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Spin and topological order in a periodically driven spin chain
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The periodically driven quantum Ising chain has recently attracted a large attention in the context of Floquet
engineering. In addition to the common paramagnet and ferromagnet, this driven model can give rise to new
topological phases. In this work, we systematically explore its quantum phase diagram by examining the properties
of its Floquet ground state. We specifically focus on driving protocols with time-reversal invariant points, and
demonstrate the existence of an infinite number of distinct phases. These phases are separated by second-order
quantum phase transitions, accompanied by continuous changes of local and string order parameters, as well
as sudden changes of a topological winding number and of the number of protected edge states. When one of
these phase transitions is adiabatically crossed, the correlator associated to the order parameter is nonvanishing
over a length scale which shows a Kibble-Zurek scaling. In some phases, the Floquet ground state spontaneously
breaks the discrete time-translation symmetry of the Hamiltonian. Our findings provide a better understanding
of topological phases in periodically driven clean integrable models.

DOI: 10.1103/PhysRevB.96.045422

I. INTRODUCTION

Atomic-physics experiments were recently able to realize
exotic many-body phases that simulate interesting states of
condensed-matter systems [1–4]. In contrast to solid-state de-
vices, whose parameters are determined by the properties of the
material used for the fabrication, atomic quantum simulators
are highly tunable. For example, by tuning the intensity of
a laser, it is possible to change the depth of the periodic
lattice in which ultracold atoms move, and by applying a
magnetic field it is possible to control the interactions among
them [5]. Some remarkable examples are the realization of
the Bose-Hubbard model and its superfluid–Mott-insulator
transition [6], the study of the BCS-BEC crossover [7], the
realization of artificial gauge fields [8], the realization of a
fermionic Mott insulator [9,10], and the experimental detection
of Anderson localization [11], and many-body localization
[12] with ultracold atoms.

Ultracold atoms additionally possess an exquisite isolation
from the environment, which enables them to preserve quan-
tum coherence for long times. Thus these systems are a natural
playground to observe nonequilibrium effects associated with
time-dependent many-body Hamiltonians. Examples of recent
studies that explored the response to external time-dependent
perturbations are given in Refs. [4,5,13,14]. Two common
protocols are the sudden quench (the evolution of the system
following an abrupt change of the Hamiltonian) and the
linear ramping (the evolution of the system with a parameter
varying linearly in time). In particular, if such a parameter is
slowly varied across a second order quantum phase transition,
many observables show a universal Kibble-Zurek scaling (see
Refs. [15–17] for an introduction).

Here we focus on a third type of time-dependent Hamil-
tonians, namely periodic driving. Previous studies focused
in particular on the relaxation to an asymptotic state and
its possible thermal properties [18–41], as well as proposals
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for nonequilibrium quantum phase transitions [42–45] with
special interest on the preparation of Floquet time crystals
(referred also as π -spin glasses) [46–53] and symmetry-
protected topological phases [36,49,54–65]. In particular,
Floquet topological insulators have been recently experi-
mentally realized in optical waveguides [66] and acoustic
crystals [67]. These phases are analogous to the topological
band insulators of noninteracting fermions, whose complete
equilibrium classification is given by a known mathematical
theory, the K theory (see Ref. [68] for an introduction).

By definition, topological phases do not possess any local
order parameter. Nevertheless, in one-dimension these phases
can sometimes be characterized by nonlocal string orders [69].
Nonlocal orders account for correlations between spins that
are not detected by a simple two-point correlation function,
and reveal the presence of a hidden order parameter. In
particular, string orders were discussed in the context of the
Haldane gapped phase of integer-spin chains [70–73], but are
in fact ubiquitous in one-dimensional insulators. They appear
for example in spin-1/2 chain with next-nearest-neighbor
interactions [74,75] and even in the trivial phase of the
one-dimensional Bose-Hubbard model [76,77].

The interest in the behavior of the string order in nonequi-
librium situations was risen by Ref. [78], where it was shown
that sudden external perturbations can destroy the string order
of spin-1 chains. In the context of Floquet systems, Ref. [61]
considered a time-periodic Hamiltonian whose high-frequency
expansion corresponds to the cluster-Ising model of Ref. [74]
and displays a string order. In the same spirit, by constructing
an effective Hamiltonian in the high-frequency limit, Ref. [79]
found a string order in a Fermi-Hubbard model with long-
range interactions undergoing a periodic driving. Furthermore,
Ref. [49] considered disordered systems in the many-body
localized phase and found that all the eigenstates undergo a
transition from a paramagnetic phase to a spin-glass phase
with a nonvanishing string-order parameter.

The goal of the present manuscript is to study in detail the
phase diagram of the periodically driven quantum Ising model,
in the absence of disorder. Thanks to the integrability of the
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model, we are not restricted to the high-frequency limit and
we can furthermore extrapolate our analysis to long times
and large systems. Following Ref. [59], we focus on one
specific eigenstate of the periodically driven dynamics, the
Floquet ground state (FGS). It shares many properties with the
ground state of the static systems. In particular, it has been
shown that in integrable models, the entanglement entropy of
the FGS generically follows an area law and is bounded in
one dimension [59]. Furthermore, the FGS can undergo sharp
phase transitions associated with degeneracies (resonances) of
the Floquet spectrum. We will better discuss the properties of
this state in the next sections.

We consider the specific case of the clean Ising chain with
a time-periodic transverse magnetic field. Previous studies
focused on the ground state of effective Hamiltonians in
the limits of high frequency or large amplitude [32,61],
and on the properties of the single quasiparticle states in
the fermionic equivalent model [64] (defined through the
Jordan-Wigner mapping). These studies demonstrated that this
system is characterized by a rich phase diagram, including
both topologically trivial and nontrivial phases. In Ref. [59],
we considered its FGS and showed that this is the specific
state undergoing quantum phase transitions [80]. Here we
significantly extend these results by deriving the full phase
diagram of the model. Ref. [59] dealt with the model in the
fermionic representation, where the phases have topological
nature; here we focus on the model in the spin representation:
we are able to show that some of these phases are characterized
by a local order parameter, and others by a nonlocal string
order parameter (see Fig. 1). We observe that the order
parameters tend to zero at the transition points, indicating that
the transitions are continuous (second order). For a system
with open boundary conditions, the FGS of the topological
phases is not unique: in the fermionic representation there are
topologically-protected edge states; they are the analog of the
Majorana edge states of topological superconductors in one
dimension [81,82]. As we will show, the transition between
any two topological phases can be alternatively described by
the vanishing of a local or nonlocal order parameter, a change
in the number of Majorana modes, or an integer jump of a
topological number. In some of the phases that we find, the
FGS breaks time-translation symmetry, like all (or at least an
extensive number of) the Floquet states do in the case of time
crystals [46].

The paper is organized as follows. In Sec. II, we introduce
the periodically driven spin-chain model and we briefly discuss
how to integrate it by means of the Jordan-Wigner mapping
to a free-fermion model. We then describe its dynamics
in terms of the Floquet theory and we precisely define
the concept of Floquet ground state. For completeness of
presentation, we give also the details on the construction of
the Floquet ground state in general. In Sec. III, we introduce
the topological parameters marking our nonequilibrium phases
in the fermionic representation while in Sec. IV, we discuss
the order parameters characterizing these transitions in the
spin representation. In Sec. V, we discuss the phase diagram
of Fig. 1 considering more in detail the properties of the
phases and the phase transitions. We find that our system
has a countable infinity of different phases characterized by a
pair bulk topological integer numbers: this is consistent with

the fact that, thanks to its symmetries, it falls in the BDI
symmetry class with d = 1 of the classification presented in
Ref. [83] and its classifying group is Z × Z. The two integers
characterizing each phase are the winding number w and the
loop topological index nL; in Sec. VI, we show that, in systems
with open boundary conditions, some edge states appear and
their number is related to w and nL. In this section we discuss
also the relation between the existence of Majorana edge
modes and the time-translation symmetry breaking displayed
by the FGS in some of the phases of the system.

In Sec. VII, we consider how to prepare these nontrivial
phases. One possibility is to start from a vanishing amplitude
(or an infinite frequency) and adiabatically change the parame-
ters of the driving until reaching the transition to the considered
nontrivial phase (see Ref. [84] for a discussion of the same
protocol in driven nonintegrable systems). Unfortunately, each
transition corresponds to a vanishing gap of the Floquet
Hamiltonian: the adiabatic theorem fails and we always reach
a state without long-range order. Nevertheless, we find that the
finite correlation length along which the order extends after
the ramping protocol scales with the duration of the protocol
in a way similar to the standard Kibble-Zurek effect. It is
therefore possible to reach any correlation length by choosing
a sufficiently slow crossing rate. In the Sec. VIII, we draw
our conclusions. The three appendices discuss the symmetries
of the FGS (A), offer an approximate analytical formula for
the positions of the FGS transitions (B), and explain how to
numerically evaluate the Floquet Hamiltonian in absence of
translation invariance (C).

II. THE SPIN MODEL AND ITS
FERMIONIC DESCRIPTION

In the present work, we consider the dynamics of a
uniform quantum Ising chain in the presence of a time-periodic
transverse field, described by the Hamiltonian

Ĥ (t) = 1

2

L∑
j=1

( − J σ̂ z
j σ̂ z

j+1 + h(t)σ̂ x
j

)
. (1)

Here, σ̂ x,z
j are spins (Pauli matrices) at site j of a chain of length

L with boundary conditions, which can be periodic (PBC)
σ̂

x,z
L+1 = σ̂

x,z
1 or open (OBC) σ̂

x,z
L+1 = 0, and J is a longitudinal

coupling (J = 1 in the following). The transverse field is taken
uniform and time-periodic, h(t) = h(t + τ ). Although in our
numerical calculations we will focus on a specific driving
protocol [85], the analytical insights provided in this paper
allow to straightforwardly extend our analysis to any periodic
drive.

Let us now review the equilibrium properties of the
Hamiltonian (1) with a static and homogeneous transverse
field, h(t) = h0. This model has two gapped phases: a ferro-
magnet (|h0| < 1) and a paramagnet (|h0| > 1), separated by a
quantum phase transition at hc = 1. This result is not difficult
to find because the Hamiltonian (1) can be transformed,
through a Jordan-Wigner transformation (see Refs. [86,87]),
into a quadratic fermionic form. In the case of PBC for the
spins, we can quite simplify the analysis: going to k space,
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FIG. 1. (Left) Phase diagram of the periodically driven Ising model (1) with h0 = 2.3. The order parameters and winding numbers were
computed at the time-reversal invariant point tb = 3τ/4. The (+) or (−) signs specify if the phase has normal or staggered order parameter.
(Right) Correspondence among the order parameters at tb and the values of the winding number w.

Ĥ (t) becomes a sum of two-level systems:

Ĥ (t) =
ABC∑
k>0

(ĉ†k ĉ−k)Hk(t)

(
ĉk

ĉ
†
−k

)

with Hk(t) ≡
(

εk(t) −i�k

i�∗
k −εk(t)

)
, (2)

where εk(t) = h(t) − cos k, �k = sin k, and the sum over k

is restricted to positive k’s of the form k = (2n + 1)π/L with
n = 0, . . . ,L/2 − 1, and L even, corresponding to antiperiodic
boundary conditions (ABC) for the fermions [86,88]. In the
following we will refer to such a set of k as k ∈ ABC [88].
The Hamiltonian can be block-diagonalized in each k sector
with instantaneous eigenvalues ±Ek(t) = ±

√
ε2
k (t) + �2

k ; the
ground state of the Hamiltonian Ĥ with a fixed value of the
field h0 has a BCS-like form,

|ψGS〉 =
ABC∏
k>0

∣∣ψ0
k

〉 =
ABC∏
k>0

(
v0

k + u0
kĉ

†
kĉ

†
−k

)|0〉 , (3)

with v0
k = cos(θk/2) and u0

k = i sin(θk/2) expressed in terms
of an angle θk defined by tan θk = (sin k)/(h0 − cos k).

In the equilibrium case, moreover, the Hamiltonian (2)
is invariant under both particle-hole and time-reversal sym-
metries. The former symmetry is valid for any Hermitian
operator that can be written in the form (2), with a generic
Hk . Mathematically, this symmetry can be defined as

τxH
∗
kτx = −H−k , (4)

where τx flips particles and holes and acts as a Pauli matrix
in Nambu space. This relation can be shown to apply to any
BCS-like Hamiltonian, using the anticommutation relations
for fermions. Time-reversal symmetry is equivalent to

Hk = H∗
−k , (5)

and applies to the present case as long as �k = −�−k . These
two conditions imply that the coefficients u0

k and v0
k of the

ground state enjoy the property

�e
[
u0

k

(
v0

k

)∗] = 0 . (6)

According to the K theory, static one-dimensional systems
with time-reversal and particle-hole symmetries can at most
support a numerable infinity of distinct topological phases
(they are said to belong to the Z symmetry class). As we
will see below, this property can still be valid also in the
time-periodic case.

Let us move now to the periodically driven case. To analyze
the system in this case, it is convenient to perform a Floquet
analysis, which we are going to elucidate in its fundamental
lines. (See Refs. [89–91]) for an introduction to Floquet
theory and Refs. [26,27] for more details about the present
case.)

The state of the system at all times can be written in a BCS
form:

|ψ(t)〉 =
ABC∏
k>0

|ψk(t)〉 =
ABC∏
k>0

(vk(t) + uk(t)ĉ†kĉ
†
−k)|0〉, (7)

where the functions uk(t) and vk(t) obey the Bogoliubov-de
Gennes equations

ih̄
d

dt

(
uk(t)
vk(t)

)
= Hk(t)

(
uk(t)
vk(t)

)
, (8)

with Hk(t) defined in Eq. (2). For a time-periodic h(t) =
h(t + τ ), we can find a basis of states which are τ -periodic
“up to a phase” in each k subspace. These are the Floquet
states |ψ±

k (t)〉 = e∓iμkt |φ±
k (t)〉: the |φ±

k (t)〉 are τ -periodic, and
are called Floquet modes, while the ±μk are real and are called
quasienergies. The two quasienergies have opposite signs
becauseHk(t) has vanishing trace [26,27] and are defined up to
translations of multiples of the driving frequency 
 = 2π/τ ,
in complete analogy with Bloch quasimomenta in periodic
solids: each interval of amplitude 
 is a “Brillouin zone” for
the quasienergies. Details on how to compute Floquet modes
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and quasienergies in this case are given in Refs. [26,27] and
the related supplementary material.

The stroboscopic dynamics of the system (at times tn =
δt + nτ , with n ∈ Z) is induced by an effective Hamiltonian
ĤF (δt) called Floquet Hamiltonian

Û (δt + nτ,δt) = e−iĤF (δt)nτ . (9)

Because the problem can be factorized in 2 × 2 subspaces, we
can write the Floquet Hamiltonian for any time δt as

ĤF (δt) =
ABC∑
k>0

(
ĉ
†
k ĉ−k

)
Hk F (δt)

⎛⎝ ĉk

ĉ
†
−k

⎞⎠ with

(Hk F (δt))i,j ≡
∑
α=±

μα
k

〈
χ

(k)
i

∣∣φα
k (δt)

〉〈
φα

k (δt)
∣∣χ (k)

j

〉
, (10)

where i,j = 1,2 and we have defined |χ (k)
1 〉 ≡ ĉ

†
kĉ

†
−k|0〉k

and |χ (k)
2 〉 ≡ |0〉k . Note that the Floquet Hamiltonian is by

construction particle/hole symmetric; its behavior under time-
reversal will be explored below (see Appendix A for details
on the symmetry properties of this object).

In this paper, we consider a specific eigenstate of the
Floquet Hamiltonian, the Floquet ground state (FGS), as
defined in Ref. [59]. This state is the adiabatic continuation
to finite frequency of the ground state at infinite frequency;
in this limit, the Floquet Hamiltonian simply coincides with
the time-averaged Hamiltonian. For this specific system, we
find that the FGS coincides with the ground state of the
Floquet Hamiltonian as defined in Eq. (10). If we consider
the quasienergies in the first Brillouin zone [−
/2,
/2], we
can see that the spectrum of the Floquet Hamiltonian ĤF (δt)
is independent of δt and is made by two bands. The FGS is
obtained by completely filling the lower band [92] and can be
explicitly written as

|�FGS(t)〉 = e−iμFGSt

ABC∏
k>0

(v−
k P (t) + u−

k P (t)ĉ†kĉ
†
−k)|0〉k , (11)

where μFGS = −∑ABC
k>0 μk is the corresponding many-body

quasienergy and v−
k P (t), u−

k P (t) are the time-periodic am-
plitudes of the ground state of Hk F (t) in the basis
{|0〉k,ĉ†kĉ†−k|0〉k}. To be more precise, we should say that our
analysis focuses on the Floquet ground mode: this is the
τ -periodic state coinciding with the Floquet ground state up to
a phase

|�FGS(δt)〉 =
ABC∏
k>0

(v−
k P (δt) + u−

k P (δt)ĉ†kĉ
†
−k)|0〉k . (12)

Being this state periodic, we can restrict δt ∈ [0,τ ]. Never-
theless, the phase factor will always simplify, so we will
indifferently talk about Floquet ground state or Floquet ground
mode. Moreover, because in this model the FGS is the ground
state of the Floquet Hamiltonian, we will indifferently say that
the phase transitions are of the Floquet Hamiltonian or of the
Floquet ground state/mode.

We conclude this section reporting, for completeness of
presentation, the details on the construction of the Floquet
ground state in general, already discussed in Ref. [59]. The

Floquet ground state is defined as the adiabatic continuation
at finite frequency of the ground state of the high-frequency
time-averaged Hamiltonian. In the high frequency limit, the
ground state of the time-averaged Hamiltonian is a legitimate
Floquet state [26,59]. We can define the Floquet state which
adiabatically continues it to lower frequencies with a prescrip-
tion which goes as follows.

Let us start considering the adiabatic continuation of the
FGS for an infinitesimal change of frequency. Our first
step is fixing the phase of the periodic motion θ ≡ t/τ ∈
[0,2π ] and considering a Floquet mode at a frequency 
:
|�
,γ (τθ )〉. If we take a frequency infinitesimally smaller

 − δ
, the adiabatic continuation is the Floquet mode at
the new frequency |�η,
−δ
(τ (1 + δ




)θ )〉 chosen so that the

overlap ∣∣∣∣〈�η,
−δ


(
τ

(
1 + δ





)
θ

)∣∣∣∣�γ,
(τθ )

〉∣∣∣∣2

is maximum. “Integrating” this infinitesimal step from the
ground state of the time-averaged Hamiltonian in the high
frequency limit to the desired value of 
, and repeating the
procedure for all the values of θ ∈ [0,2π ], we obtain the full
time dependence of the desired Floquet ground mode (the
Floquet ground state can be obtained by multiplying the phase
factor e−iμFGSt , where μFGS is the corresponding quasienergy).

Applying the procedure we have described to this model
[see Eq. (1)], we have numerically verified that we obtain the
state in Eq. (12) [59]. We have done it with a finite system: if
we take a longer chain we need a smaller step δ
 to go across
the quantum phase transition points. Nevertheless, going to
the limit L → ∞ we get a perfectly defined state, and the
result does not change if we make the adiabatic continuation
along a different path (one in which we change also A, for
instance). In the next section, we discuss the details of the
topological parameters characterizing the Floquet ground state
in our model.

III. TOPOLOGICAL PARAMETERS IN THE
FERMIONIC REPRESENTATION

For the topological classification of Floquet quantum
phases it is important to distinguish driving protocols with
at least one time-reversal invariant point tr per period [93],
from those that are not time-reversal invariant [64]. In this
work, we specifically consider the former case: our numerical
calculations refer to the protocol depicted in Fig. 2, which
has two time-reversal invariant points. At these points the
Floquet Hamiltonian obeys the time-reversal symmetry and
the particle-hole symmetry in a form identical to Eqs. (4) and
(5) (see Appendix A for details) and then u−

k P (tr ) and v−
k P (tr )

satisfy Eq. (6),

�e(u−
k P (tr )(v−

k P (tr ))∗) = 0 , (13)

and the FGS is time-reversal symmetric. According to the
K theory, the combination of particle/hole and time-reversal
symmetries lead to an infinite number of distinct topological
phases. These phases are characterized by the winding number
w [59], which has a simple geometrical interpretation; thanks
to Eq. (13), the Bloch vector representative of the spinor
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FIG. 2. The driving protocol considered in the present study, with
period τ = 2π/
. The dashed vertical lines indicate the two time-
reversal symmetric points at ta = τ/4 and tb = 3τ/4.

(
u−

k P (tr )
v−

k P (tr )

)
lays on the xy plane. The winding number w simply

counts the number of revolutions that this vector performs
around the origin, as k varies between 0 and 2π . This quantity
is equivalently given by the Berry phase acquired by the spinor
during this revolution [94], divided by π .

In contrast, at times where the system is not time-reversal
invariant, Eq. (5) is not satisfied, and the Floquet Hamiltonian
is only characterized by the particle-hole symmetry, Eq. (4). In
this case, according to the K theory, the Floquet Hamiltonian
belongs to the Z2 symmetry class: it can support at most
two different topological phases. We will come back to this
point towards the end of the next section. These phases are
characterized by a Z2 topological invariant [82] ν = ±1.
From a geometrical perspective, in our model, we observe that
ν = +1 if both k = 0 and k = π are associated with the same
pole of the Bloch vector, and ν = −1 if the are associated with
opposite poles. Note that theZ symmetry class is a subset of the
Z2 symmetry class: when w is defined, its parity corresponds
to ν (i.e. ν = 1 for even ws and ν = −1 for odd ones). In
the periodically driven case, there is also the loop topological
index nL [83], which we will better discuss in Sec. VI. We will
see that the countable infinity of phases we find corresponds
to a classifying group Z × Z and each phase is characterized
by the pair of indices (w,nL).

IV. LOCAL AND NONLOCAL SPIN ORDER PARAMETERS

We now move to the characterization of the different phases
in terms of spin observables. The simplest observable is 〈σ̂ x

j 〉,
which corresponds to the local density of Jordan-Wigner
fermions at site j . In contrast, the magnetizations along the
y and z directions cannot be directly written in terms of local
fermionic objects. Their value can nevertheless be obtained as
the infinite-distance limit of long-range correlators (see, for
instance, Ref. [95]):

Sz = 1
2

√
lim
l→∞

〈
σ̂ z

j σ̂ z
j+l

〉
, Sy = 1

2

√
lim
l→∞

〈
σ̂

y

j σ̂
y

j+l

〉
. (14)

A similar analysis can be performed for the antiferromagnetic
order parameters in the y and z direction:

S (−)
z = 1

2

√
lim
l→∞

(−1)l
〈
σ̂ z

j σ̂ z
j+l

〉
,

S (−)
y = 1

2

√
lim
l→∞

(−1)l
〈
σ̂

y

j σ̂
y

j+l

〉
. (15)

As we mentioned in the introduction, topological phases in
one dimension can be characterized by string orders [69]. A
simple type of string order can be introduced by applying to
the system the duality transformation [74]

μ̂x
j = σ̂ z

j σ̂ z
j+1,

μ̂
y

j = −
(

j−1∏
k=1

σ̂ x
k

)
σ̂

y

j σ̂ z
j+1,

μ̂z
j =

j∏
k=1

σ̂ x
k . (16)

This duality transformation maps the Hamiltonian (1) to

Ĥ (t) = −h(t)

2

∑
j

[
1

h(t)
μ̂x

j − μ̂z
j−1μ̂

z
j

]
. (17)

Note that the resulting Hamiltonian has the same form as the
original one, with h(t) → 1/h(t). At equilibrium this property
can be for instance invoked to explain why the transition
between the ferromagnetic and paramagnetic phases occurs
precisely at the self-dual point |h0| = 1, where h0 = 1/h0.
For a time-dependent problem, the duality allows us to map
the periodic modulations of the magnetic field considered in
Ref. [59] to the periodic modulations of the interaction energy
considered in Ref. [61].

The spin correlators in the μ-representation are mapped to
highly nonlocal string operators in the σ representation [74]:
these are the string order parameters

Oy = 〈
μ̂

y

j μ̂
y

j+l−1

〉
=

〈
σ̂ z

j σ̂
y

j+1

⎛⎝j+l−2∏
k=j+2

σ̂ x
k

⎞⎠σ̂
y

j+l−1σ̂
z
j+l

〉
,

Oy (−) = lim
l→∞

(−1)l+1 lim
l→∞

〈
μ̂

y

j μ̂
y

j+l−1

〉
,

Oz = lim
l→∞

〈
μ̂z

j μ̂
z
j+l

〉 =
〈

j+l−1∏
k=j+1

σ̂ x
k

〉
,

Oz (−) = lim
l→∞

(−1)l
〈
μ̂z

j μ̂
z
j+l

〉
. (18)

As we will explain below, it is useful to introduce a second
duality transformation

β̂x
j = σ̂

y

j σ̂
y

j+1,

β̂
y

j =
(

j−1∏
k=1

σ̂ x
k

)
σ̂ z

j σ̂
y

j+1,

β̂z
j =

j∏
k=1

σ̂ x
k , (19)
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which transforms the Hamiltonian (1) to

Ĥ (t) = 1

2

L∑
j=1

(
J β̂z

j−1β̂
x
j β̂z

j+1 + h(t)β̂z
j−1β̂

z
j

)
. (20)

After an appropriate Jordan-Wigner transformation followed
by a Fourier transform, introducing the b̂k fermionic operators,
this Hamiltonian acquires the free-fermion BCS form

Ĥ (t) =
ABC∑
k>0

(b̂†k b̂−k
)Hk(t)

(
b̂k

b̂
†
−k

)
with

Hk(t) ≡
(

J cos(2k) − h(t) cos k ih(t) sin k − iJ sin(2k)
−ih(t) sin k + iJ sin(2k) h(t) cos k − J cos(2k)

)
.

By considering the β̂y correlation functions, it is possible to
define a new string order parameter:

Oβ = lim
l→∞

〈
β̂

y

j β̂
y

j+l−1

〉
= lim

l→∞
(−1)l+1

〈
σ̂

y

j σ̂ z
j+1

⎛⎝j+l−2∏
k=j+2

σ̂ x
k

⎞⎠σ̂ z
j+l−1σ̂

y

j+l

〉
,

Oβ (−) = lim
l→∞

(−1)l+1
〈
β̂

y

j β̂
y

j+l−1

〉
. (21)

In general, these order parameters have a nonlocal represen-
tation in the fermionic language. Their expressions, obtained
by means of the Jordan-Wigner transformation and the Wick’s
theorem, are given in Ref. [78]. At the time-reversal invariant
points, thanks to Eq. (13), the Majorana correlators

〈(ĉ†l ± ĉl )(ĉ†m ± ĉm)〉

= ±δl m − 2i

π

∫ π

0
�e(u−

k P (tb)(v−
k P )∗(tb)) sin(k(l − m))dk,

(22)

vanish for any l �= m (we have performed the thermodynamic
limit 1

L

∑
k>0 → 1

2π

∫ π

0 , which is a very good approximation
in the case of L  1). In this case, the spin correlators can
be written as Toeplitz determinants of fermionic correlation
matrices, which can be easily implemented numerically [96].
Exploiting the translation invariance, we can write

〈
σ̂ z

j σ̂ z
j+l

〉
=

∣∣∣∣∣∣∣∣
G−1 G−2 · · · G−l

G0 G−1 · · · G−l+1
...

...
...

...
Gl−2 Gl−3 · · · G−1

∣∣∣∣∣∣∣∣,

〈
σ̂

y

j σ̂
y

j+l

〉
=

∣∣∣∣∣∣∣∣
G1 G2 · · · Gl

G0 G1 · · · Gl−1
...

...
...

...
G−l+2 G−l+3 · · · G1

∣∣∣∣∣∣∣∣, (23)

where we have defined the Majorana correlator

Gm−l = 〈(ĉ†l − ĉl )(ĉ†m + ĉm)〉

= 1

π

∫ π

0
[−2 �m(u−

k P (tb)(v−
k P )∗(tb)) sin(k(l − m))

+{|u−
k P (tb)|2 − |v−

k P (tb)|2} cos(k(l − m))]dk. (24)

Similar expressions can be obtained for 〈μ̂y

j μ̂
y

j+l−1〉,
〈μ̂z

j μ̂
z
j+l−1〉, and 〈β̂y

j β̂
y

j+l−1〉 applying the appropriate Jordan-
Wigner transformations. In the numerics, we construct the
matrices of Eqs. (23) using the mesh in k given by the
antiperiodic boundary conditions; to evaluate the integrals
(24), we use a cubic spline (see, for instance, Ref. [97]) and
the integration routines of the QUADPACK package [98]. When
Eq. (13) is not valid, we have to evaluate the Pfaffian of a
matrix containing also the Majorana correlators Eq. (22) (all
the formulas are given in detail in Ref. [96]). To numerically
evaluate these Majorana correlators we do in the same way as
for those in Eq. (24) and we compute the Pfaffians using the
routines of the PFAPACK library [99].

V. PHASE DIAGRAM AT A TIME-REVERSAL
INVARIANT POINT

We consider the system Eq. (1) undergoing a periodically
driven field of the form

h(t) =
{
h0 + A for t ∈ [nτ,(n + 1/2)τ ]
h0 − A for t ∈ [(n + 1/2)τ,(n + 1)τ ] (25)

(see Fig. 2). For concreteness, we arbitrarily set h0 = 2.3
and explore the phase diagram modifying A and 
. As we
have remarked above, our analysis can be straightforwardly
extended to any periodic drive. To identify the phases of
the FGS, we probe the value of the order parameters using
Eqs. (14), (15), (21), (18), and (23) at the time-reversal
invariant point tb = 3τ/4. As we have discussed in the previous
section, each order parameter is the limit of a specific spin
correlator when the distance l between the considered sites
diverges [l → ∞ in Eqs. (14), (15), (21), and (18)]: we
approximate these limit values with the value of the correlators
at finite l  1. In all our calculations, we take L very large
(∼5000) and we always consider l < L/2; in this range of l,
the approximating correlators scale to their l → ∞ limit as
they would do in the thermodynamic limit.

Computing the spin order parameters at different points in
the (
,A/
) plane, we find many different phases: in each
phase only one order parameter is present while the others
asymptotically tend to 0 for l → ∞. The different phases
correspond to different colours in Fig. 1; we find that each
phase transition corresponds to a degeneracy in the Floquet
spectrum, in strict analogy to the case of standard equilibrium
quantum phase transitions, which occur when the gap in
the Hamiltonian closes [100]. Our model can be mapped
to an integrable fermionic model, as we have discussed in
Sec. II. Evaluating the fermionic topological order parameter
w, we find a precise correspondence between the nonvanishing
string/local spin order parameter of each phase and the winding
number w. This correspondence is synthetically shown in
the table on the right of Fig. 1 and, for the values w =
0,±1,2 coincides with the already-known results for a static
system [64]. We emphasize that the correspondence among
Oβ and w = −2 is a new finding of this work. We have
additionally found phases with larger winding numbers, whose
corresponding spin order is still unknown. (See in particular
the phase diagram of Fig. 1, which include phases with winding
numbers w = 3 and 4.)
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FIG. 3. Local order parameters along the line 
 = 5 (with h0 =
2.3). We can see that there is alternatively local order along y (order
parameter S (−)

y ) and the z (order parameter S (−)
z ). We show results

for L = 4800 and we approximate the order parameters [see Eq. (14)
and (15)] with the value of the corresponding correlator for l = 200.

Let us now comment on the structure of the phase diagram.
The vertical transition lines occur at frequencies 
q = 2|h0 −
1|/q (the “q series”) and 
p = 2|h0 + 1|/p (the “p series”)
with p,q integer numbers. These frequencies correspond to
many-photon resonances of the periodically driven system,
and are signaled by degeneracies of the Floquet spectrum
respectively at the center of the Brillouin zone (μ = 0), or
at its edge (μ = 
/2). (See also Refs. [29,41,59] for more
details.)

Let us consider a fixed 
 and increase the amplitude A of
the driving. We notice, first of all, that the limit A → 0 is in
general singular. It is regular only if there are no resonances
in the unperturbed spectrum in the limit A → 0 (in our case,
for 
 > 
p=1 = 6.6). In the presence of resonances, even a
very small A opens gaps in the spectrum and the topology of
the bands completely changes [27]. Taking finite values of A,
we can see a whole series of quantum phase transitions (see
Fig. 1). Interestingly, the value of A/
 of these transitions is
almost independent of 
. The phase transitions approximately
occur at A



= j

2 (for some integer j ) and this approxima-
tion becomes better as A/
 gets larger. As explained in
Appendix B, this observation can be analytically justified
by studying the properties of the Floquet Hamiltonian in
an extended Hilbert space. This argument is analogous to
the rotating wave approximation (RWA): we move to a
time-dependent reference frame, where we apply perturbation
theory and find that, when A



= j

2 , the Floquet Hamiltonian
shows a degeneracy up to terms of order (
/A)2. See also
Ref. [32] for a similar analysis of a sinusoidal time dependence
of the driving, where the resonances are found at the zeros of
Bessel functions.

We now turn to the behavior of the order parameters at
the transitions among the different phases. We specifically
consider three “cuts” of the phase diagram shown in Fig. 1,
referring to tb = 3τ/4: (i) the vertical line at fixed 
 = 5.0
(Fig. 3), (ii) the vertical line at fixed 
 = 3.0 (Fig. 4), and (iii)
the horizontal line at fixed A/
 = 3.2 (Fig. 5). In Fig. 3, all

 0

 0.2

 0.4

 0.6
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 0  1  2  3  4  5  6  7  8

A/Ω

Oy (-)

Oβ
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FIG. 4. String order parameters along the line 
 = 3 (with h0 =
2.3). We can see that there is always string order: order parameters
Oy , Oz and Oβ alternate with each other. We take L = 2400 and we
approximate the order parameters with the value of the corresponding
correlator for finite l = 200 [see Eqs. (18) and (21)].

the phases that we intersect possess local order parameters,
while in Fig. 4 they possess string order parameters. In both
cases we observe a series of lobes as a function of A/
.
The maximal height of each lobe decreases as A is increased,
suggesting that for A → ∞ the system undergoes a complete
mixing and all order parameters vanish. We have verified that
this decrease occurs as a power law in A. In Figs. 3, 4, and 5
we show the finite-l approximants of the order parameters: we
see that they undergo some crossovers at the resonance points.
These crossovers fully develop in phase transitions only in
the thermodynamic limit: for l → ∞ the approximants tend
to a finite value only in the phases where the corresponding
order parameters are nonvanishing, otherwise they scale to 0
(see Fig. 6(a) for an example).
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FIG. 5. Local and nonlocal order parameters along the line
A/
 = 3.2 (with h0 = 2.3). The transitions are second order in the
thermodynamic limit; we used L = 4800 and we approximated the
order parameters with the value of the corresponding correlator for
l = 400.
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FIG. 6. (a) Scaling of S (−)
z (l) with l close to the transition point.

This object scales to 0 in a phase where the order parameter vanishes
(
 < 
p=2 = 3.3) and, on the opposite, tends to a nonvanishing
value in a phase with S (−)

z �= 0 (
 > 
p=2 = 3.3). (b) Development
of a divergence in dS (−)

z (l)/d
 in the limit l → ∞. Numerical
parameters: h0 = 2.3, A/
 = 3.2, and L = 4800. (Inset) Scaling
of the order parameter S (−)

z around the transition 
p=1 in Fig. 5
(Numerical parameters: L = 4800 and l = 800).

From the dependence of the order parameters on the driving
amplitude and frequency we can estimate the critical exponents
of the transitions. In the present case, these calculations are
simplified by our exact knowledge of the positions of the
transitions (which correspond to the resonance points 
p,

q—see above). In Fig. 6(b), we consider the behavior of the
derivative dS (−)

z /d
 around the transition at 
p=2 = 3.3. We
see how the approximation for finite l (dS (−)

z (l)/d
) shows a
cusp that becomes higher with increasing l. In the limit of l →
∞ it will give rise to a divergence, showing that the transition
is of second order. We find that the local order parameter S (−)

z

has a critical exponent 1/8 at the transition 
p=1 (see the inset
in Fig. 6): this is the same critical exponent of Sz in the static
Ising transition. In contrast [101], the string-order parameter
Oy shows a critical exponent 0.25 at the transitions 
q=1

and 
p=2. To understand this discrepancy, we note that the
string-order parameter corresponds to the limit of a correlator
(of the dual model), while the local order parameters were

A/Ω
0 1 2 3

δ 
t/
τ

0

0.2

0.4

0.6

0.8

1
(a) S(--)

z

A/Ω
0 1 2 3

0

0.2

0.4

0.6

0.8

1
(b) S(--)

y

0.2

0.4

0.6

0.8

1

FIG. 7. Order parameters S(−)
z and S(−)

y as a function of the driving
amplitude A and the measurement time δt . The dashed line highlights
the time-reversal invariant point δt = 3τ/4, whose order parameters
are shown in Fig. 3 and fully characterize the different phases. Note
that at δt = τ/4 the roles of the order parameters is interchanged.
Numerical parameters: h0 = 2.3, L = 4800, 
 = 5.0, and l = 400.

defined as the square root of the correlator. Furthermore,
we find that at the transitions, the quasienergy of the FGS
(μFGS = −∑

k>0 μk) shows a logarithmic divergences in its
second derivative d2μ/d
2. This behavior is again analogous
to the Ising transition of the static case, where the second
derivative (with respect to the field) of the ground-state energy
diverges logarithmically.

We now briefly comment on the behavior of the Floquet
ground mode at δts that are not time-reversal invariant. In
Fig. 7, we show the values of the order parameters S(−)

z and
S(−)

y as a function of δt , for the same numerical parameters as
in Fig. 3. We find that for all δt , both order parameters vanish
at the transition points. This finding is in agreement with the
observation that the position of the phase transition does not
depend on δt . However, the two above-mentioned order pa-
rameters can be used to characterize the different phases only at
the time-reversal invariant points δt = τ/4,3τ/4. For all other
measurement times, both order parameters acquire a finite
value in all phases. We can interpret this apparently anomalous
situation in this way: the system shows long range order and
the order parameter is the staggered magnetization along a
direction forming an angle α = atan [S(−)

z /S(−)
y ] with the y

axis; the modulus of the order parameter is
√

S(−)
z

2 + S(−)
y

2
.

(Notice that the symmetry of the Hamiltonian prevents the
build up of mixed correlations of the form 〈σ̂ z

j σ̂
y

j 〉 in the
eigenstates of the dynamics.) Therefore we can see that the
order parameter rotates in time around the x axis.

We conclude this section by considering the generalization
of the previous findings for h0 �= 2.3. In the limit of large 
,
the Floquet Hamiltonian is simply given by the time-averaged
Hamiltonian, and corresponds to the static Ising model with
h ≡ h0. Thus, for h0 > 1, the FGS is in the paramagnetic
phase and shows Oz order. In contrast, for h0 < 1, the system
is ferromagnetic and Sz acquires a finite expectation value.
This properties would hold for all frequencies 
 > 2|1 + h0|,
where the first quantum phase transition occurs. The case
of h0 = 1 is special. For this value of the magnetic field,
the correlators decay to zero and there is no long range
order. For each value of A and 
, there is one of the order
parameters of the phases with h0 < 1 and h0 > 1 such that
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FIG. 8. |〈σ̂ z
j σ̂ z

j+l〉| in the FGS vs 
 on the critical surface h0 = 1,
for different values of l. The power-law decay in l reflects in the
logarithm of |〈σ̂ z

j σ̂ z
j+l〉| decreasing of a constant amount when l is

doubled. Numerical parameters: h0 = 1, A = 0.3 
, and L = 4800.

the corresponding correlator decays algebraically for h0 = 1,
highlighting the quantum critical nature of this point. This
behavior is exemplified in Fig. 8 where we show the correlator
|〈σ̂ z

j σ̂ z
j+l〉| versus 
 for fixed A and different values of l.

Thanks to the logarithmic scale, we can see that the logarithm
of the correlator decreases of a constant quantity when l is
doubled: this reflects the power-law decay in l.

VI. PROTECTED EDGE STATES

When a system with nontrivial topology is put in contact
with the vacuum, zero-energy modes generically appear at the
edge of the system [102–104]. In one-dimensional topological
superconductors the edge modes are zero-energy, topologi-
cally protected Majorana fermions [82]. Quite recently, also
the case of periodically driven one-dimensional systems with
Z2 symmetry has been considered (topological superconduc-
tors is a special case). Remarkably, single particle Floquet edge
modes have been discovered which can appear at quasienergy
0 or 
/2 [49,63,64]. To detect the existence of edge modes
in the Floquet Hamiltonian, we put the system in contact with
the vacuum: from a technical point of view, this is equivalent
to a chain with open boundary conditions. In this situation we
cannot anymore apply the Fourier transform which led us to
the simple expression for the Floquet Hamiltonian shown in
Eq. (10). Nevertheless, as we explain in Appendix C, we can
define L independent “Floquet” fermionic operators

γ̂F,α(t) =
L∑

j=1

[U ∗
P jα(t)ĉj + V ∗

P jα(t)ĉ†j ]eiμαt (26)

[UP jα(t) and VP jα(t) are τ -periodic amplitudes], such that the
Floquet Hamiltonian at time δt ∈ [0,τ ] can be written as

ĤF (δt) =
L∑

α=1

μα

2
(γ̂ †

F,α(δt)γ̂F,α(δt) − γ̂F,α(δt)γ̂ †
F,α(δt)) .

(27)
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FIG. 9. IPRα(δt) vs μα for δt = 0 in the top panel and δt = τ/4
in the bottom panel (the IPR is in logarithmic scale). The arrows mark
the two edge states at the edges of the quasienergy spectrum: their
IPR does not scale with L. The IPR of the bulk states in the bulk of
the quasienergy spectrum scales with 1/L. This fact is independent of
δt . Numerical parameters: h0 = 2.3, 
 = 3.0, and A = 5.1 (
 falls
in the second line of Table I, consistently we find an edge state at
μα = 0 and another one at μα = 
/2.)

The resulting Hamiltonian has a quadratic form with single-
particle quasienergies μα: each Floquet operator γ̂F,α(δt)
corresponds to a one-particle Floquet state of the system
|ψα(δt)〉 = γ̂

†
F,α(δt)|0〉 with quasienergy μα . In Appendix C,

we elucidate how to numerically compute the single-particle
quasienergies and the amplitudes {UP jα(δt), VP jα(δt), j =
1, . . . ,L}. To detect if among the single quasiparticle Floquet
states there are some edge states, we exploit the fact that edge
states are localized at the edge: their inverse participation ratio
(IPR) [105] in physical space, defined as

IPRα(δt) =
L∑

j=1

(|UP jα(δt)|4 + |VP jα(δt)|4) (28)

does not scale with L in the limit of L  1 (see also Ref. [64]).
On the opposite, being the system we are considering clean,
the other single-particle Floquet states are extended, and their
IPR scales as ∼1/L. Using this method the fermionic edge
states are not difficult to recognize. We can see an instance
of this fact in Fig. 9, where we plot IPRα(δt) versus μα for
different values of δt and of L. In this figure, we consider
a case in which there are two single-particle Floquet states
localized at the boundaries: they appear at the edges of the
single-particle quasienergy spectrum, one at μα = 0 and the
other at μα = 
/2. We can see that the IPR of the edge modes
does not scale with L and is much larger than the IPR of the
ones in the bulk of the spectrum. The IPR of the other (bulk)
states, on the contrary, scales as 1/L. This can be clearly seen
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TABLE I. Topological numbers characterizing the first six verti-
cal strips in the phase diagram (see Fig. 1: the winding number w; the
total number of edge states Nb; the number of edge states at μα = 0
(μα = 
/2), Nb(0) (Nb(
/2)). The associated Floquet topological
numbers [83] are respectively nC = w and nL = ±N (
/2) (see text
for details).


 w Nb Nb(0) Nb(
/2)


 > 
p=1 0 0 0 0

p=2 < 
 < 
p=1 ±1 1 0 1

q=1 < 
 < 
p=2 0,±2 2 1 1

p=3 < 
 < 
q=1 ±1 1 1 0

p=4 < 
 < 
p=3 0,±2 2 1 1

p=5 < 
 < 
p=4 ±1,3 3 2 1

in the semi-logarithmic plot: doubling L, the logarithm of the
IPR of these states decreases of a constant value. Moreover,
we can see that this behavior is independent of the considered
time δt : the dynamics conserves the number of edge states in
the FGS and their position in the spectrum.

We find that the number of edge states Nb is time-
independent and constant within each phase, confirming its
topological nature. As mentioned above, in contrast to equi-
librium topological insulators, in Floquet topological phases
edge states can occur both in the center of the Floquet band,
μα = 0, and at its edge, μα = 
/2, (see also Refs. [49,63,64]).
We empirically find that both Nb(0) and Nb(
/2) do not
depend on the driving amplitude A, and are unchanged on
each of the six vertical strips of the phase diagram of Fig. 1.
This empirical rule is only broken in the strip 
q=2 < 
 <


p=5: in this frequency domain, Nb(0) = 2 for A/
 < 2.0
and A/
 > 2.3, and Nb(0) = 0 for 2.0 
 � A � 2.3 
. This
point deserves further investigation. In particular, we will
need to clarify whether the maximal system-size considered
in our calculations, L = 2000, is sufficient to reach the
thermodynamic regime of the small intermediate phase (whose
gap is small and correlation length very long).

The number of edge states in each frequency domain is
summarized in Table I and agrees with the arguments of
Ref. [64]. In particular, Nb = 0 in the high-frequency phase,
which is adiabatically connected to the static paramagnet. With
decreasing frequency, Nb increases by one at the resonances
of the p series (
p = 2|h0 + 1|) and decreases by one at
the q series (
q = 2|h0 − 1|) [106]. The frequency of the
added (subtracted) edge state depends on the parity of the p

(q) index: Nb(0) increases (decreases) at even ps (qs), and
Nb(
/2) increases (decreases) at odd ps (qs). A graphical
representation of this result is shown in Fig. 10.

In order to put our work in a broader perspective, we
notice that our results are consistent with the classification
of noninteracting topological Floquet systems presented in
Ref. [83]. The authors are able to decompose the evolution
operator over one period of a driven system in two parts: a
unitary loop component and a constant evolution component.
The topological numbers associated with these two compo-
nents respectively characterize the topology of the evolution
over one period (loop component, nL) and of the Floquet
Hamiltonian (constant component, nC). Thanks to a homotopy
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FIG. 10. Graphical method to determine the number of edge
states as a function of the driving frequency, adapted from Ref. [64]
(see text for details). The gray area represents the positive band of
the time-independent part of the Hamiltonian. The diagonal lines
correspond to μ = n
/2 with n ∈ N : red dotted lines represent odd
ns, and blue dashed lines represent even ns. The intersections of the
diagonal lines and the upper edge of the band correspond to the
p-series resonances (2|h0 + 1| = p
), and the intersections with
the lower edge of the band correspond to the q-series resonances
(2|h0 − 1| = q
). For a given frequency 
, the number of red dotted
(blue dashed) lines inside the gray area is equal to Nb(0) [Nb(
/2)].

equivalence they show that there exists only a finite number of
symmetry classes for periodically driven integrable systems.
We can see that our case, because of time inversion and particle
hole symmetries, falls in the symmetry class BDI with d = 1:
this gives rise to a classifying group Z × Z, where nC and nL

are arbitrary integer numbers.
The quantum number nC classifies the topology of Floquet

Hamiltonian and therefore equals to the winding number w

reported in Fig. 1, while nL is a distinct topological index.
These two quantum numbers uniquely determine the number
of edge modes in the system. According to the bulk-edge
correspondence principle, the number of Majorana edge states
equals the absolute value of an associated bulk topological
number: in our case Nb(0) = |n0| and Nb(
/2) = |nπ |, where
[83] n0 = nC + nL = w + nL and nπ = nL. These relation
imply for instance that |w| is always smaller or equal than
Nb(0) + Nb(
/2), in agreement with the findings of Table I.
For concreteness, let us consider the three phases mentioned
in its last row. These phases share the same Nb(0) = 2
and Nb(
/2) = 1, but differ by their winding numbers,
which equal to w = +1, −1, and 3. The associated constant
and loop topological numbers are, respectively, (nC,nL) =
(1,1),(−1,−1), and (3,−1).

A. Time-translation symmetry breaking
of the Floquet ground state

The presence of Majorana fermions with quasienergy 
/2
(i.e., N (
/2) �= 0) is associated with the FGS spontaneously
breaking the discrete time-translation symmetry [46–53]. To
understand this point, let us focus on the ferromagnetic
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phases obtained for 
p=2 < 
 < 
p=1 where N (
/2) = 1
(see Table I). Combining the two Majorana modes at the
edges of the system, we can define a Fermionic operator
at quasienergy 
/2: switching its occupation is equivalent
to the addition of 
/2 to the many-body quasienergy. As
a consequence, in this phase, each Floquet eigenstate has a
partner at quasienergy difference 
/2.

In particular, by considering the even and odd superpo-
sitions of the FGS and its partner, we can construct a state
which is periodic under 2τ [46]: this is possible thanks to the
existence of global symmetry breaking and long range order
along y or z. The FGS and its partner are long range correlated
[46]: in the spin basis they respectively correspond to the
symmetric and the antisymmetric superposition of a symmetry
breaking state with spin up and another with spin down. If
we prepare the system in one of the two symmetry breaking
states, we see that it is flipped to the symmetry-breaking
state with opposite spin after each driving. This commutation
occurs thanks to the quasienergy difference of 
/2 of the
two Floquet states whose superposition gives the state: this
phenomenon is formally analogous to the Rabi oscillations.
Looking at the order-parameter magnetization (along z or y,
according to the specific phase), we would see oscillations of
period 2τ : spontaneously breaking the global spin symmetry
is therefore essential to break the time-translation symmetry
[46,49,52,53,117].

Like the excited states do in the static quantum Ising chain,
the Floquet states different from the FGS do not break the spin
symmetry because of the very nonlocal nature of the Floquet
excitations; hence they cannot break even the time-translation
symmetry. That’s why our system is not a time crystal; in
order to see time-translation symmetry breaking for a very
wide class of initial states, all the Floquet spectrum (or at least
an extensive fraction of it) must break the time-translation
symmetry [46,118]. On the opposite, in our case only preparing
the system in one of the symmetry breaking Floquet Ground
states would allow the observation of the period doubling
oscillations. This result is in agreement with the findings of
Ref. [52], which rule out the existence of time crystals for
clean systems with short-range interactions.

In order to give a further connection with known systems
displaying the time-translation symmetry breaking, we see
that the phases in 
p=2 < 
 < 
p=1 are equivalent to the π

ferromagnet described in Ref. [49], respectively in the z and the
y directions. Similarly, the phases obtained for 
p=2 < 
 <


q=1 with w = 0 correspond to the 0π phase of Ref. [49].

VII. SCALING OF THE CORRELATION
LENGTH IN A RAMPING

From an experimental perspective, it is necessary to specify
a protocol to prepare the Floquet ground state. One possibility
would be to prepare the ground state of the time-averaged
Hamiltonian at high frequency and then reach the FGS by
adiabatically lowering the frequency [59]. This is possible
if no resonance in the Floquet spectrum is met [107–110].
But if we want to prepare, for instance, a FGS with S(−)

z �= 0
starting from infinite frequency, we have to cross a resonance
(the one at 
 = 
p=1). In crossing a resonance, the adiabatic
theorem does not apply and it is not possible to exactly prepare

the FGS. In fact, one can show that the order parameter
remains exactly zero across the transition. Nevertheless, if
we change our Hamiltonian very slowly, we can obtain a state
with an arbitrary long correlation length but never infinite. We
numerically estimate the S(−)

z correlation length as

lz =
∑lmax

j=0 j
∣∣〈σ̂ z

1 σ̂ z
1+j

〉∣∣∑lmax
j=0

∣∣〈σ̂ z
1 σ̂ z

1+j

〉∣∣ , (29)

where we choose lmax so that the sum has already reached
convergence. We ramp the frequency in time as


(t) = 
i + 1

tf
(
f − 
i) ;

we take h0 = 2.3, 
i = 10.0, 
f = 4.0, and A = 1.0; tf is
the characteristic time scale of the ramping. We ramp the
system from a phase with order Oz to a phase with order S(−)

z

at the time-reversal invariant point tb = 3τ/4 (see Fig. 1).
The driving with linearly changing frequency is a square
wave of the form h0 + A sign[sin(φ(t))] with φ(t) = 
(t)t :
the crossing of the resonance occurs when dφ/dt = 
p=1.
We probe the system at times tn such that φ(tn) = 2nπ + 3

2π ;
in this way we can make comparison with the system at the
time-reversal invariant point tb = 3τ/4 [111]. Because this
protocol breaks the time-reversal invariance, the Majorana
correlator Eq. (22) is nonvanishing and we need to use
the general formula involving the Pfaffian to evaluate the
correlator (see Sec. IV).

In analogy to the standard Kibble-Zurek phenomenon
[112], we find that the correlation length at the end of the
ramping, lz, scales polynomially with tf : lz ∼ tαf . We show
this scaling in the upper panel of Fig. 11 by means of a
bilogarithmic plot. We find that the steepness of the curve
log10(lz) versus log10(tf ) is an increasing function which
saturates to an asymptotic value when tf → ∞. By means of a
linear fit of this curve in the region of large tf we numerically
find log10(lz) = α log10 tf + const with α = 0.499 ± 0.003. In
our numerical calculations, tf � 120 000π and the steepness
has reached a satisfying convergence: our result is consistent
with α = 0.5, in agreement with the scaling of the defect
density found in Ref. [59], nex ∼ 1/lz ∼ t−0.5

f . In the lower
panel of the figure, we plot the correlator log |〈σ̂ z

i σ̂ z
j 〉| versus

|i − j | rescaled by t
1/2
f : we see that all the rescaled curves have

the same decay length and this confirms the scaling of lz with
t

1/2
f .

An alternative method to prepare the system in a nontrivial
FGS is to fix the frequency and adiabatically increase the
amplitude of the driving: A(t) = Af t/tf . In this case, we probe
the correlators at times 3nτ/4, with n integer. We set 
 = 5.0
and A = 1.0 and perform an adiabatic ramp inside a phase
with order parameter S (−)

z (see Fig. 1). Note that in this case
our starting point (A = 0) is a critical point of the Floquet
spectrum where the Floquet gap is closed. As a consequence,
the validity of the adiabatic theorem is not guaranteed [113].
We nevertheless find a very clear scaling of the correlation
length, as in the standard crossing of the quantum critical point:
actually the correlation length behaves as a scaling function:
lz ∼ t

1/2
f L(At

1/2
f ) (see Fig. 12).
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We conclude discussing the effective possibility to prepare
the Floquet ground state. The protocol we describe is anal-
ogous to the one used in the standard Kibble-Zurek case. If
the system is in the thermodynamic limit, it always arrives
to a state which is not the final Floquet ground state, but
an approximation to it, as better as the ramping is slower (the
Floquet gap closes at the critical point and we are never exactly
adiabatic). In particular, the range of the correlations will be
longer when the ramping is slower. If, after the ramping, the
stroboscopic Floquet Hamiltonian is kept static (the frequency
is unchanged), the system will slowly evolve towards an
asymptotic condition; because the system is integrable, the
asymptotic condition is given by a Floquet generalized Gibbs
ensemble [26,30,41] (ergodic systems evolve instead towards
a T = ∞ thermal ensemble [20,25,28,31,114]). The transient
is as longer as the final state is nearer to the Floquet ground
state. So, the slower we perform the ramping, the nearer the
state is to the Floquet ground state, the longer it survives (and
can be observed) before there is relaxation towards the GGE.

Moreover, if we consider a finite system, the gap at the
quantum critical point is nonvanishing. If we perform the
ramping slowly enough, we can be exactly adiabatic and
prepare the exact Floquet ground state. Another possibility,
which will be the object of future work, is to couple the
ramped driven system to a noise able to make it to relax to the
Floquet ground state (this has been already done for systems
undergoing a ramping of the static Hamiltonian [115]).

VIII. DISCUSSION

In this work, we have studied the phase diagram of the Flo-
quet ground state of a periodically driven integrable quantum
spin chain. Its quantum phase transitions occur at well-defined
resonances in the Floquet spectrum, whose position is here
approximated by analytical expressions and confirmed by
numerically exact calculations. Thanks to the Jordan-Wigner
transformation, the problem can be mapped to a chain of
noninteracting fermions. In the case of time-reversal invariant
protocols, this fermionic model includes an infinite number
of distinct topological phases, characterized by a topological
winding number [59,64]. Here we show that in the original
spin representation the phases can be characterized by a set of
local and nonlocal (string) order parameters, such that a single
nonvanishing long-ranged order corresponds to each phase.
At present, we are able to determine the order parameters
for all the phases with winding numbers w = 0,±1,±2. In
particular, the phase with w = −2 is characterized by a
previously unnoticed string order parameter, Oβ , introduced
in Eq. (21). Based on our findings, we conjecture that phases
with odd (even) winding numbers are characterized by local
(nonlocal) order parameters of increasing complexity. We
have furthermore showed some cases where the correlation
length associated to the order parameter shows a Kibble-Zurek
scaling when slowly crossing one of the nonequilibrium
quantum phase transitions.

As predicted by Ref. [83], we find that the Floquet quantum
phases can be characterized by two topological numbers n0

and nπ , whose absolute value respectively gives the number
of edge states at quasienergies 0 and 
/2. The sum of
these two numbers equals the winding number of the Floquet
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Hamiltonian. Four of the phases that we describe in our clean
noninteracting model are adiabatically connected to the four
phases of the clean noninteracting version of the kicked Ising
model considered in Fig. 2(a) of Ref. [49]. The comparison
is meaningful, showing both models time-reversal invariant
points and being both models clean and integrable through the
Jordan-Wigner transformation (we do not consider here the
more complicated disordered and interacting version of the
model in Ref. [49]). The correspondence of the phases is as
follows: the PM phase found by those authors corresponds to
our paramagnetic phases with w = 0 and no edge mode; their
ferromagnet to our ferromagnetic phases with w = 1 and the
edge state at μ = 0; their π ferromagnet to our ferromagnetic
phases with w = 1 and the edge state at μ = 
/2; and
their 0π phase to our phases with w = 0 and edge states
at 0 and 
/2. The model considered by these authors has
additional symmetries (duality and symmetries under discrete
translation/inversion of some driving parameters) that prevent
it from entering the entire range of phases described in this
paper. The situation is analogous to the static Ising model in
transverse field (Eq. (1) with h(t) = h0): although the model
belongs to the BDI class withZ classification group, this model
actually shows two phases (paramagnet and ferromagnet) only.

Perspectives for future work concern the effects of integra-
bility breaking terms, that are mapped under Jordan-Wigner
to interactions among the fermions. These terms have two
important effects: first, in analogy to the equilibrium case,
interactions are known to restrict the size of the classification
group. In the case of periodically driven interacting fermions
with parity and time-reversal symmetry, the relevant classi-
fication group is Z8 × Z2 × Z2 [116]. A second important
effect deals with the nature of the Floquet ground state:
for any finite-size system, this state can always be defined
by starting from a macroscopically large driving frequency,
and adiabatically reducing it. Will the state obtained by this
procedure hold the same properties as true ground states (of
time independent Hamiltonians)?

The common wisdom is that this is not the case: generic
nonintegrable systems are expected to thermalize and have
Floquet eigenstates with volume law entanglement. Under this
assumption, the Floquet ground state would not show any
phase transition and would be always topologically trivial.
Two possible workarounds that have been discussed in the
literature are (i) using disorder and many-body localization
to prevent heating and thus keep a low entanglement entropy
(see for example Refs. [19,53] for an introduction) and (ii)
perform the adiabatic following at a small but finite rate in
order to achieve a transient low-entanglement state before the
system reaches the thermal state [40]. Another option that one
may wish to consider is the possibility that Floquet ground
states do not thermalize and can show low entanglement. This
question is correlated to the problem of stability of classical
many-body systems (see, for example, Ref. [23]) and deserves
further investigation.
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APPENDIX A: SYMMETRIES OF THE FLOQUET
HAMILTONIAN

To obtain the Floquet Hamiltonian of a mode k [Hk F (δt),
Eq. (10)] we need to solve the Bogoliubov-de Gennes
equations [Eq. (8)] over one period of the driving. In this
way, we can construct the time-evolution operator over one
period,

Uk(τ + δt,δt) = ←−T e−i
∫ τ+δt

δt
Hk(t ′)dt ′ , (A1)

where
←−T is the time-ordering operator; the Floquet Hamilto-

nian is obtained as

Uk(τ + δt,δt) = e−iτHk F (δt) . (A2)

Using these relations, we can obtain the symmetries of
Hk F (δt) starting from those of Hk(t).

First of all, at all times the system is invariant under particle-
hole symmetry: τxHk(t)τx = −H∗

−k(t) – see Eq. (4); we can
find indeed [119]

τxUk(τ+δt,δt)τx = ←−T e−i
∫ τ+δt

δt
τxHk(t ′)τxdt ′ = U∗

−k(τ+δt,δt) .

(A3)

Using Eq. (A2), we can see that τxH∗
k F (δt)τx = −H−k F (δt):

the Floquet Hamiltonian is particle-hole symmetric whatever
the value of δt .

Let us consider a time tr where the system is time-reversal
invariant; thanks to the periodicity of the driving, time-reversal
invariance will repeat with period τ . The time-dependent
Hamiltonian indeed enjoys the symmetry relation

Hk(tr + nτ + t) = H∗
−k(tr + nτ − t) . (A4)

Using this relation in Eq. (A1), we can find

Uk(τ + tr ,tr ) = ←−T e−i
∫ τ

0 H∗
−k(tr−t ′)dt ′ . (A5)

With an appropriate change of variables and exploiting the τ

periodicity of Hk(t), we can write

Uk(τ + tr ,tr ) = ←−T e−i
∫ tr +τ

tr
H∗

−k(t ′′)dt ′′ = (U†
−k(τ + tr ,tr ))∗ .

(A6)

Using Eq. (A6), we find Hk F (tr ) = H∗
−k F (tr ): the Floquet

Hamiltonian enjoys time-reversal symmetry at the time-
reversal invariant points.

We have indeed shown that the symmetry relations Eq. (4)
and (5) are valid for the Floquet Hamiltonian at the time-
reversal invariant points. We conclude this Section showing
how the relations Eq. (13) can be derived. We focus on the case
of the Floquet Hamiltonian, the case of the static Hamiltonian
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is exactly the same. In general, we can write the Floquet
Hamiltonian as

Hk F (tr ) = Akτx + Bkτy + Ckτz , (A7)

where we have defined the real quantities

Ak = −2μk �e[u−
k P (tr )(v−

k P (tr ))∗] ,

Bk = −2μk �m[u−
k P (tr )(v−

k P (tr ))∗] ,

Ck = μk(|v−
k P (tr )|2 − |u−

k P (tr )|2) . (A8)

Applying the time-reversal symmetry [Eq. (5)], we find

Ak = A−k, Bk = −B−k, Ck = C−k . (A9)

Instead applying the particle-hole symmetry [Eq. (4)], we
obtain

Ak = −A−k, Bk = −B−k, Ck = C−k . (A10)

The only way in which these two systems of equations can
be both true is that Ak = 0; in the case μk �= 0 this implies
the conclusion Eq. (13). The quasienergy μk can be vanishing
only at isolated points, indeed Eq. (13) holds for almost every
k and this is enough to ensure the vanishing of the integral in
Eq. (22).

APPENDIX B: RESONANCES IN THE FLOQUET
HAMILTONIAN

As shown for instance in Refs. [90,91], finding the
Floquet modes and quasienergies amounts to diagonalize a
static Hamiltonian in an infinite-dimensional Hilbert space.
Expanding the periodic Hamiltonian in Fourier series

Ĥ (t) =
∑

n

Ĥ (n)e−in
t , (B1)

we need to diagonalize the infinite matrix⎛⎜⎜⎜⎜⎜⎝
Ĥ (0) + 2


...
...

...
... · · ·

· · · Ĥ (0) + 
 Ĥ (1) Ĥ (2) Ĥ (3) · · ·
· · · Ĥ (−1) Ĥ (0) Ĥ (1) Ĥ (2) · · ·
· · · Ĥ (−2) Ĥ (−1) Ĥ (0) − 
 Ĥ (1) · · ·
· · · Ĥ (−3) Ĥ (−2) Ĥ (−1) Ĥ (0) − 2
 · · ·

⎞⎟⎟⎟⎟⎟⎠ .

(B2)
We define this object as the Floquet extended Hamiltonian.
We see that the blocks on the diagonal are the n = 0 Fourier
components shifted by an integer number of 
. The nth Fourier
component is on the nth progressive diagonal of the matrix.
We see that this Hamiltonian is invariant if we add k
1 (this is
equivalent of applying to the Floquet states a rotation of angle
e−ik
t ). Thanks to this symmetry, the Floquet spectrum results
invariant under translations of an integer number of 
, as it
should be.

We apply this analysis to the kth component of the single-
particle HamiltonianHk(t) [see Eq. (2)]. Before doing that, we
apply to this matrix a unitary time-dependent transformation

V(t) = eiφ(t)σz , (B3)

where

φ(t) = −
∫ t

0
(h(t ′) − h0)dt ′

= −A

{
t − kτ if kτ < t < (k + 1/2)τ

t − (k + 1/2)τ if (k + 1/2)τ<t<(k+1)τ .

(B4)

The Hamiltonian in the rotated frame is

H̃k(t) = V†(t)Hk(t)V(t) − iV†(t)V̇(t)

=
(

h0 − cos k −i sin ke−2iφ(t)

i sin ke2iφ(t) cos k − h0

)
. (B5)

At this point, we can evaluate the Fourier coefficients and
construct the Floquet extended Hamiltonian. We find

H̃
(0)
k =

(
h0 − cos k −i sin k 1

2π


A

sin
(
2π A




)
i sin k 1

2π


A

sin
(
2π A




)
cos k − h0

)
,

H̃
(n)
k = σy




π
cos

(
π

A



− n

π

2

)

×
[

sin
(
π A



− nπ

2

)
A − n


2

+ sin
(
π A



+ nπ

2

)
A + n


2

]
. (B6)

First of all, we see that—when k = 0 or k = π—all the off-
diagonal terms in the Floquet extended Hamiltonian vanish:
our matrix is already diagonal and we can easily see if there are

resonances. In the case k = 0, H̃
(0)
k = (h0 − 1)σz. Therefore—

if h0 − 1 = −1 + h0 + p
—one diagonal term of H̃
(0)
k − n


is equal to one diagonal term of H̃
(0)
k − (n − p)
 and we have

a Floquet resonance (we have called these resonances “the p

series”). In the case k = π , we find the resonance condition
2(h0 + 1) = q
 and we have the resonances of the q series.
These resonances correspond to the vertical transition lines of
Fig. 1.

Dealing with the horizontal transition lines, we have to
discuss the off-diagonal term of H̃

(n)
k . There are two cases.

If n = 0 or n � 1 is odd, the off-diagonal term vanishes
when A = j

2 
, with j even. If n = 0 or n � 1 is even,
the off-diagonal term vanishes when A = j

2 
, with j odd.
When one of these two conditions is valid, then there are
infinite pairs of diagonal terms of the Floquet extended
Hamiltonian which are connected by a vanishing matrix
element. For instance, if we have the condition for j even,
we have that h0 − cos k has vanishing matrix element with
−h0 + cos k, −h0 + cos k + 
, −h0 + cos k + 3
 and so on.
On the opposite, if we have the condition valid for j odd,
we have that h0 − cos k has vanishing matrix element with
−h0 + cos k, −h0 + cos k + 2
, −h0 + cos k + 4
, and so
on. If we apply perturbation theory (similarly to what done in
Ref. [91]), we see that the corrections to the two degenerate
levels are second order in (
/A). So, up to second order in

/A, we have degeneracies in the Floquet spectrum when
A = j

2 
. Therefore the approximation is better for large A/


and this is confirmed by the phase diagram in Fig. 1.
To conclude this appendix, we say that our phase transitions

in A/
 closely remind those found in Ref. [32] for a quantum
Ising chain with a sinusoidal driving h(t) = h0 + A sin(
t).
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Those transition points were obtained by means of a change to
a rotating reference frame + the rotating wave approximation.
This method is equivalent to apply the perturbative approxi-
mation we have discussed. If we apply the perturbation theory
we have just discussed to the sinusoidally-driven model, we
obtain the same transition points of Ref. [32], occurring at the
zeros of the Bessel functions Jl(2A/
).

APPENDIX C: FLOQUET HAMILTONIAN FOR THE NON
TRANSLATIONALLY INVARIANT SYSTEM

In this appendix, we briefly describe the quantum dynamics
of non translationally invariant Ising/XY chains [27,120]
undergoing a periodic driving of period τ . We aim to obtain
the general expression of the Floquet Hamiltonian Eq. (27).
We start introducing the Bogoliubov-de Gennes dynamics,
closely following the discussion of Refs. [27,41]. Generically,
if ĉj denote the L fermionic operators originating from the
Jordan-Wigner transformation of spin operators [86],

σ̂ x
j = 1 − 2ĉ

†
j ĉj ,

σ̂ z
j = τ̂j (ĉ†j + ĉj ),

σ̂
y

j = iτ̂j (ĉ†j − ĉj ) , with τ̂j ≡
∏
l<j

σ̂ x
l , (C1)

we can write the Hamiltonian in Eq. (1) as a quadratic
fermionic form:

Ĥ (t) = �̂† · H(t) · �̂ = (̂c† ĉ )

(
A(t) B(t)

−B(t) −A(t)

)
×

(̂
c
ĉ†

)
. (C2)

Here, �̂ are 2L-component (Nambu) fermionic operators
defined as �̂j = ĉj (for 1 � j � L) and �̂L+j = ĉ

†
j , andH is a

2L × 2L Hermitian matrix having the explicit form shown on
the right-hand side, with A an L × L real symmetric matrix, B
an L × L real antisymmetric matrix. Such a form of H implies
a particle-hole symmetry: if (uα,vβ )T is an instantaneous
eigenvector of H with eigenvalue εβ � 0, then (v∗

β,u∗
β)T is

an eigenvector with eigenvalue −εβ � 0.
Let us now focus on a given time, t = 0, or alternatively

suppose that the Hamiltonian is time-independent. Then, we
can apply a unitary Bogoliubov transformation

�̂ =
(̂

c
ĉ†

)
= U0 ·

(
γ̂

γ̂ †

)
=

(
U0 V∗

0
V0 U∗

0

)
·
(

γ̂

γ̂ †

)
, (C3)

where U0 and V0 are L × L matrices collecting all the
eigenvectors of H, by column, turning the Hamiltonian in
Eq. (C2) in the diagonal form

Ĥ =
L∑

β=1

εβ

2
(γ̂ †

β γ̂β − γ̂β γ̂
†
β ) , (C4)

where the γ̂β are new quasiparticle Fermionic operators.

To discuss the quantum dynamics when Ĥ (t) depends on
time, we start by writing the Heisenberg equations of motion
for the �̂: they are linear, due to the quadratic nature of Ĥ (t).

A simple calculation shows that

ih̄
d

dt
�̂H (t) = 2H(t) · �̂H (t) , (C5)

the factor 2 on the right-hand side originating from the off-
diagonal contributions due to {�j,�L+j } = 1. These Heisen-
berg equations should be solved with the initial condition that,
at time t = 0, is

�̂H (t = 0) = �̂ = U0 ·
(

γ̂

γ̂ †

)
. (C6)

A solution is evidently given by

�̂H (t) = U(t) ·
(

γ̂

γ̂ †

)
=

(
U(t) V∗(t)
V(t) U∗(t)

)
·
(

γ̂

γ̂ †

)
(C7)

with the same γ̂ used to diagonalize the initial t = 0 problem,
as long as the time-dependent coefficients of the unitary
2L × 2L matrixU(t) satisfy the ordinary linear Bogoliubov-de
Gennes time-dependent equations

ih̄
d

dt
U(t) = 2H(t) · U(t) (C8)

with initial conditions U(t = 0) = U0. It is easy to verify
that the time-dependent Bogoliubov-de Gennes form implies
that the operators γ̂β (t) in the Schrödinger picture are time-
dependent and annihilate the time-dependent state |ψ(t)〉.
Very interestingly, the operators γ̂β (t) in the Heisenberg
representation are constant in time. Notice that U(t) looks like
the unitary evolution operator of a 2L-dimensional problem
with Hamiltonian 2H(t). This implies that we can use a Floquet
analysis to get U(t) whenever H(t) is time-periodic. If we
consider one column of Eq. (C8),

ih̄
d

dt

(
uμ(t)
vμ(t)

)
= 2H(t) ·

(
uμ(t)
vμ(t)

)
, (C9)

[here (
uμ(t)
vμ(t) ) is a 2L-column vector], we can find 2L

independent Floquet solutions, which—thanks to the particle-
hole symmetry—appear in pairs(

uP α(t)
vP α(t)

)
e−iμαt ,

(
v∗

P α(t)
u∗

P α(t)

)
eiμαt , (C10)

where μα is real and the vectors uP α(t), vP α(t) τ -periodic
in time. With these column vectors (we define their elements
as UP jα and VP jα) and the phase factors e−iμαt it is possible
to construct a unitary Bogoliubov transformation analogous
to the one in Eq. (C3); applying its inverse to the vector of

the initial fermionic operators
(̂c

ĉ†
)
, we find the new fermionic

operators

γ̂F α(t) =
L∑

j=1

[U ∗
P jα(t)ĉj + V ∗

P jα(t)ĉ†j ]eiμαt α = 1, . . . ,L.

(C11)

These operators are τ -periodic up to a phase, so we can
define them as “Floquet operators”. Their evolution plus the
unitary transformation which connects them to the operators
ĉj completely defines the dynamics of the system. Being the
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Hamiltonian quadratic, Wick’s theorem applies: the expec-
tations of all operators (and the value of the entanglement
entropy [41]) can be written in terms of the two-point
correlators 〈ĉi ĉj 〉t , 〈ĉ†i ĉj 〉t , which can be expressed in terms
of the UP jα(t), VP jα(t) and μα . For instance, we have

〈ĉi ĉj 〉t =
∑
α,β

[U ∗
P iα(t)U ∗

P jβ(t)〈γ̂F α(0)γ̂F β(0)〉0ei(μα+μβ )t

+U ∗
P iα(t)VP jβ(t)〈γ̂F α(0)γ̂ †

F β(0)〉0ei(μα−μβ )t

+VP iα(t)U ∗
P jβ(t)〈γ̂ †

F α(0)γ̂F β(0)〉0ei(−μα+μβ )t

+ [VP iα(t)VP jβ(t)〈γ̂ †
F α(0)γ̂ †

F β(0)〉0e−i(μα+μβ )t ],

(C12)

where the expectation values at time 0 are lengthy expressions
involving UP jα(0), VP jα(0) and the elements U 0

jμ(0), V 0
jμ(0)

of the unitary transformation diagonalizing the Hamiltonian
at time 0 in Eq. (C3) (these ones give information on the
initial state). Therefore, knowing the dynamics of the γ̂F α(t),
we know everything about the evolution of the system. In
particular, we know everything about its Floquet Hamiltonian.
To find it, we notice that the stroboscopic dynamics of each
γ̂F α(t) is just the multiplication by a phase factor

γ̂F α(δt + nτ ) = eiμαnτ γ̂F α(δt). (C13)

On the opposite, in the Heisenberg representation, these
operators—like the operators γ̂β (t) of Eq. (C6)—are

constant:

γ̂F α(δt) = eiĤF (δt)nτ γ̂F α(δt)e−iĤF (δt)nτ . (C14)

This is possible if the Floquet Hamiltonian has the quadratic
fermion form

ĤF (δt) =
L∑

α=1

μα

2
(γ̂ †

F,α(δt)γ̂F,α(δt) − γ̂F,α(δt)γ̂ †
F,α(δt))

(C15)

plus some immaterial constant. We are sure that there are no
other terms: from one side the Hamiltonian is quadratic, and
also the Floquet Hamiltonian needs to be quadratic (otherwise,
the Wick’s theorem would not be valid at all times); from the
other side, this Floquet Hamiltonian completely describes the
evolution of all the ĉj operators and then the dynamics of all
the observables.

To find the values of the μα , we numerically diagonalize
the solution U(δt + τ,δt) of Eq. (C8) taking as initial value
the identity. We do the simultaneous diagonalization of the
two commuting Hermitian operators (1/2)(U(δt + τ,δt) +
U†(δt + τ,δt)) and (1/2i)(U(δt + τ,δt) − U†(δt + τ,δt)). In
this way, we obtain the eigenvalues cos(2ματ ) and sin(2ματ ),
from which we can construct e−iματ and eiματ . The correspond-
ing eigenvectors, respectively, give the amplitudes of γ̂F α(t)
and γ̂

†
F α(t) [see Eq. (C11)].
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