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We investigate the distribution of waiting times between electrons emitted from a periodically driven single-
electron turnstile. To this end, we develop a scheme for analytic calculations of the waiting time distributions for
arbitrary periodic driving protocols. We illustrate the general framework by considering a driven tunnel junction
before moving on to the more involved single-electron turnstile. The waiting time distributions are evaluated at
low temperatures for square-wave and harmonic driving protocols. In the adiabatic regime, the dynamics of the
turnstile is synchronized with the external drive. As the nonadiabatic regime is approached, the waiting time
distribution becomes dominated by cycle-missing events in which the turnstile fails to emit within one or several
periods. We also discuss the influence of finite electronic temperatures. The waiting time distributions provide a
useful characterization of the driven single-electron turnstile with complementary information compared to what
can be learned from conventional current measurements.
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I. INTRODUCTION

Dynamic single-electron sources are expected to play
a central role in future quantum technologies based on
accurate emission of single electrons into quantum electronic
circuits [1]. For example, in a quantum information processor
working with a fixed clock cycle, the periodic emission of
single electrons will be important for synchronized many-
particle operations [2]. Moreover, dynamic single-electron
emitters may generate quantized electrical currents that are
given exactly by the driving frequency times the electronic
charge [3,4]. Dynamic single-electron emitters have been
realized in several experiments based on charge pumps
[5–13], turnstiles [14–16], and mesoscopic capacitors [17,18]
or by applying Lorentzian-shape voltage pulses to a
contact [19,20].

The accuracy of the emitters can be characterized by
measuring the low-frequency fluctuations of the electrical
current [21–23]. An accurate number of electrons emitted over
many periods reduces the noise [22–24]. However, the low-
frequency noise does not necessarily contain information about
the regularity of the emitter. To characterize the regularity,
measuring the distribution of electron waiting times between
subsequent emission events has been suggested [25,26]. For
a highly regular emitter, the waiting time distribution (WTD)
should peak around the period of the drive, corresponding to
the emissions being separated in time exactly by the period.

In recent years, electron waiting times have been investi-
gated theoretically for a variety of quantum transport setups.
For Coulomb blockade structures such as quantum dots and
metallic islands coupled to normal-state or superconduct-
ing leads, methods based on Markovian [25,26] (and non-
Markovian [27]) master equations have been developed. For
coherent conductors, the distribution of electron waiting times
can be obtained from a compact determinant formula con-
taining the scattering matrix of the system [28,29]. Moreover,
transient behaviors have been described using nonequilibrium
Green’s functions [30–32].

Based on these methods, electronic WTDs have been
evaluated for a wide range of physical situations. A series
of works have focused on WTDs of electron transport

through single or double quantum dots [25,27,33–40]. Another
line of research has been devoted to WTDs of mesoscopic
conductors [28,41], including the influence of time-dependent
perturbations [29,42–45]. Distributions of waiting times have
also been investigated for superconducting systems [46,47],
for instance, in relation to Josephson junctions [48,49] and
the detection of Majorana fermions [50]. A theory of an
electron waiting time clock has been developed [51], feedback
control of electron waiting times has been proposed [52], and
connections between WTDs and quantum tomography have
been identified [53].

The purpose of this paper is to develop a scheme for
analytic calculations of the WTDs for periodically driven
single-electron turnstiles (Fig. 1). Specifically, we use WTDs
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FIG. 1. Dynamic single-electron turnstile and distribution of
electron waiting times. (a) The single-electron turnstile consists of a
metallic island coupled to source and drain electrodes via two tunnel
junctions. Due to strong Coulomb interactions, the island can be
occupied by only zero or one excess electron. Using time-dependent
gate voltages, the tunneling rates of the junctions are modulated
periodically in time in order to regulate the single-electron transport.
(b) The waiting time between emitted electrons is denoted as τ . The
distribution of waiting times W(τ ) is expected to be enhanced at
multiplies of the period T of the drive.
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to understand the basic working principles of turnstiles and
to characterize the regularity of the emission processes. In an
earlier work, the WTD was evaluated for the special case of a
single-electron emitter with a square-wave driving protocol at
zero temperature [26]. Here we present a method for calculat-
ing the WTD for arbitrary periodic driving protocols including
finite-temperature effects. Our method will be important for
describing future experiments with arbitrary drivings and
finite-temperature effects. We evaluate the distribution of
electron waiting times for square-wave and harmonic driving
protocols, and we discuss in detail the crossover from adiabatic
to nonadiabatic driving. Our predictions can readily be tested
in future experiments on dynamic single-electron turnstiles
using a capacitively coupled charge detector to measure the
waiting times [54].

This paper is organized as follows. In Sec. II we introduce
the basic concepts of WTDs and the related idle-time prob-
ability with a specific focus on periodically driven emitters.
In Sec. III we illustrate these concepts by evaluating the
distribution of electron waiting times for sequential tunneling
through a driven tunnel junction. In Sec. IV we then go on
to develop the theory of WTDs of periodically driven single-
electron turnstiles. We introduce the rate equation description
of the turnstile and show how to obtain the WTD for arbitrary
driving protocols. We evaluate the periodic state of the emitter,
the idle-time probability, and, finally, the WTD, going from
the fully adiabatic to the strongly nonadiabatic regime. Finally,
we discuss the influence of finite electronic temperatures. Our
conclusions are presented in Sec. V.

II. ELECTRON WAITING TIMES

The electron waiting time τ is the time that passes between
two subsequent single-electron transfers through a nanoscale
conductor [25,26,28]. Due to the stochastic nature of the
charge-transfer process, the electron waiting time is not a fixed
quantity. Instead, it must be described by a distribution function
W(τ ) which we refer to as the waiting time distribution.
For stationary problems with no explicit time dependence,
the WTD can be related to the idle-time probability �(τ )
as [28,41]

W(τ ) = 〈τ 〉∂2
τ �(τ ). (1)

The idle-time probability �(τ ) is the probability that no
electrons are transferred through the conductor during a time
span of duration τ . The mean waiting time can be expressed
in terms of the idle-time probability as [28,41]

〈τ 〉 =
∫ ∞

0
dτW(τ )τ = − 1

�̇(τ = 0)
. (2)

These relations are important since it is often easier to
calculate the idle-time probability and then obtain the WTD
by differentiation.

In the following, we consider periodically driven single-
electron emitters. In this case, the calculation of the WTD is
complicated by the fact that the idle-time probability depends
not only on the length τ of the time interval [t0,t0 + τ ] but also
on the initial time t0 [29,44,45]. The idle-time probability is
then a two-time quantity that we denote �(τ,t0). However,
the relations above still hold, provided that we average
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FIG. 2. Dynamic tunnel junction. (a) Circuit representation of the
tunnel junction with tunnel conductance GT and a time-dependent
voltage V (t). (b) Tunneling through the junction occurs with the
time-dependent rate �(t) controlled by the applied voltage V (t). The
temperature is zero.

the idle-time probability over a period of the drive T and
define [29,44,45]

�(τ ) = 1

T

∫ T

0
dt0�(τ,t0). (3)

In combination, Eqs. (1), (2), and (3) allow us to calculate
the WTD for dynamically driven single-electron emitters. We
now illustrate these ideas by evaluating the WTD for a dynamic
tunnel junction before moving on to the more involved single-
electron turnstile.

III. DYNAMIC TUNNEL JUNCTION

We start by considering sequential tunneling through a
single tunnel junction as illustrated in Fig. 2. To lowest order in
the tunnel coupling, the rate for tunneling through the junction
can be expressed as [4,55]

�(t) = GT

e2

�E(t)

eβ�E(t) − 1
, (4)

where GT is the tunneling conductance of the junction, β =
1/kBT is the inverse temperature of the electronic leads, and
�E(t) is the increase in energy due to a tunneling event. The
tunneling rate takes into account the filled Fermi seas on both
sides of the junction. For the tunnel junction, we have �E(t) =
−eV (t), where V (t) is the applied voltage. We focus here
on voltage biases that are periodic in time such that V (t +
T ) = V (t), where T is the period of the drive. Higher-order
tunneling processes are negligible, and we consider for now
the zero-temperature limit, where tunneling against the voltage
does not occur. (Of course, in an experiment, the temperature
will always be nonzero, but the zero-temperature limit can still
be a good approximation.) The tunneling rate is in this case
proportional to the bias voltage

�(t) = −GT

e2
�E(t)�[−�E(t)]

= GT

e
V (t)�[V (t)], T → 0. (5)

Thus, by varying the voltage bias V (t), we can control the time
dependence of the tunneling rate �(t).

To evaluate the distribution of electron waiting times, it
is useful to introduce the counting statistics of tunneling
events described by the probability P (n,t) of n electrons
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having tunneled through the junction during the time span
[t0,t0 + t] [56–58]. This probability evolves according to the
rate equation

d

dt
P (n,t) = �(t)P (n − 1,t) − �(t)P (n,t). (6)

We moreover define the moment-generating function

M(χ,t) =
∞∑

n=0

P (n,t)einχ , (7)

where χ is the counting field. The evolution of the moment-
generating function follows from Eq. (6) and reads

d

dt
M(χ,t) = �(t)

(
eiχ − 1

)
M(χ,t). (8)

We then easily find

M(χ,t) = e
(eiχ −1)

∫ t0+t

t0
dt ′�(t ′)M(χ,t0). (9)

From the moment-generating function we have access to
all moments of n. However, we can also find the idle-time
probability. To this end, we note that [51]

M(i∞,t) = P (n = 0,t), (10)

which is exactly the idle-time probability. From Eq. (9) we
then find

�(τ,t0) = e
− ∫ t0+τ

t0
dt ′�(t ′)

�(0,t0), (11)

with the initial condition �(0,t0) = 1. We note that this
result could also have been reached by solving Eq. (6) for
P (n = 0,t) using the fact that P (n < 0,t) = 0. However, when
we consider the more involved turnstile in the following
section, we will see that it is generally convenient to introduce
a counting field as above.

A. Square-wave driving

By combining Eq. (11) with Eqs. (1), (2), and (3) we can
evaluate the distribution of electron waiting times for the tunnel
junction. We start by considering the square-wave driving
protocol

�(t) = �(1 − 2α)�(t − �t + T /2�) + α�, (12)

where �·� denotes flooring and the parameter α ∈ [0,1/2]
controls the amplitude of the drive. For α = 0, the protocol

is a periodic step function with the rate � in the on state
and the rate 0 in the off state. For nonzero values of α, the
rate switches between �(1 − α) and �α. This may describe a
leakage current in the off state.

Carrying out the calculation of the WTD, we find for α = 0
the compact result

W(τ ) = �e−�τ e
�T
2 � τ+T /2

T �
∣∣∣2(⌊ τ

T
⌋

− τ

T
)

+ 1
∣∣∣. (13)

This result can be further simplified by introducing the
dimensionless quantities

s = τ/T , ε = �T , W(s) = W(τ = sT )T , (14)

leading to an appealing expression reading

W(s) = εe−εse
ε
2 �s+ 1

2 �|2(�s� − s) + 1|. (15)

Here we clearly see that the shape of the WTD is fully
controlled by the dimensionless parameter ε given by the
tunneling rate � times the period T . Large values of ε

correspond to the limit of slow (or adiabatic) driving, while
small values of ε describe nonadiabatic driving. In the adiabatic
limit, most waiting times are short, such that we can take s 
 1
and approximate W(s) � εe−εs corresponding to a Poisson
process.

In Fig. 3 we show WTDs for the square-wave protocol. In
the adiabatic limit, ε � 1, the WTD is essentially exponential
with a mean waiting time which is much shorter than the
period. A large number of electrons tunnel through the junction
in the on state, interrupted by quiet periods in the off state. As
the tunneling rate is decreased, a pronounced suppression of
the WTD is found at τ = T /2 since electrons cannot tunnel
with a separation in time of exactly half the period. As the
inverse tunneling rate becomes comparable with the period,
the WTD is suppressed to zero at times that are separated by
the period of the drive. Additionally, the WTD is enhanced at
multiples of the period. The suppression is partially lifted if
the tunneling rate does not reach zero in the off state. (The
WTD for α = 0 can be found in the Appendix). Finally, in the
nonadiabatic regime, ε < 1, the synchronization between the
drive and the tunneling is gradually lost.

FIG. 3. WTDs for a tunnel junction with square-wave driving. We show results for the adiabatic regime, where ε = �T � 1, to the
nonadiabatic regime, ε < 1. For ε = 1, we consider WTDs for the two different protocols in the inset [α = 0 (blue) and α = 0.2 (red)]. In the
adiabatic regime, the WTD is well approximated by an exponential distribution.
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FIG. 4. WTDs for a tunnel junction with harmonic driving. We show results for the adiabatic regime, where ε = �T � 1, to the nonadiabatic
regime, ε < 1. In the adiabatic regime, the WTD is well approximated by an average over Poisson processes with the instantaneous tunneling
rate �(t); see Eq. (18) for the adiabatic approximation.

B. Harmonic driving

Next, we consider the harmonic protocol

�(t) = � sin2 (πt/T ), (16)

with period T . In this case, we find for the WTD

W(s) = e− εs
2

(ε

4
I0

[ ε

2π
sin (πs)

]
{3 + cos (2πs)}

− I1

[ ε

2π
sin (πs)

]
{ε cos (πs) + π/ sin (πs)}

)
(17)

in terms of the dimensionless quantities defined in Eq. (14),
where I0 and I1 are zeroth- and first-order modified Bessel
functions of the first kind.

The WTDs for the harmonic drive are shown in Fig. 4. In
the adiabatic regime, ε � 1, the WTD is well approximated
by an average over Poisson processes with the instantaneous
tunneling rate �(t), such that

W(τ ) � 1

T

∫ T

0
dt�(t)e−�(t)τ , ε � 1. (18)

As the tunneling rate is decreased, the WTDs start to
develop oscillations due to the periodic drive, similar to the
results in Fig. 3 for the square-wave driving. Again, in the
nonadiabatic regime, the synchronization between the drive
and the tunneling events is gradually lost.

IV. SINGLE-ELECTRON TURNSTILE

We are now ready to consider the single-electron turnstile
depicted in Fig. 5. Unlike the tunnel junction from the previous
section, we here need to keep track of the charge state of the
turnstile. To this end, we consider a Markovian master equation
of the form

d

dt
|p(t)〉 = L(t)|p(t)〉, (19)

where |p(t)〉 is a column vector with the occupation prob-
abilities for the different charge states of the turnstile and
the matrix L(t) contains the time-dependent rates for making
transitions between them. We use the compact bracket notation
known from quantum mechanics, keeping in mind that we are
considering an essentially classical transport process. As in the
previous section, we introduce a counting field χ that couples
to the number of electrons that have tunneled through the

right junction. This is a standard procedure in full counting
statistics [56–58], leading us to a modified master equation of
the form

d

dt
|pχ (t)〉 = Lχ (t)|pχ (t)〉. (20)

For χ = 0, we recover the original master equation without
the counting field. Below, we specify the rate matrix Lχ (t) for
the single-electron turnstile. The modified master equation can
formally be solved as

|pχ (t)〉 = Uχ (t,t0)|pχ (t0)〉, (21)

where the evolution operator is given by a time-ordered
exponential as [59,60]

Uχ (t,t0) = T̂
{
e
∫ t

t0
dt ′Lχ (t ′)}

. (22)

In general, it is hard to evaluate the time-ordered exponential.
However, for the single-electron turnstile, we can evaluate it
for the particular values of the counting field that we need,
specifically for χ = 0 and χ = i∞.

The moment-generating function now reads

M(χ,t) = 〈1|Uχ (t,t0)|pχ (t0)〉, (23)

E

ΓR(t)

V/2 Vg(t)

(a) (b)

island ΓL(t)

-V/2

CL, GL CR, GR

Cg

FIG. 5. Dynamic single-electron turnstile. (a) The turnstile con-
sists of a metallic island coupled to source and drain electrodes via
two tunnel junctions with capacitances CL/R and tunnel conductances
GL/R . A constant voltage V ensures that the transport is unidirectional
at zero temperature. A time-dependent gate voltage Vg(t) is used
to modify the transport through the island. (b) Tunneling through
the tunnel junctions occurs with the time-dependent rates �L(t) and
�R(t), controlled by the gate voltage Vg(t).
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where 〈1| is a row vector of ones. Taking the limit χ → i∞,
we find the idle-time probability as

�(τ,t0) = 〈1|Ui∞(t0 + τ,t0)|p(t0)〉, (24)

having used that |pi∞(t0)〉 = |p(t0)〉 at the time t0, when we
start counting. For the initial state |p(t0)〉, we assume that
the turnstile has relaxed to its periodic state given by the
normalized solution to the equation

|p(t0)〉 = U0(t0 + T ,t0)|p(t0)〉, (25)

with |p(t0 + T )〉 = |p(t0)〉 by definition. Combining the ex-
pressions above with Eqs. (1), (2), and (3), we can then evaluate
the distribution of electron waiting times for the single-electron
turnstile.

A. Master equation

Next, we specify the rate matrix for the turnstile. The
turnstile consists of a metallic island coupled via tunnel
junctions to a source and a drain electrode, as illustrated in
Fig. 5. The island is operated close to a charge degeneracy
point, where strong Coulomb interactions restrict the num-
ber of excess electrons on the island to zero or one. An
applied voltage bias V ensures that the electron transport is
unidirectional from the source to the drain via the island.
A time-dependent gate voltage Vg(t) = Vg(t + T ) is used to
modulate the transport through the turnstile periodically in
time. Again, we first consider the system at zero temperature,
for which the tunneling rates through the tunnel junctions
read [4,55]

�L(t) = −GL

e2
�EL(t)�[−�EL(t)], (26)

with

�EL(t) = Ec

[
1 − 2

{
CgVg(t) + (Cg/2 + CL)V

}
/e

]
and

�R(t) = −GR

e2
�ER(t)�[−�ER(t)], (27)

with

�ER(t) = −Ec

[
1 − 2{CgVg(t) − (Cg/2 + CR)V }/e].

Here GL and GR are the tunnel conductances of each junction,
and the charging energy Ec = e2/[2(Cg + CL + CR)] of the
island is expressed in terms of the junction and gate capaci-
tances. It is convenient to consider identical tunnel junctions,
GL = GR = GT , so that

�L(t) + �R(t) = GT V/e = � (28)

is constant. For the single-electron turnstile, we see that we can
modulate the individual tunneling rates in time using the gate
voltage Vg(t), while the overall amplitude � can be controlled
by the applied voltage bias V .

Since the island has only two charge states (empty or
occupied), the rate matrix takes the simple form

Lχ (t) =
⎛⎝−�L(t) �R(t)eiχ

�L(t) −�R(t)

⎞⎠, (29)

where we have included the counting factor eiχ in the upper
off-diagonal element together with �R(t), corresponding to
counting the number of electrons that have tunneled through
the right junction [56–58]. We note that this particular form
of the rate matrix is not restricted only to metallic islands;
it can also be used to describe transport through single-level
quantum dots, for example.

B. Periodic state

To evaluate the WTD, we need the periodic state of the
turnstile, defined by the requirement that |p(t + T )〉 = |p(t)〉.
To this end, we note that the probabilities for the island to be
empty or occupied by a single electron must sum to 1, i.e.,
p0(t) + p1(t) = 1. We can then work with just the probability
of the island to be occupied and write p1(t) = p(t) and p0(t) =
1 − p(t). In this case, the master equation in Eq. (19) can
be converted into an ordinary differential equation for p(t)

FIG. 6. Driving protocols and occupation probabilities. In the top row, we show three different driving protocols. The bottom row shows
the corresponding occupation probabilities for different values of ε = �T .
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reading

d

dt
p(t) = �L(t) − [�L(t) + �R(t)]p(t). (30)

Imposing the condition p(t + T ) = p(t), we then find

p(t) = e− ∫ t+T
t

dt ′
∑

γ �γ (t ′) ∫ t+T
t

dt ′�L(t ′)e
∫ t ′
t

dt ′′
∑

γ �γ (t ′′)

1 − e− ∫ t+T
t

dt ′
∑

γ �γ (t ′)
,

(31)

where the sums run over the two junctions, γ = L,R.
The periodic state can be found for arbitrary periodic

driving protocols. As examples, we consider square-wave and
harmonic protocols. For the square-wave driving, the tunneling
rates read

�L(t) = ��(t − �t + T /2�),

�R(t) = �[1 − �(t − �t + T /2�)]. (32)

In this case, we find for the occupation probability

p(t) =

⎧⎪⎨⎪⎩
1 + e−�t (e−�T /2−1)

(1−e−�T ) , 0 � t < T
2 ,

e−�t (e−�T /2−1)
(1−e−�T ) , T

2 � t � T ,
(33)

which is repeated with the period T . For the harmonic drive,
we take

�L(t) = � sin2 (πt/T ),

�R(t) = � cos2 (πt/T ) (34)

and find for the occupation probability

p(t) = 1

2

(
1 − cos(2πt/T ) + 2π

�T sin(2πt/T )

1 − (
2π
�T

)2

)
. (35)

In Fig. 6, we show the driving protocols together with the
occupation probabilities. In the adiabatic regime, ε = �T �
1, the island quickly responds to the change in the tunneling
rates, and the occupation probability closely follows the rate
for tunneling through the left junction. As the tunneling rates
are decreased, the occupation probability starts to lag behind
the drive, and a clear retardation effect is observed. Finally, in
the nonadiabatic regime, ε < 1, the synchronization with the
drive is gradually lost, and the occupation probability becomes
nearly constant.

C. Idle-time probability

With the periodic state at hand, we can calculate the idle-
time probability. Here we need the time evolution operator
evaluated in the limit χ → i∞. In this limit, the upper off-
diagonal element of the matrix in Eq. (29) vanishes, and the
time evolution operator takes the form

Ui∞(t,t0) =
(

U 11
i∞(t,t0) 0

U 21
i∞(t,t0) U 22

i∞(t,t0)

)
, (36)

with the nonzero elements reading

U 11
i∞(t,t0) = e

− ∫ t

t0
dt ′�L(t ′)

,

U 22
i∞(t,t0) = e

− ∫ t

t0
dt ′�R (t ′)

, (37)

and

U 21
i∞(t,t0) = e

− ∫ t

t0
dt ′�R (t ′)

×
∫ t

t0

dt ′�L(t ′)e
∫ t ′
t0

dt ′′[�R (t ′′)−�L(t ′′)]. (38)

The idle-time probability can then be written as

�(τ,t0) = U 11
i∞(t0 + τ,t0)[1 − p(t0)]

+ U 21
i∞(t0 + τ,t0)[1 − p(t0)]

+ U 22
i∞(t0 + τ,t0)p(t0), (39)

allowing us to evaluate the distribution of waiting times.

D. Square-wave driving

By combining Eqs. (1), (2), and (3) with the idle-time
probability above, we can find the WTD for the turnstile. For
the square-wave driving we find the compact result

W(s) = ε�s + 1/2�e−ε�s+1/2�/2 sinh |ε(�s� − s + 1/2)|,
which was previously derived in Ref. [26], but without using
the general method developed here. In addition, we can
evaluate the distribution of electron waiting times in the
case where the rates switch periodically between the values
�(1 − α) and �α for α ∈ [0,1/2].

In Fig. 7, we show WTDs for the square-wave driving proto-
col. In the adiabatic regime, ε = �T � 1, the WTD is strongly
peaked around the period of the drive. In this case, the emission

FIG. 7. Distribution of electron waiting times for a single-electron turnstile driven by a square-wave gate voltage. The rates switch
periodically between �(1 − α) and �α with α = 0 (blue curves), α = 0.2 (green curves), and α = 0.5 (red curves). The results cover the
transition from the adiabatic regime, where ε = �T � 1, to the nonadiabatic regime, ε < 1.
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FIG. 8. Distribution of electron waiting times for a single-electron turnstile driven by a harmonic gate voltage. We show results for the
adiabatic regime, where ε = �T � 1, to the nonadiabatic regime, ε < 1. In the adiabatic regime, the WTD can be approximated by an average
over WTDs corresponding to stationary processes with fixed rates [see Eq. (44)].

of electrons is highly regular with essentially one electron
being emitted in each period. The width of the peak is due to
the uncertainty in the exact emission time of each electron. As
the tunneling rates are lowered, the width of the peak increases,
and additional peaks appear at multiplies of the period. These
peaks are due to cycle-missing events in which the turnstile
fails to emit an electron within a period. One may then have
to wait several periods between emission events. Finally, in
the nonadiabatic regime, ε < 1, the synchronization with the
drive is gradually lost. We note that two emission events can
never be separated by less than half a period, implying that the
WTD is suppressed to zero for τ � T /2 for all values of ε.

In Fig. 7, we also show results for the case where the
tunneling rates do not reach zero in the off state. The analytic
expression for the WTD with α = 0 is lengthy and is not
shown here. As the parameter α is tuned from 0 to 1/2, the
WTD approaches the result for two static tunnel barriers in
series [25],

W(τ ) = �L�R

�L − �R

(
e−�Rτ − e−�Lτ

)
, (40)

with �L = �R = �/2, such that W(τ ) = (�/2)2τe−�τ/2.

E. Harmonic driving

For the harmonic drive, the elements of the time evolution
operator entering the idle-time probability read

U 11
i∞(t0 + τ,t0) = e− �T

2π ( π
T τ−cos [ π

T τ+ 2π
T t0] sin [ π

T τ]),

U 22
i∞(t0 + τ,t0) = e− �T

2π ( π
T τ+cos [ π

T τ+ 2π
T t0] sin [ π

T τ]), (41)

and

U 21
i∞(t0 + τ,t0) = 1

2
e− �T

2π ( π
T τ+cos [ π

T τ+ 2π
T t0] sin [ π

T τ])

×
[(

1 − e
�T
2π

(sin[ 2π
T (t0+τ )]−sin[ 2π

T t0]))
+�e− �T

2π
sin[ 2π

T t0]
∫ t0+τ

t0

dte
�T
2π

sin[ 2π
T t]

]
.

(42)

To proceed, we expand the integrand above as

e
�T
2π

sin [ 2π
T t] � 1 + �T

2π
sin

[
2π

T t

]
+ · · · , (43)

allowing us to evaluate the integral in Eq. (42) order by order
in ε = �T for ε � 2π . The resulting expression for the WTD
to second order in ε agrees well with numerical results in the
appropriate parameter range. Again, the analytic expression
is lengthy and not shown here. For ε > 2π , we evaluate the
WTD numerically.

In Fig. 8, we show WTDs for the harmonic driving protocol.
In the adiabatic regime, ε � 1, the WTD can be approximated
by a time average over WTDs for two static tunnel barriers in
series as

W(τ ) =
∫ T

0

dt0

T Wt0 (τ ), (44)

where Wt0 (τ ) is given by Eq. (40) and the subscript indicates
that we should use the tunneling rates �L(t0) and �R(t0)
at the time t0. Unlike the square-wave drive, the harmonic
protocol does not lead to regular emission of single electrons
separated by the period of the drive. At each instant of
time, electrons can both enter and leave the island. For this
reason, the harmonic driving is less efficient in regulating the
electron transport. As the tunneling rate is lowered, the WTD
starts to develop a peak at the period of the drive. However,
cycle-missing events quickly become dominant, and peaks
appear at multiplies of the period. Finally, in the nonadiabatic
regime, the synchronization with the drive is gradually lost.

F. Finite electronic temperatures

So far, we have analyzed the zero-temperature limit. We
now consider finite electronic temperatures. In this case, the
tunneling rates read

�(±)
α (t) = Gα

e2

�E(±)
α (t)

eβ�E
(±)
α (t) − 1

, (45)

where �E(±)
α (t) is the increase in energy due to

adding/removing (±) an electron to/from the island by tun-
neling through the left/right junction with tunnel conductance
Gα , α = L,R. Due to the finite temperature, electrons can now
tunnel against the bias. The modified rate matrix then takes the
form

Lχ (t) =
(

−�
(+)
L (t) − �

(+)
R (t) �

(−)
L (t) + �

(−)
R (t)eiχ

�
(+)
L (t) + �

(+)
R (t) −�

(−)
L (t) − �

(−)
R (t)

)
,

(46)
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FIG. 9. Distribution of electron waiting times for finite electronic
temperatures. Results are shown for the square-wave protocol with
ε = �T = 1 and ε = 10. Temperatures are T = 0 (blue) and T =
�E0/(3kB ) (red), where �E0 is the maximal value of |�E(±)

α (t)|
during the protocol.

where we again have added a counting field that couples to
the number of electrons that have tunneled from the island to
the right lead. This choice of the counting field corresponds
to measuring the waiting time between electrons emitted into
the drain while disregarding those that are absorbed. In this
case, we are not able to calculate the idle-time probability
analytically. Instead, we solve Eq. (20) numerically in the limit
χ → i∞ and then find the idle-time probability according to
Eq. (24).

The effect of finite electronic temperatures can be seen
in Fig. 9, where we compare WTDs for the square-wave
driving protocol at zero and finite temperatures. In the
adiabatic regime, the finite electronic temperature degrades
the regularity of the single-electron emitter as it allows for the
island to be refilled (emptied) during the unloading (loading)

phase. This leads to less regular emissions of electrons which
are not separated by the period of the drive. As we approach
the nonadiabatic regime, the influence of a finite electronic
temperature is less dramatic. Still, we see that the suppression
of the WTD to zero is lifted by the finite electronic temperature.

V. CONCLUSIONS

We have investigated the distribution of waiting times
between electrons emitted from a periodically driven single-
electron turnstile. To this end, we have a developed a general
scheme for analytic calculations of the WTD for arbitrary
periodic driving protocols. Our method will be important
for describing future experiments with arbitrary drivings and
finite-temperature effects. The WTDs provide us with clear
insights into the single-electron emission processes from
the driven turnstile and their regularity. This information is
complementary to what can be learned from conventional
current measurements. Our predictions can be tested in future
experiments on dynamic single-electron turnstiles using a ca-
pacitively coupled charge detector to measure the distribution
of electron waiting times.
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APPENDIX: WTD FOR THE TUNNEL JUNCTION

For the single tunnel junction driven by square-wave pulses,
we find for α ∈ [0,1/2] the general result

W(s) = 1

(1 − 2α)

∣∣e(α−1)sεe( 1
2 −α)ε�s+ 1

2 �(1 − α){2sε(α − 1)(2α − 1) + 4α + ε(2�s� + 1)[α(3 − 2α) − 1]}

− e−αsεe−( 1
2 −α)ε�s+ 1

2 �(4α + α2{ε[2s − (2�s� + 1)(2α − 1)] − 4})∣∣. (A1)
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