLett.100.196803
https://doi.org/10.1103/PhysRevLett.100.196803
https://doi.org/10.1103/PhysRevLett.100.196803
https://doi.org/10.1103/PhysRevLett.100.196803
https://doi.org/10.1103/PhysRevB.80.113410
https://doi.org/10.1103/PhysRevB.80.113410
https://doi.org/10.1103/PhysRevB.80.113410
https://doi.org/10.1103/PhysRevB.80.113410
https://doi.org/10.1103/PhysRevB.81.205410
https://doi.org/10.1103/PhysRevB.81.205410
https://doi.org/10.1103/PhysRevB.81.205410
https://doi.org/10.1103/PhysRevB.81.205410
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/cr300263a
https://doi.org/10.1021/cr300263a
https://doi.org/10.1021/cr300263a
https://doi.org/10.1021/cr300263a
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1021/nl201771h
https://doi.org/10.1021/nl201771h
https://doi.org/10.1021/nl201771h
https://doi.org/10.1021/nl201771h
https://doi.org/10.1038/nphoton.2012.262
https://doi.org/10.1038/nphoton.2012.262
https://doi.org/10.1038/nphoton.2012.262
https://doi.org/10.1038/nphoton.2012.262
https://doi.org/10.1038/ncomms2951
https://doi.org/10.1038/ncomms2951
https://doi.org/10.1038/ncomms2951
https://doi.org/10.1038/ncomms2951
https://doi.org/10.1021/ph400147y
https://doi.org/10.1021/ph400147y
https://doi.org/10.1021/ph400147y
https://doi.org/10.1021/ph400147y
https://doi.org/10.1126/science.aab2051
https://doi.org/10.1126/science.aab2051
https://doi.org/10.1126/science.aab2051
https://doi.org/10.1126/science.aab2051
https://doi.org/10.1103/PhysRevB.81.085409
https://doi.org/10.1103/PhysRevB.81.085409
https://doi.org/10.1103/PhysRevB.81.085409
https://doi.org/10.1103/PhysRevB.81.085409
https://doi.org/10.1016/j.ssc.2011.05.001
https://doi.org/10.1016/j.ssc.2011.05.001
https://doi.org/10.1016/j.ssc.2011.05.001
https://doi.org/10.1016/j.ssc.2011.05.001
https://doi.org/10.1103/PhysRevB.87.075447
https://doi.org/10.1103/PhysRevB.87.075447
https://doi.org/10.1103/PhysRevB.87.075447
https://doi.org/10.1103/PhysRevB.87.075447
https://doi.org/10.1088/1367-2630/16/8/083003
https://doi.org/10.1088/1367-2630/16/8/083003
https://doi.org/10.1088/1367-2630/16/8/083003
https://doi.org/10.1088/1367-2630/16/8/083003
https://doi.org/10.1016/j.carbon.2014.01.026
https://doi.org/10.1016/j.carbon.2014.01.026
https://doi.org/10.1016/j.carbon.2014.01.026
https://doi.org/10.1016/j.carbon.2014.01.026
https://doi.org/10.1103/PhysRev.109.272
https://doi.org/10.1103/PhysRev.109.272
https://doi.org/10.1103/PhysRev.109.272
https://doi.org/10.1103/PhysRev.109.272
https://doi.org/10.1016/0008-6223(69)90073-6
https://doi.org/10.1016/0008-6223(69)90073-6
https://doi.org/10.1016/0008-6223(69)90073-6
https://doi.org/10.1016/0008-6223(69)90073-6
https://doi.org/10.1139/p56-154
https://doi.org/10.1139/p56-154
https://doi.org/10.1139/p56-154
https://doi.org/10.1139/p56-154
https://doi.org/10.1209/epl/i2003-10184-1
https://doi.org/10.1209/epl/i2003-10184-1
https://doi.org/10.1209/epl/i2003-10184-1
https://doi.org/10.1209/epl/i2003-10184-1
https://doi.org/10.1103/PhysRevB.78.201403
https://doi.org/10.1103/PhysRevB.78.201403
https://doi.org/10.1103/PhysRevB.78.201403
https://doi.org/10.1103/PhysRevB.78.201403


COMBINED EFFECT OF DOPING AND TEMPERATURE ON . . . PHYSICAL REVIEW B 96, 045423 (2017)

[32] H. Pfnür, T. Langer, J. Baringhaus, and C. Tegenkamp, J. Phys.:
Condens. Matter 23, 112204 (2011).

[33] S. Y. Shin, C. G. Hwang, S. J. Sung, N. D. Kim, H. S. Kim, and
J. W. Chung, Phys. Rev. B 83, 161403(R) (2011).

[34] S. Y. Shin, N. D. Kim, H. S. Kim, K. S. Kim, D. Y. Noh, K. S.
Kim, and J. W. Chung, Appl. Phys. Lett. B 99, 082110 (2011).

[35] T. Langer, H. Pfnür, C. Tegenkamp, S. Forti, K. Emtsov, and U.
Starke, New J. Phys. 14, 103045 (2012).

[36] A. Politano, A. R. Marino, V. Formoso, D. Fariás, R. Miranda,
and G. Chiarello, Phys. Rev. B 84, 033401 (2011).

[37] A. Politano, A. R. Marino, and G. Chiarello, Phys. Rev. B 86,
085420 (2012).

[38] A. Politano, V. Formoso, and G. Chiarello, J. Phys.: Condens.
Matter 25, 345303 (2013).

[39] A. Politano and G. Chiarello, Nanoscale 6, 10927 (2014).
[40] T. Langer, D. F. Forster, C. Busse, T. Michely, and H. Pfnür,

New J. Phys. 13, 053006 (2011).
[41] N. J. M. Horing, A. Iurov, G. Gumbs, A. Politano, and

G. Chiarello, Recent Progress on Nonlocal Graphene/Surface
Plasmon, in Low-Dimensional and Nanostructured Materials
and Devices, edited by Hilmi Unlü, Norman J. M. Horing,
Jaroslaw Dabrowski (Springer International Publishing, AG
Switzerland, 2016), pp. 205–237.
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