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Valley-polarized magnetoconductivity and particle-hole symmetry breaking
in a periodically modulated α-T3 lattice
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We explore the transport properties of a periodically modulated α-T3 lattice in the presence of a perpendicular
magnetic field. The effect of the Berry phase on electrical conductivity oscillation, so-called Weiss oscillation,
caused by the modulation-induced nonzero drift velocity of charge carriers is investigated. Employing linear
response theory within the low-temperature regime, we analyze Weiss oscillation as a function of the external
magnetic field for both electrically and magnetically modulated α-T3 lattices numerically as well as analytically.
The Berry phase makes this hexagonal lattice structure behave differently than other two-dimensional fermionic
systems. It causes a significant valley polarization in magnetoconductivity. Most interestingly, the combined
effect of both modulations breaks the particle-hole symmetry and causes a smooth transition from even (odd) to
odd (even) filling fraction corresponding to the density of states peaks by means of the Berry phase.
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I. INTRODUCTION

Since the discovery of the most celebrated atomically thin
material, graphene [1,2], the search for new Dirac materials
has been growing day by day owing to their peculiar electronic
structure and possible applications for the next generation of
nanoelectronics. The electronic properties of graphene, at low
energy, are governed by the Dirac nature of its quasiparticle,
which stems from its hexagonal lattice geometry [2]. A
graphenelike two-dimensional (2D) lattice structure with an
additional atom at the center of the hexagon can be realized in a
T3 or dice lattice [3]. In contrast to graphene, the quasiparticles
in this Dirac-Weyl material exhibit higher pseudospin S = 1
states [3]. Also, the presence of this additional atom at the
center of the hexagon in the dice lattice gives rise to a
dispersionless flat band at each Dirac point in addition to the
Dirac cone found in graphene [3]. In recent times, this type
of Dirac-Weyl material with higher spin states, S = 1, 3/2, 2,
etc., is attracting much attention aimed at exploring the role
of this additional atom in them [4]. A series of investigations
has been carried out in order to reveal different aspects of the
higher spin lattice [5–7].

A smooth transition from pseudospin S = 1/2 (graphene)
to S = 1 (dice or T3 lattice) can be realized using the α-T3

model. Here, α is associated with the strength of the coupling
of the central atom to its nearest neighbors. It has recently
been demonstrated in Hg1-xCdxTe that, under a suitable doping
concentration, this material can be mapped to the α-T3 model
[4] with α = 1/

√
3. Moreover, the continuous evolution of

α from 0 (graphene) to 1 (T3) can be linked to a variable
Berry phase by suitably parametrizing α [7]. The Berry
phase, the geometrical phase arising during an adiabatic cyclic
evolution of a quantum state, plays a vital role in explaining
different properties of a system [8] such as the dc Hall
conductivity [9], magnetotransport properties in the presence
of randomly scattered charged impurities [10], and optical
[4,11,12] properties. Note that the Berry phase is π and 0,
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respectively, in graphene and the T3 lattice, setting the two
limits of the α-T3 system.

Magnetotransport measurements have always been appre-
ciated for providing an efficient way to probe a 2D fermionic
system. The presence of a magnetic field perpendicular to
the plane of the system drastically changes the electronic
band structure by the formation of discrete energy levels, i.e.,
Landau levels. Fluctuation of the chemical potential between
different Landau levels with respect to the magnetic field
manifests itself through the appearance of the well-known
Shubnikov–de Hass oscillation in the longitudinal components
(σxx/yy) of electrical conductivity [13]. On the other hand,
off-diagonal components (σxy/yx) of the electrical conductivity
tensor, i.e., quantum Hall conductivity, become quantized due
to the incomplete cyclotron orbits of the electrons along the
two opposite edges of the 2D system, transverse to the applied
electric field [13].

In the presence of a perpendicular magnetic field, electrons
do not posses any finite drift velocity inside the bulk of a
2D system. However, they may acquire a finite drift velocity
if the system is subjected to an external perturbation. A
magnetic-field-dependent oscillatory drift velocity can be
imparted to electrons by applying an external perturbation
which is periodic in space. This oscillatory drift velocity
induces a new type of quantum oscillation in the magne-
toresistance signal at a low range of magnetic field. This
oscillation, known as Weiss oscillation, was first observed in
magnetoresistance measurements in the electrically modulated
usual 2D electronic systems [14–16]. Weiss oscillation, also
known as commensurability oscillation, is caused by the
commensurability of the two length scales, i.e., the radius
of the cyclotron orbit near the Fermi energy and the period of
the modulation [17–19]. Beenakker et al. [20] explained this
oscillation using the concept of guiding-center-drift resonance
between the periodic cyclotron orbit motion and the oscillating
drift of the orbit center induced by the potential grating. From
the application perspective, a modulated electric potential may
result in a transition from semiconducting to semimetallic
behavior of graphene [21]. Under an appropriate class of
experimentally feasible one-dimensional external periodic
potentials, electron beam supercollimation can be realized in
graphene as suggested by Park et al. [22].
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Apart from the electric modulation scenario, magnetic
modulation has also been considered theoretically [23–29],
followed by several experiments [30–32]. In parallel, a wide
range of applications has also been suggested by several
groups. In 2007 Chieh et al. developed a magnetic-fluid
optical-fiber modulator via magnetic modulation [33]. Even
a usual 2D electron gas (2DEG) under a spatially modulated
magnetic field can be used as a fantastic test bed to study
resistivity induced by electron-electron scattering [34]. There
are some other applications too [35].

Recently, the beating pattern in Weiss oscillation in Rashba
spin-orbit coupled electrically/magnetically modulated 2DEG
was investigated [36,37]. However, Matulis et al. have shown
that Weiss oscillation can be enhanced in graphene due to
the higher Fermi velocity associated with its linear massless
energy dispersion [38]. Tahir et al. have studied the same but
with magnetic modulation and predicted an enhancement of
the amplitude and opposite phase in comparison to the case
of electrically modulated graphene [39]. Similar investiga-
tions have been carried out in electrically modulated bilayer
graphene [40] and silicene [41,42]. However, modulation-
induced Weiss oscillation has not been addressed to date in
the α-T3 system, to the best of our knowledge.

In this article, we investigate the behavior of Weiss oscilla-
tion aiming to explore the role of the variable Berry phase in it.
Most interestingly, we find that the Berry phase causes a valley
polarization in magnetoconductivity which is in contrast to that
in graphene and usual 2DEG. Note that valley-polarized mag-
netoconductivity has been predicted in silicene too, but that
is in the presence of spin-orbit interaction and a gate voltage
[42]. However, when both types of modulations are considered
together, the particle-hole symmetry of the system is broken,
leading to an asymmetric density of states (DOS) in addition to
the valley polarization in magnetoconductivity. We also notice
a transition from odd (even) to even (odd) filling fraction corre-
sponding to DOS peaks with the variation of the Berry phase.

Valley polarization in transport coefficients of the α-T3

lattice may have a possible application in valleytronics, a
technology with control over the valley degree of freedom
of the carriers [43–46]. Several proposals have been made for
valleytronics devices that can be used in encoding or process-
ing information [47] and, also, as valley filters or valley valves
[48]. Intensive research on engineering potential valleytronic
devices based on manipulating the valley nondegeneracy is
needed in order to enrich this newly growing field more and
more.

The remainder of this paper is organized as follows.
In Sec. II, we describe our model Hamiltonian and the
corresponding Landau levels. Our results on the effect of
weak spatial modulation (both electric and magnetic cases
separately) on energy levels, diffusive conductivity, and valley
polarization are discussed in Sec. III. In Sec. IV we discuss the
combined effects of electric and magnetic modulation. Finally,
we summarize our results and conclude in Sec. VI.

II. MODEL HAMILTONIAN AND FORMATION
OF LANDAU LEVELS

In Fig. 1 we present a schematic of an α-T3 lattice which
consists of three atoms per unit cell, namely, A, B, and C.

FIG. 1. Schematic of the α-T3 lattice. Colors denote three
sublattices, i.e., A (magenta), B (blue), and C (green).

Atoms A and B form a honeycomb lattice structure similar
to graphene with nearest-neighbor hopping amplitude t . The
presence of an additional third atom, C, makes this lattice
behave differently than graphene. In particular, atom C is
connected to atom B with hopping amplitude αt (α < 1).

Considering the three basis corresponding to the three
atoms in the unit cell, the low-energy Hamiltonian of this
system close to the Dirac points around a particular valley can
be written as [7]

H0 =

⎡
⎢⎣

0 fp cos φ 0

f ∗
p cos φ 0 fp sin φ

0 f ∗
p sin φ 0

⎤
⎥⎦. (1)

Here, fp = vF (ηpx − ipy), where η = ± denotes the two
valleys K and K ′, respectively, p = {px,py} is the 2D
momentum vector, and vF is the Fermi velocity. Note that
the angle φ is parametrized by α via α = tan φ and the
Hamiltonian is rescaled accordingly. The energy dispersion
of the conic band can be readily obtained as Ek,λ = λh̄vF k,
where λ = ± correspond to the conduction and valence band,
respectively. In addition to the conic bands there is a flat band
with Ek,0 = 0 ∀k.

The full band structure of the α-T3 model is shown in Fig. 2.
The eigenstates of the conic band are given by

ψλ =

⎡
⎢⎣

cos φ eiθk

λ

sin φ e−iθk

⎤
⎥⎦, (2)

FIG. 2. Schematic of the band structure of an α-T3 lattice. The
blue area represents the conic band structure, while the pink area
denotes the dispersionless flat band.
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FIG. 3. Plot of a few Landau levels of the α-T3 lattice as a function
of the magnetic field in the (a) K and (b) K ′ valleys for different values
of α.

and for the flat band the same can be written as

ψ0 =

⎡
⎢⎣

sin φ eiθk

0

− cos φ e−iθk

⎤
⎥⎦, (3)

where θk = tan−1(ky/kx). The angle φ is connected to the
Berry phase (
η) in the conic band via 
η = πη cos(2φ) =
ηπ (1 − α2)/(1 + α2). In contrast to graphene or the dice lattice
the Berry phases in this lattice model corresponding to the two
valleys are different from each other [7].

The application of a uniform magnetic field normal to the
lattice plane (X-Y) can be incorporated via Peierls substitution
� = (p + eA), where the vector potential A is considered un-
der Landau gauge as A = (−By,0,0) describing the magnetic
field B = Bẑ. Hence, the Hamiltonian near the Dirac point in
the K valley reduces to

HK = ε

⎡
⎢⎣

0 â cos φ 0

â† cos φ 0 â sin φ

0 â† sin φ 0

⎤
⎥⎦, (4)

where ε = h̄ωc with ωc = √
2vF /lc. Here lc = √

h̄/(eB) is the
magnetic length. Also, â = vF �−/ε and â† = vF �+/ε are the
usual harmonic oscillator annihilation and creation operators,
respectively, with �± = �x ± i�y . The Hamiltonian for the
K ′ valley can be obtained through the substitution â → −â†.
Hence, diagonalizing Eq. (4), one can directly obtain the
Landau levels of the system in the form [7]

Eλ
ξ = λ ε

√
n + χη, (5)

where ξ ≡ {n,η} corresponds to a set of quantum numbers with
n = 0,1,2, . . . being the Landau level index. The quantity χη

is related to φ via the relation

χη = [1 − η cos(2φ)]/2. (6)

In Fig. 3, we show the nature of the first few Landau levels
(n = 0, 1, and 2) as a function of the magnetic field for three
values of α. There is a zero-energy Landau level for n = 0 in
the K valley. On the other hand, the n = 0 level is of parabolic
form in the K ′ valley. Note that, in graphene both valleys
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FIG. 4. Plot of the first few Landau levels of the α-T3 lattice as a
function of α in the K and K ′ valleys at B = 0.5 T.

exhibit the n = 0 Landau level. The parabolic form can also
be induced by tuning the Berry phase from zero to a finite
value keeping the valley unaltered. The rest of the energy
levels are shifted while the Berry phase is tuned. The Berry-
phase-induced energy shift is positive for the K valley, while
it is negative for the K ′ valley.

In Fig. 4, we show the variation of the first few Landau
levels as a function of the Berry phase. It is evident from
Fig. 4 that the nth Landau level of the K valley merges with
the (n + 1)th Landau level of the K ′ valley for α = 0. The
evolution of Landau levels was pointed out in Refs. [9,11].

The eigenfunction for n > 0 corresponding to the K valley
is given by

�
λ,+
n,kx

(r) = eikxx

√
2Lx

⎛
⎜⎝

A+�n−1
[

y−y0

lc

]
λ�n

[
y−y0

lc

]
B+�n+1

[
y−y0

lc

]

⎞
⎟⎠. (7)

Here, the cyclotron orbit is centered at y = y0 = l2
c kx and

�n(y) = [2nn!lc
√

π ]−1/2 exp(−y2/2)Hn(y) is the usual har-
monic oscillator wave function, where Hn(y) is the Her-
mite polynomial of order n. The coefficients in Eq. (7)
can be expressed as Aη = √

n(1 − χη)/(n + χη) and Bη =√
(n + 1)χη/(n + χη). For the zeroth Landau level, i.e., n = 0,

the eigenfunction is given by

�
λ,+
0,kx

(r) = eikxx

√
2Lx

⎛
⎜⎝

0

λ�0
[

y−y0

lc

]
�1

[
y−y0

lc

]
⎞
⎟⎠. (8)

The wave function in the K ′ valley can be obtained by
performing the following transformations:

�
λ,−
n,kx

= �
λ,+
n,kx

[A+(−) → B−(+),λ → −λ,�n−1 � �n+1].

(9)

Note that, unlike monolayer graphene, the α-T3 lattice exhibits
a dispersionless flat band too, which is well described in
Ref. [10]. As we are considering a doped α-T3 lattice where
the Fermi level is well inside the conic band, we ignore the
effects of the flat band in our analysis.
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FIG. 5. First few modulated Landau levels in K valleys. (a) Electrically modulated and (b) magnetically modulated Landau levels. Here,
the parameters are chosen to be modulation strength Ve = Vm = 1 meV, kx = 108 m−1, and modulation period a = 350 nm.

III. EFFECT OF ELECTRIC OR MAGNETIC
MODULATION

A. Energy correction due to modulation

We assume in our analysis that the strength of the spatial
electric/magnetic modulation is weak compared to the Landau
level energy scale such that we can treat the modulation
perturbatively. The first-order energy correction is evaluated
in all cases by using the unperturbed eigenstates as follows.

1. Electric modulation

We describe our electrically modulated system by the
Hamiltonian He

T = Hη + Ve cos(qy), where Ve is the strength
of the electric modulation and q = 2π/a, where a is the period.
Using perturbation theory, we evaluate the first-order energy
correction for the K or K ′ valley as (for n � 1)

�Ee
ξ,kx

=
∫ Lx

0
dx

∫ ∞

−∞

[
�

λ,η

n,kx
(r)

]∗
Ve cos(qy)�λ,η

n,kx
(r)dy

= Ve

2
Fξ (u) cos(qy0). (10)

Here

Fξ (u) = e− u
2 [|Aη|2Ln−1(u) + Ln(u) + |Bη|2Ln+1(u)], (11)

where Ln(u) is the Laguerre polynomial of order n and u =
q2l2

c /2. The total energy is now Ee
ξ,kx

= Eξ + �Ee
ξ,kx

, where
kx degeneracy is lifted. The energy correction to the ground
state (n = 0) is

�Ee
{0,+},kx

= Ve

2
e− u

2 [L0(u) + L1(u)] cos(qy0). (12)

In Fig. 5(a), the features of the first few modulated Landau
levels of the K valley are shown as a function of the magnetic
field for different values of α. For lower values of the magnetic
field, electrical modulation induces a sinusoidal nature to
the Landau level, and this feature slowly disappears with an
increase in the Landau level index n. The qualitative behavior
of the modulated energy levels in the K ′-valley is similar to
that in the K valley.

2. Magnetic modulation

Now we consider the case where the perpendicular mag-
netic field is weakly modulated without electric modulation.
The dynamics of charge carriers under a modulated magnetic
field is believed to be closely related to composite fermions
in the fractional quantum Hall regime [49]. Under a weak
magnetic field regime, theoretical works exist from the usual
2DEG to monolayer graphene (mentioned in Sec. I) exploring
modulation-induced Weiss contribution. Along the same line,
we investigate Weiss oscillation in a magnetically modulated
α-T3 lattice.

First, we evaluate the first-order energy correction due to
magnetic modulation. Let the perpendicular magnetic field
be modulated very weakly as B = [B + Bm cos(qy)]ẑ, where
Bm 	 B describes the vector potential under the Landau gauge
A = [−By − (Bm/q) sin(qy),0,0]. Similarly to the case of
electric modulation, the total Hamiltonian can now be split
into two parts asHm

T = Hη + Hm, whereHη is the unperturbed
Hamiltonian and Hm is the modulation-induced perturbation,
which can be written as

Hm =

⎡
⎢⎣

0 ϒ cos φ 0

ϒ cos φ 0 ϒ sin φ

0 ϒ sin φ 0

⎤
⎥⎦, (13)

where ϒ = ηeBmvF sin(qy)/q. Using the unperturbed wave
function, the first-order energy correction due to magnetic
modulation Hm can be evaluated as (for n � 1)

�Em
ξ,kx

= Vm

2
Gλ

ξ (u) cos(qy0), (14)

with Gλ
ξ (u) = ληR{n,η}(u). For the K valley,

R{n,+}(u) = 2

qlc
e− u

2 [A+�n(u) cos φ + B+�n+1(u) sin φ],

(15)

with �n(u) = √
2n{Ln−1(u) − Ln(u)} and Vm = h̄ωm, where

ωm = evF Bm/q. Similarly, one can obtain the first-order
energy correction in the K ′ valley by interchanging the sine and
cosine terms in R{n,−}(u), and λ → −λ. Akin to the electric
modulation case, here also we observe oscillation of the first
few Landau levels due to the effect of magnetic modulation
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for the same strength of modulation (Ve = Vm = 1 meV) as
displayed in Fig. 5(b). Note that modulation does not have any
effect on the first-order energy correction of the n = 0 level.
This is shown by the straight horizontal line. In the K ′ valley,
the behavior of the energy correction for different Landau
levels is similar in nature qualitatively.

B. Diffusive conductivity

Under a low-temperature regime there are mainly two
contributions to the longitudinal conductivity: one is the
impurity-induced collisional conductivity and the other is
the modulation-induced diffusive conductivity. However, the
dominant contribution to the conductivity under a low mag-
netic field arises from the electron diffusion, caused by the
applied in-plane weak spatial modulation. So, throughout the
rest of the article, we use the term diffusive conductivity
to refer to magnetoconductivity. On the other hand, the
quantum Hall conductivity corresponding to the off-diagonal
component of the conductivity tensor is neglected here due
to the minor effect of the modulation as revealed in the
literature [19]. In order to compute the diffusive contribution
to the longitudinal conductivity, i.e., diffusive conductivity,
we adopt the formalism developed in Ref. [50], which has
been employed in the case of 2DEG [19] as well as graphene
[38,39].

The dc diffusive conductivity can be evaluated by using
the following semiclassical expression of the Kubo formula
as [50]

σμν = βe2




∑
ζ

fζ (1 − fζ )τ (Eζ )vμvν (16)

provided the scattering processes involved are elastic or
quasielastic. Here, ζ ≡ {ξ,kx}, and fζ = [1 + exp{β(Eζ −
EF )}]−1 is the Fermi-Dirac distribution function, where EF

is the Fermi energy. In the above formula, τ (Eζ ) denotes the
energy-dependent collision time and vμ(ν) = (1/h̄)∂Eζ /∂kμ(ν),
with μ(ν) = x or y. 
 = Lx × Ly is the dimension of the
2D lattice.

1. Electric modulation

We evaluate the drift velocity vμ(ν) in the presence of electric
modulation. They are expressed as

ve
x = 1

h̄

∂Ee
ξ,kx

∂kx

= − Ve

h̄q
uFξ (u) sin(qy0) (17)

and ve
y = 0. The latter suggests that diffusive conductivity

arises along the direction normal to the applied modulation.
Now we substitute ve

x in Eq. (16) to obtain the diffusive
conductivity. We replace the summation over kx with the

integral as
∑

kx
→ Lx

2π

∫ Ly/l2
c

0 dkx using the fact that the origin
of the cyclotron orbit is always confined within the system, i.e.,
0 � |y0| � Ly . The factor Lx/(2π ) takes care of the periodic
boundary condition. Thus the diffusive conductivity simplifies
to

σ e,η
xx = e2

h

β

4�0
V 2

e u
∑

ξ

fξ (1 − fξ )[Fξ (u)]2, (18)

where �0 is the impurity-induced broadening. Here, we assume
that the collisional time τ (Eξ ) varies very slowly with the
energy, i.e., τ (Eξ ) 
 τ0 , which is a valid approximation under
a low magnetic field, and also substitute �0 ≈ h̄/τ0 . The
modulation effect on the Fermi distribution function is very
small, and hence, we ignore it.

2. Magnetic modulation

Similarly to the case of electric modulation, the magnetic-
modulation-induced drift velocity is given by

vm
x = −Vm

h̄q
uGλ

ξ (u) sin(qy0), (19)

which leads to the exact form of the diffusive conductivity as

σm,η
xx = e2

h

β

4�0
V 2

mu
∑

ξ

fξ (1 − fξ )[Rξ (u)]2. (20)

In comparison with the electric modulation scenario, the form
of the drift velocity in the magnetic modulation case is exactly
the same except for the term containing Laguerre polynomials
[Fξ (u) and Rξ (u) in the electric and magnetic modulation
cases, respectively].

3. Discussion

To plot the diffusive conductivity for both the electric and
the magnetic modulated systems we choose the following sys-
tem parameters: modulation period a = 350 nm, temperature
T = 6 K, strength of modulation Ve = Vm = 1 meV, and the
impurity-induced Landau level broadening is assumed to be
�0 = 1 meV. We consider the Fermi energy which corresponds
to the carrier density ne = 3 × 1015 m−2.

We show the behavior of the diffusive conductivity as a
function of the magnetic field in Fig. 6 for both the electric
[Fig. 6(a)] and the magnetic [Fig. 6(b)] modulation cases.
We observe that under a low magnetic field (B < 0.3 T), the
diffusive conductivity exhibits oscillation which is purely of
the Weiss type. The variation of α as well as the Berry phase
does not affect this type of oscillation significantly in this
region. However, under the regime of a relatively higher
magnetic field (B > 0.3 T), the effect of α becomes visible
and it causes a phase shift to the Shubnikov–de Haas
(SdH) oscillations, which are superimposed over the Weiss
oscillation. Note that in the K valley the corresponding phase
shift advances with an increase in α. On the other hand, it
lags in the K ′ valley. The different Berry phases acquired by
the electrons in the K and K ′ valleys are responsible for the
difference in the phase modulation.

In order to understand the appearance of the valley-
dependent phase shift in SdH oscillation over Weiss oscil-
lation, we derive the approximate analytical form of the
diffusive conductivity in each valley by replacing

∑
n →

πl2
c

∫
Dη(E)dE in Eq. (18). Here, Dη(E) is the density of

states. Following the approach discussed in Ref. [51], we
obtain the simplified form of the DOS as

Dη(E) = D0

{
1 + 2
(E) cos

[
2π

(
E2

ε2
− χη

)]}
, (21)
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FIG. 6. Weiss oscillation for (a) electric modulation and (b) magnetic modulation. Variation of the diffusive conductivity is displayed as a
function of the perpendicular magnetic field for the K (upper panels) and K ′ (lower panels) valleys using three values of the α.

where D0 = E/(2πh̄2v2
F ) is the zero-magnetic-field DOS and

impurity-induced damping factor


(E) = exp

{
−2

(
πE�(E)

ε2

)}
, (22)

with �(E) 
 4π�2
0E/ε2. After plugging it into Eq. (18) and

using the higher Landau level approximation [19], i.e.,

e−u/2Ln(u) → 1√
π

√
nu

cos

(
2
√

nu − π

4

)
, (23)

we have

σ e,η
xx = e2

h

V 2
e

�0

βWUη

32π2

{
We + 2
(EF )RS

(
T

TS

)

× cos

[
2π

(
g

B
− χη

)]
cos2

[
2π

(
f η

B
− 1

8

)
− θe

η

]}
.

(24)

Here, βW = (kBTW )−1, with TW = eavF B/[4π2kB(1 −
χη

k2
F l2

c

)], is the characteristic temperature for Weiss oscillation
and

Uη = [1 + (|Aη|2 + |Bη|2) cos ν + (|Bη|2 − |Aη|2) sin ν]2

(25)

at n = nF with ν = 2π/(akF ). The appearance of a valley-
dependent phase factor in the cosine square term is given by

tan θe
η = (|Bη|2 − |Aη|2) sin ν

1 + (|Aη|2 + |Bη|2) cos ν
. (26)

The first term in Eq. (24), We, represents the pure Weiss
oscillation, which is given by

We = 1 − RW

(
T

TW

)

+ 2RW

(
T

TW

)
cos2

[
2π

(
f η

B
− 1

8

)
− θe

η

]
. (27)

The Weiss oscillation frequency f η = [1 −
χη(k2

F l2
c )−1]h̄kF /(ea), is weakly sensitive to the valley

index and does not contribute sufficiently to the valley
polarization. Also, it exhibits a valley-dependent phase factor
(θe

η ) which is too small to make any substantial changes
between two valleys because of the small value of sin ν in the
numerator of Eq. (26).

The thermal damping factor describing the decay of the
Weiss oscillation amplitude with increasing temperature is
given by

RW

(
T

TW

)
= T/TW

sinh(T/TW )
. (28)

Here, TW determines the critical temperature beyond which
Weiss oscillation starts to die out.

On the other hand, the second term in Eq. (24), containing
the product of two cosines, represents the overlapping of
SdH oscillation over Weiss oscillation with an increase in
the magnetic field. The frequency of SdH oscillation (g =
h̄k2

F /e) is independent of the valley index. The characteristic
temperature for SdH oscillation is TS = (h̄ωc)2/(4π2EF ), with
the thermal damping factor expressed as

RS

(
T

TS

)
= T/TS

sinh(T/TS)
. (29)

Similarly to Weiss oscillation, TS is the critical temperature for
SdH oscillation. The critical temperature for Weiss oscillation
under a particular magnetic field is higher than that for SdH
oscillation.

From Eq. (24) it is observed that SdH oscillation superim-
posed over the Weiss region exhibits a valley-dependent phase
factor, χη, which is the main reason behind the appearance
of valley polarization in magnetoconductivity with increasing
magnetic field. The presence of Uη in Eq. (24) indicates that
the amplitudes of the oscillation in the two valleys are different
for the entire range of the magnetic field, but its contribution
to valley polarization is very small. The modulation-induced
correction to the DOS [52] is of the order of V 2

e(m) and
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the corresponding correction to the diffusive conductivity
becomes of the order of V 4

e(m). This is very small and hence we
neglect the modulation effect on the DOS.

For a particular valley, the Berry phase affects only the
phase part, keeping the amplitude almost the same. This phase
shift due to the Berry phase enters through the χη term, which
is very clear in the higher-magnetic-field regime. In the context
of amplitudes, Uη is not too sensitive to the Berry phase to be
visualized.

Following the same procedure, we obtain the analytical ex-
pression of the diffusive conductivity for magnetic modulation
as

σm,η
xx = e2

h

V 2
m

�0

βWMη

32π2

{
Wm + 2
(EF )RS

(
T

TS

)

× cos

[
2π

(
g

B
− χη

)]

× sin2

[
2π

(
f η

B
− 1

8

)
− θm

η

]}
, (30)

whereWm represents the pure Weiss oscillation, which is given
by

Wm = 1 − RW

(
T

TW

)

+ 2RW

(
T

TW

)
sin2

[
2π

(
f η

B
− 1

8

)
− θm

η

]
(31)

and

M+ = {[(A+ cos φ + B+ sin φ)(1 − cos ν)]2

+ [(A+ cos φ − B+ sin φ) sin ν]2}1/2. (32)

The form of M− can be obtained by just replacing A+ → B−
and B+ → A−. The phase factor is given by

tan θm
+ = (A+ cos φ − B+ sin φ) sin ν

(A+ cos φ + B+ sin φ)(1 − cos ν)
. (33)

The expression for the pure Weiss oscillation for magnetic
modulation (Wm) is similar qualitatively to that for electric
modulation (We) except they have opposite phases (provided
θe
η and θm

η are very small) due to the presence of the squares
of the sine and cosine functions in the two cases, respectively.
This phase relationship is similar to that in the usual 2DEG
and graphene, which was pointed out in Refs. [23,39].

From the above discussion it is clear that the diffusive
conductivity is sensitive to the valley degree of freedom. There-
fore, it is now of interest to examine the valley dependency of
the diffusive conductivity in terms of the valley polarization
with respect to the magnetic field as well as α.

C. Valley polarization

The valley polarization of diffusive conductivity can be
defined as

P ρ
v = σ

ρ,K
xx − σ

ρ,K ′
xx

σ
ρ,K
xx + σ

ρ,K ′
xx

, (34)

where ρ may be e or m, corresponding to the electric and
magnetic modulation cases, respectively. We explore the valley
polarization due to the finite differences in the diffusive
conductivity in the two valleys at α = 0.5. We calculate the
valley polarization using Eq. (34) and depict the behavior
of valley polarization with respect to the magnetic field in
Figs. 7(a) and 7(b), which correspond to the electric and
magnetic cases, respectively. We observe that under the low-
magnetic-field regime where pure Weiss oscillation arises, the
valley polarization is too small to be realized. However, with
an enhancement of the magnetic field, when SdH oscillation
starts to superimpose over Weiss, the polarization increases
and rapidly oscillates. It is also possible to obtain 90% valley
polarization under a high-magnetic-field regime. We show
the result of valley polarization for a particular α. In order
to examine the behavior of Pv as a function of the Berry
phase we plot Pv vs α in the insets in Fig. 7. For this, we
fix the magnetic field at the two values shown by the vertical
arrows in Figs. 7(a) and 7(b), corresponding to the electric and
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FIG. 7. Valley polarization (a) for electric modulation and (b) for magnetic modulation is plotted as a function of the magnetic field for
α = 0.5. Inset: Features of valley polarization with respect to α corresponding to the magnetic field indicated by the black arrow.
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magnetic modulation cases, respectively. We note that valley
polarization is maximum for the intermediate α, with zeros
for the two limiting values of α (0 and 1) for both electric
and magnetic modulations. For the two limiting values of α

corresponding to graphene (α = 0) and the dice lattice (α = 1)
the valley degeneracy is recovered and valley polarization
disappears. Note that there are two dips in the Pe vs B profile, at
around B = 0.27 and 0.65 T. Similarly, in the case of magnetic
modulation the dips are around B = 0.22 and 0.42 T. All these
dips correspond to the Weiss oscillation minima (see Fig. 6).

IV. COMBINED EFFECT OF ELECTRIC AND
MAGNETIC MODULATION

So far, we have considered the role of electric and magnetic
modulations in the transport phenomena separately. In this
subsection, we examine what happens when both electric
and magnetic modulation are considered simultaneously. The
presence of magnetic stripes or a superconductor on the top
of the system generally induces an unwanted electric potential
modulation too, which motivated us to consider the effect
of both modulations in the usual 2DEG also [23]. In our
present case, the presence of both types of modulation induces
first-order energy correction as

�Eλ
ξ,kx

= 1
2 [VeFξ (u) + ληVmRξ (u)] cos(qy0). (35)

Note that unlike the previous cases, where either electric
or magnetic modulation was considered, here the first-order
energy correction breaks the particle-hole symmetry around
zero energy, as �E+

ξ,kx
�= �E−

ξ,kx
. This is one of the main

results of our study. Note that this phenomenon could also
be observed in Dirac material like graphene and silicene
but this has not been pointed out in the literature, to the
best of our knowledge. As stated before, the application of
modulation manifests itself through a modulated density of
states corresponding to the Landau level broadening. To gain
more insight, in Fig. 8 we plot the modulated DOS as a function
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FIG. 8. Behavior of the modulated density of states in the
presence of both types of modulations is shown for the K valley.
The strengths of the electric and magnetic modulation are taken to be
equal, i.e., Ve = Vm = 1 meV. The blue and red lines represent the
conduction and valence band, respectively.

of the energy E in the presence of the combined effects of
electric and magnetic modulation. The DOS in the presence of
modulation can be expressed in a Lorentzian distribution as

D(E,λ)

D0
= (h̄ωc)2

8π |E|
∑

n

1

π

∫ π

0
dc

�0(
E − Eλ

ξ,c

)2 + �2
0

, (36)

with D0 = 2|E|/(πh̄2v2
F ), c = qy0, and Eλ

ξ,c = λ ε
√

n + χη +
V0[Fξ (u) + ληRξ (u)] cos(c), where V0 = Ve = Vm. Interest-
ingly, the electron and hole band lost the symmetry after the
inclusion of both modulations here. The heights of particular
peaks in the electron (conduction) and hole (valence) band
are not the same. This is clearer in the higher-energy regime.
We show the results for the K valley. Similar particle-hole
symmetry breaking in the DOS can be obtained in the
K ′ valley too.

The presence of both modulations together plays a vital
role in transport phenomena of the usual 2DEG as observed
in experiments [53] followed by theoretical work by Shi et al.
[54], especially in the behavior of the DOS and conductivity
with the filling fraction. The peculiar phenomenon of odd-
even filling fraction transition in the DOS has been explored.
Motivated by this, we investigated the phenomenon in our
α-T3 model in order to reveal the role of the Berry phase in
this context. In the left panel in Fig. 9 we show the behavior
of the modulated DOS in the K valley with respect to the
electron filling fraction, fe, for the conduction band only. Here,
(a), (b), and (c) represent the results for α = 0.1, 0.5, and
1, respectively. We note that there is a transition of the peak
positions from even to odd filling fraction when we tune α from
0 to 1 as depicted in the left panel in Fig. 9. We show the results
for a higher filling fraction, which is inversely proportional to
the magnetic field as fe = 2πneh̄/eB for a fixed value of the
carrier density. Now for 0 or very small value of α, the DOS
shows some peaks at odd filling fraction, i.e., fe = 77, 79, 81,
and 83, and the rest are at even fe. The DOS peaks at odd
filling fraction indicate that the Landau levels are half-filled.
On the contrary, when α is tuned to 1 (dice lattice), we observe
exactly the inverted picture, i.e., all peaks (dips) positions get
inverted to dips (peaks) as displayed in (c) (Fig. 9, left panel).
These two patterns correspond to the two limiting values of α.
There is a transition of the DOS peak positions from even to
odd or from odd to even filling fraction through beating nodes
for a particular value of α. In addition to this known feature,
we note a similar odd (even)–even (odd) transition through a
smooth variation of α from 0 to 1. At intermediate α, shown in
(b) (Fig. 9, left panel), each odd (even) peak gets shifted from
its earlier position for α = 0, and they are neither at even nor at
odd filling fraction; rather they arise at fractional values of fe.

Now, we calculate the diffusive conductivity following an
approach similar to that used in previous cases; it is given by

σλ,η
xx = e2

h

V 2
0 β

4�0
u

∑
n

f λ
ξ

(
1 − f λ

ξ

)
[Fξ (u) + ληRξ (u)]2, (37)

where λ is the band index. Both λ and η change their signs
in the K ′ valley. Note that, unlike the previous cases of
either electrically or magnetically modulated α-T3 lattices,
here the diffusive conductivity depends on the band index
too [see Eq. (37)]. This is because of the band-dependent
group velocity, which arises from the first-order energy
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FIG. 9. Left: Modulated density of states in the K valley vs filling fraction fe (=2πneh̄/eB) for the conduction band is shown in the
presence of both types of modulations for (a) α = 0.1, (b) α = 0.5, and (c) α = 1. The carrier density is taken here as ne = 3 × 1015 m−2 and
the strength of modulation is taken to be Ve = Vm = 1.2 meV. Right: Variation of the diffusive conductivity with respect to the electron (hole)
filling fraction fe(h) is plotted for the conduction (valence) band for the intermediate value of α = 0.5 only.

correction due to the modulation of both types. A similar
band dependence of the group velocity also appears in the
case of magnetic modulation [Eq. (19)] but it does not affect
the diffusive conductivity σxx’s being proportional to (vm

x )2 as
expressed in Eq. (20).

We plot the diffusive conductivity for the K valley as
a function of the filling fraction fe(h) for the conduction
(valence) band, denoted by blue (red) curves in the right panel
in Fig. 9. The amplitudes of the Weiss oscillations for both
bands are enhanced due to the presence of both modulations.
The diffusive conductivities for the conduction and valence
bands are not similar to each other following the particle-hole
asymmetry as shown in the DOS profile. There is a prominent
phase difference between the Weiss oscillations for electron
and hole bands. They change with the filling fraction as
well as the magnetic field. This feature of Weiss oscillation
is in complete contrast to the usual 2D gas because of the
preservation of the particle-hole symmetry even in the presence
of both modulations.

Finally, in Fig. 10 we present the variation of valley
polarization in the diffusive conductivity as a function of the
magnetic field using Eq. (34). In the presence of both mod-
ulations we observe that valley polarization naively remains
unaltered from the case where we consider either electric or
magnetic modulation. Here, we set α = 0.5 considering the
strengths of both modulations to be equal to each other i.e.,
Ve = Vm = V0. However, from the realistic point of view their
strengths may not be equal to each other. Also, the period of
the modulations may be different. Note that, in Fig. 10 we
consider two different periods for the two different types of
the modulation. The valley polarization also does not change
by an appreciable amount with their relative periods.

V. COMPARISON WITH OTHER 2D SYSTEMS

Now we draw a comparison between our present results and
the existing results for other 2D systems like the usual 2DEG,
graphene, and silicene. For the usual 2DEG, the first-order

energy correction has been evaluated in Ref. [19] as

�Ee
kx

= V 2d
e e− u

2 Ln(u) cos(qy0), (38)

corresponding to the Landau levels En = h̄ω2d (n + 1/2) with
ω2d = eB/m∗, m∗ being the effective mass of the electrons
in 2DEG. Using this correction the diffusive conductivity
was evaluated in Ref. [19]. Note that, in the expression of
the energy correction as well as in the diffusive conductivity
for the α-T3 lattice we have summation over three successive
Laguerre polynomials, whereas in 2DEG only one Laguerre
polynomial is involved in the expression [see Eqs. (11) and
(18)]. Moreover, in the α-T3 system both the energy correction
and the diffusive conductivity are sensitive to the valley degree
of freedom, whereas in a conventional 2DEG the issue of the
valley degree of freedom is irrelevant.
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with Ve = Vm = 1 meV. The electric and magnetic modulation
periods of are taken as a and b, respectively.
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Similarly, for magnetic modulation the first-order energy
correction reads [23]

�Em
kx

= V 2d
m e− u

2

[(
1

2
− n

u

)
Ln(u) + n

u
Ln−1(u)

]
sin(qy0)

(39)

and the corresponding diffusive conductivity can be found in
Ref. [23]. Compared with Eqs. (15) and (20) it is clear that
the summations over the Laguerre polynomial in both energy
correction and diffusive conductivity corresponding to the two
systems, α-T3 and usual 2DEG, are different from each other.

In Fig. 11 we plot both the electric [Fig. 11(a)] and the mag-
netic [Fig. 11(b)] modulation-induced diffusive conductivity
for our system as well as 2DEG. For our numerical calculation
the modulation strengths, electric as well as magnetic, in both
systems are fixed to 1 meV. We find that the amplitude of Weiss
oscillations in electrically modulated 2DEG is higher than that
in the α-T3 model as depicted in Fig. 11(a). Also, they are
naively in the same phase as each other. In the case of our sys-
tem SdH oscillation starts to superimpose over Weiss oscilla-
tion under a relatively low-magnetic-field (B ∼ 0.3 T) regime
compared to that in 2DEG (B > 0.5 T). The reason is ascribed
to the behavior of Landau levels with the magnetic field. In
Dirac material the Landau level E ∝ √

B, whereas it is propor-
tional to B in the usual 2DEG. Additionally, the presence of the
Berry phase in the α-T3 model makes the diffusive conductivity
behave differently in the two valleys leading towards the valley
polarization. In the case of magnetic modulation, as displayed
in Fig. 11(b), the order of magnitude of the diffusive conductiv-
ity is strongly suppressed in α-T3 in comparison to that in the
usual 2DEG. This type of damped oscillation observed in the
α-T3 lattice with respect to 2DEG is similar to that explored in
graphene [39]. However, conductivity oscillations in the usual
2DEG and α-T3 are almost in phase. The most remarkable
differences between these two systems are the appearance of
valley polarization and particle-hole symmetry breaking in the
α-T3 lattice in comparison to the usual 2DEG. The valley polar-

ization in the α-T3 lattice is attributed to the valley-dependent
mass term (χη) in Landau levels. The total energy correction
due to the application of both modulations does not depend on
the band index in the usual 2DEG, whereas it is strongly de-
pendent on the band index (λ) in each valley of the α-T3 lattice
[see Eq. (35)], leading towards the breaking of particle-hole
symmetry.

Now we look into how the α-T3 system differs from
graphene in diffusive conductivity. In our system, the first-
order energy correction [see Eq. (10)] in the electric modula-
tion case is weakly sensitive to the valley index and contains the
summation of three successive Laguerre polynomials. On the
other hand, there are summation over two successive Laguerre
polynomials in case of graphene without any coefficient (see
Ref. [38]). A similar difference in the form of the energy
correction in both systems can also be observed in the
magnetic modulation case. The results for α = 0 correspond to
graphene, as shown in Fig. 6, having features similar to those
with the α-T3 lattice. However, the α-T3 lattice exhibits valley
polarization in the diffusive conductivity with an increase in
the magnetic field, which is absent in graphene due to the valley
degeneracy in Landau levels. Similarly to the α-T3 lattice, the
phenomenon of particle-hole symmetry breaking can also be
obtained in graphene but it has not yet been pointed out in the
literature, to the best of our knowledge.

A similar valley polarization has also been observed
in electrically modulated silicene [42], even under a low-
magnetic-field regime, but in the presence of a staggered
potential between two sublattice planes. Weiss oscillation in
magnetically modulated silicene has not been studied so far,
to the best of our knowledge.

VI. SUMMARY AND CONCLUSION

To summarize, in this article we have theoretically studied
magnetotransport properties of a spatially modulated α-T3 lat-
tice. Both electric and magnetic modulation, individually as
well as simultaneously, have been considered here. Using
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the Kubo formula, based on linear response theory [55], we
have obtained a modulation-induced additional contribution
to the longitudinal conductivity, i.e., diffusive conductivity.
The unique feature of the α-T3 lattice is the tunable Berry
phase, which ranges from 0 to π . We have exploited this
feature in order to reveal how it affects the quantum transport
properties of the modulated α-T3 lattice. The presence of
modulation imparts a nonzero drift velocity to the electrons
which is oscillatory with the magnetic field and leads to the
rise of Weiss oscillation in the electrical conductivity signal
with the magnetic field. We have noted that a sizable valley
polarization appears in the diffusive conductivity depending
on the magnetic field. With the increase in the magnetic field,
SdH oscillations start to superimpose over Weiss oscillations
and valley polarization becomes much stronger and oscillates
rapidly due to the strong dependence of the Landau levels on
the Berry phase. To understand valley polarization with an
increase in the magnetic field, we have derived an analytical
form of the density of states and used it to get an approximate
analytical expression for the diffusive conductivity. The
signature of the Berry phase in the diffusive conductivity
exclusively enters through the modification of Landau levels
and the corresponding states of the system. On the contrary,
we have also checked that in the absence of a magnetic field
and modulation, the diffusive conductivity is independent of
the Berry phase.

We have compared our results for the α-T3 lattice with the
existing results in the literature for the usual 2DEG and other
Dirac material such as graphene. We have observed that Weiss
oscillation in the α-T3 lattice is almost in the same phase as
the usual 2DEG except for an amplitude mismatch. The origin
of the amplitude mismatch is due to the Dirac nature of band
dispersion in the α-T3 lattice or graphene, which was pointed
out in Ref. [38]. However, the most exciting physics of the α-T3

lattice is the appearance of valley polarization and particle-hole
symmetry breaking in comparison to the usual 2DEG. On the
other hand, though graphene and α-T3 lattice both exhibit a
Dirac-like band dispersion, the presence of additional atoms

at the center of each hexagon in the α-T3 lattice causes a
valley polarization in diffusive conductivity which is absent
in graphene. Moreover, graphene and α-T3 lattice both exhibit
particle-hole symmetry breaking under the influence of both
modulations. Very recently, the Carbotte group has shown that
a small asymmetry in the energy band can be very sensitive
to magneto-optical excitation [56,57]. Therefore, we conclude
that the combination of both modulations can be used as a
tool to break the particle-hole symmetry for manipulation of
the valley degree of freedom in optical devices. Moreover, we
have explored a modulation-induced transition of odd (even)-
to-even (odd) filling fraction corresponding to DOS peaks with
the variation of α.

As far as the practical realization of this α-T3 lattice is
concerned, it can be naturally formed by growing a trilayer
structure of cubic lattices in the (111) direction as shown
by Wang et al. [58]. On the other hand, Bercioux et al.
have proposed an experimental setup to realize this lattice
by confining ultracold atoms to an optical lattice [59]. On
the other hand, periodic modulation can be engineered in
several ways. For example, Winkler et al. [14] have used
an array of biased metallic strips on the surface of a 2D
electronic system to achieve electric modulation. Magnetic
modulation can be achieved by placing a few patterned
ferromagnets or a superconductor on the surface of the 2D
material [30–32].
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