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Spectral imaging of topological edge states in plasmonic waveguide arrays
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We report on the observation of a topologically protected edge state at the interface between two topologically
distinct domains of the Su-Schrieffer-Heeger model, which we implement in arrays of evanescently coupled
dielectric-loaded surface-plasmon polariton waveguides. Direct evidence of the topological character of the edge
state is obtained through several independent experiments: Its spatial localization at the interface as well as
the restriction to one sublattice is confirmed by real-space leakage radiation microscopy. The corresponding
momentum-resolved spectrum obtained by Fourier imaging reveals the midgap position of the edge state as
predicted by theory.
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Systems with nontrivial topological properties have at-
tracted considerable interest since the discovery of the quan-
tum Hall effect [1,2]. In particular, topological insulators have
been intensively studied in condensed matter physics [3,4].
These materials behave as ordinary insulators in the bulk.
However, at the boundary they exhibit topologically protected
edge states, which in two dimensions (2D) can conduct unidi-
rectional currents along the boundary without backscattering.
The prototypical system of a one-dimensional (1D) topological
insulator is the Su-Schrieffer-Heeger (SSH) model [5], i.e., a
chain of identical sites coupled via alternating strong and weak
bonds. The SSH model supports two different dimerizations
characterized by distinct topological invariants [6,7], which
depend on the choice of the unit cell (see Fig. 1). As a conse-
quence of the bulk-boundary correspondence principle [8], a
protected edge state is supported at each interface between the
two different dimerizations.

Discrete photonic systems such as coupled waveguide
arrays can show dynamics resembling quantum-mechanical
condensed-matter phenomena. The basis for this is the mathe-
matical equivalence between the time-dependent Schrödinger
equation and the paraxial Helmholtz equation that describes
the propagation of light [9–12]. Mapping the temporal dy-
namics of an electronic wave packet to the spatial evolution
of the light field in a discrete photonic system thus allows
us to experimentally study quantum-mechanical evolutions.
Based on this approach, photonic topological insulators [13]
consisting of helical dielectric waveguides [14,15], 1D waveg-
uide arrays [16,17], 1D quasicrystals [18,19], and discrete
optical elements [20] have been studied; photonic systems not
relying on the time-space mapping, such as coupled optical
resonators [21], and metamaterials [22,23], have also been
employed to study nontrivial topological systems.

While in 2D materials the topological protection of edge
modes propagating along the interface separating topologi-
cally distinct domains is clearly assessed through the absence
of backscattering, in 1D systems, such as the SSH model
and Majorana fermions in nanowires [24], evidence of the
topological nature of edge states is much more elusive. In
1D, the observation of a localized edge state is not sufficient
to demonstrate its topological nature, since its appearance
could in principle simply result from the broken translation
symmetry (e.g., defect centers).

In this paper, we report on the spectral imaging of
the topologically protected edge state of the SSH model
implemented in a plasmonic waveguide array. The employed
detection technique uses leakage radiation microscopy—a
distinct advantage of plasmonic systems—to experimentally
identify the topological nature of the detected state through
(1) its spatial localization at the interface, (2) a direct probe
of the underlying sublattice symmetry, and (3) its midgap
position in the momentum-resolved spectrum [5,8,25]. Related
experiments observing a topological midgap edge mode in
position space have been recently conducted with arrays of
microwave resonators [26,27].

Before we address the experiments, we briefly summarize
the properties of the SSH model. We start with the discussion
of the bulk properties of an infinite chain of identical sites
with alternating strong and weak bonds. The two topologically
distinct dimerizations are depicted in Fig. 1(a), where the
strong (weak) bonds correspond to small (large) distances
between two neighboring sites. Considering only coupling
among neighboring sites, the Hamiltonian of the SSH model
for a given quasimomentum k is

̂H (k) = [J + J ′ cos (ka)] σ̂x + J ′ sin (ka)̂σy = d(k) · σ̂ ,

where a represents the lattice constant, and J and J ′
designate the hopping amplitudes inside and between unit
cells. The components of the vector σ̂ = [̂σx, σ̂y, σ̂z] denote
the Pauli matrices acting on the basis of the unit cell, i.e.,
the two sublattices formed by either sites A or sites B

[see Fig. 1(a)]. The spectrum of ̂H (k) is composed of two
energy bands E(k) = ±|d(k)|, which are separated by a gap
�E = 2|J − J ′| [see Fig. 1(b)]. As k is varied across the
Brillouin zone [−π/a, π/a] describing a closed loop in the
parameter space, the vector d(k) representing the quantum
state of the Bloch wave function forms a circle [see Fig. 1(c)].
Since dz(k) = 0, the circle is constrained to the x-y plane,
meaning that the eigenstates in the bulk have equal weights
on both sublattices. However, the circle can either enclose
or not the origin depending on the dimerizations (either
J > J ′ or J < J ′). Whether the origin is enclosed or not
defines a topological invariant of the dimerization, since
one dimerization cannot be continuously transformed into
the other without crossing the origin, i.e., closing the band
gap. Hence, the two dimerizations represent two different
topological phases of the SSH model. Moreover, the SSH
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FIG. 1. (a) The two distinct dimerizations of the SSH model.
The intra- and interunit-cell hopping amplitudes are characterized
by J and J ′, respectively. (b) Band structure of the SSH model for
J ′ = J/2. (c) The x-y components of the eigenstates d(k) for both
dimerizations. The same color scheme is used in (b) and (c) to indicate
quasimomentum k in the Brillouin zone.

Hamiltonian obeys chiral symmetry, meaning that a unitary
operator ̂� exists fulfilling the condition ̂� ̂H ̂�† = − ̂H ; from
dz(k) = 0, it directly follows that ̂� is σ̂z. When topologically
distinct domains are spatially connected, while preserving
chiral symmetry, a bulk-boundary correspondence relates
the difference of their topological invariants to the number
of topologically protected edge states at the interface [3],
namely, one for the SSH model. In addition, owing to chiral

symmetry, this state has zero energy and it exhibits a vanishing
amplitude on every second lattice site (sublattice symmetry).
Its zero-energy pinning is the underlying physical principle
conferring topological protection on the edge state, since it
prevents it from merging with the bulk continuum under a
continuous deformation of the system’s parameters.

We employ arrays of evanescently coupled dielectric-
loaded surface-plasmon polariton (SPP) waveguides [28,29]
to realize the SSH model. As for coupled dielectric waveg-
uides [10–12], we rely on the foregoing equivalence between
the Schrödinger equation and the Helmholtz equation to
describe the propagation of SPPs in waveguide arrays. The
arrays are fabricated by negative-tone gray-scale electron
beam lithography [30] on top of a chromium (10 nm)
and gold (60 nm) coated glass substrate. The waveguides
consist of polymethylmethacrylate (PMMA) ridges with a
width of 250 nm and a height of 140 nm. We realize
strong and weak bonds as in the SSH model by alternating
different separations, 600 and 1000 nm, between neighboring
waveguides, as depicted in Fig. 2(a), resulting in a = 1600 nm.
These geometrical parameters ensure single-mode operation
of the waveguides and sufficient coupling among them for
the vacuum wavelength λ = 980 nm. In all experiments, this
excitation wavelength is chosen as a good trade-off between the
absorption losses in gold and the decreasing camera efficiency
for longer wavelengths.

SPPs are excited by focusing a transverse-magnetic po-
larized laser beam with wavelength λ onto a PMMA grat-
ing coupler, which is situated on top of the first 5μm of
selected waveguides (not shown in the figure). The SPP
evolution in the waveguides is monitored by leakage radiation
microscopy [31,32]. An oil immersion objective lens with
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FIG. 2. (a) Waveguide array fabricated out of PMMA on top of a Cr- and Au-coated glass substrate. Alternating center-to-center separations,
600 and 1000 nm, implement the bulk SSH model. (b) Leakage radiation image of the spatial evolution of SPPs propagating along the structure
depicted in (a). The fading intensity along the z axis is induced by radiation losses and absorption (propagation length ≈16 μm). The color
scale representing the SPP intensity is the same as in (e). (c) rms width of the intensity distribution in (b), demonstrating ballistic expansion.
Ballistic expansion for z < 0 corresponds to free SPPs propagating at the gold-air interface. (d) Plasmonic waveguide array incorporating
a topological defect where the long separation is repeated twice. Three different excitation sites, I, II, and III, are highlighted. (e) Leakage
radiation image of SPPs propagating along the structure depicted in (d) with excitation at site I. A pronounced central feature is visible around
the topological defect at x = 0. The ballistically expanding background results from SSH bulk modes that are also excited. The inset shows
the intensity distribution integrated along the z axis in the region 50 μm < z < 130 μm.
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a numerical aperture (NA) of 1.49 collects the fraction
of the excited SPPs that leaks through the thin gold film
and coherently couples to freely propagating modes in the
glass substrate. The large NA allows us to resolve spatial
structures as small as 500 nm [the modulation transfer function
equals 0.2 at the spatial frequency of 1/(500 nm)]. After
blocking the directly transmitted laser beam via angular
filtering [33], the remaining radiation is detected with a
complementary metal-oxide semiconductor camera (Andor
Zyla). Momentum-resolved spectra of the SSH model are
recorded by imaging the back-focal plane of the microscope
objective lens onto the camera.

To provide a reference measurement, we study the spatial
evolution of an initially localized plasmonic wave packet in
the bulk of the SSH model [see Fig. 2(b)]. We excite SPPs in
a single waveguide through the grating coupler. As the SPPs
propagate along the waveguides (z axis), the plasmonic field
is coherently transferred to the neighboring waveguides. This
results in a characteristic interference pattern, which exhibits
a linear increase of its width with the propagation distance
(ballistic spreading), as visible in Fig. 2(c). This transport
behavior is analogous to the temporal evolution of electronic
wave packets tunneling along a chain of lattice sites with
alternating coupling strengths.

As we are interested in the physics at the boundary between
topologically distinct domains, we excite SPPs in a waveguide
array fabricated with an interface between the two distinct
dimerizations of the SSH model, as depicted in Fig. 2(d).
Figure 2(e) shows the measured spatial evolution in the
case in which the excitation laser is coupled to the central
waveguide (excitation site I). In stark contrast to the reference
measurement discussed above, a large fraction of the intensity
stays confined to the interface region. This aspect appears
particularly evident if we consider the intensity distribution
integrated along the propagation direction [inset of Fig. 2(e)],
which displays a highly pronounced peak in the center. A close
inspection reveals further side peaks at the neighboring unit
cells, whose intensities rapidly decay with the distance from
the center. We interpret these experimental observations as
clear evidence of an edge state localized at the interface, whose
spatial mode has a large overlap with the excitation field.

However, observing a localized state does not suffice to
conclude that it is indeed the topologically protected edge state
predicted by the SSH model. To fill this void, we look for other
experimental signatures pointing to the topological nature of
the edge state, by conducting two complementary experiments.
A first hint is found by closely examining the intensity
distribution shown in the inset of Fig. 2(e), which, despite the
finite optical resolution of our imaging system, reveals that the
edge state is concentrated only on one sublattice. To provide
even stronger evidence, we repeat the experiment presented in
Figs. 2(d) and 2(e), however, with the excitation site shifted
either by one waveguide (excitation site II) or by two waveg-
uides (excitation site III). For excitation site II, the recorded
intensity distribution shown in Fig. 3(a) only displays ballistic
spreading resulting from excited bulk modes. The edge state
is not excited in this case. In contrast, the localized state can
be clearly observed again, in addition to the bulk modes, if
the waveguide array is excited at site III [see Fig. 3(b)]. These
findings allow us to validate the SSH model’s prediction that
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FIG. 3. Leakage radiation image of propagating SPPs, with SPPs
excited at the excitation site II (a) and excitation site III (b). The
color scale is the same as in Fig. 1. (c) Probability amplitude of the
topologically protected edge state as predicted by the SSH theory for
the waveguide geometry in Fig. 2(d).

the topologically protected edge state has vanishing amplitudes
on every other site, as displayed in Fig. 3(c) [34].

The second experiment tests a complementary property of
the edge state of the SSH model by directly measuring its
spectral properties. This is achieved by imaging the back-focal
plane of the objective lens (Fourier imaging). For an aplanatic
objective lens as ours, the so-called sine condition relates the
spatial intensity distribution in the back-focal plane of the
objective to the angular distribution of the collected light.
Through this relation, the SPP wave vector kSPP = (kx,kz) is
directly mapped to a given position r in the back-focal plane,
r = feff kSPP/k0, where k0 is the vacuum wave number and feff

is the effective focal length, as shown in Fig. 4(a). Hence, imag-
ing the back-focal plane gives us direct access to the kx and
kz momentum distribution of SPPs in the waveguide arrays.
Based on the time-space mapping between the SSH model
and waveguides, we interpret the kx distribution (transverse
direction) as the momentum distribution and the kz distribution
(SPP propagation direction) as the energy spectrum.

Figure 4(b) provides the reference measurement of the
momentum-resolved bulk spectrum of the SSH model for the
geometry depicted in Fig. 2(a). We excite a single waveguide
in the bulk as for Fig. 2(b). The recorded momentum-
resolved bulk spectrum exhibits two cosinelike bands which
are separated by a gap in the kz direction. Based on the
foregoing time-space mapping, we interpret these two bands
as two energy bands of the SSH band structure shown in
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FIG. 4. (a) Measurement scheme for recording momentum-
resolved spectra of SPPs via Fourier imaging of leakage radiation.
Leakage radiation preserves the SPP momentum component parallel
to the glass substrate of index nglass. Principal plane H1 and sine
condition are also shown. (b) Momentum-resolved spectrum of SPPs
propagating in the bulk [see Fig. 2(a)], acquired by Fourier imaging
of the leakage radiation (similar color scale as in Fig. 1). As explained
in the text, we interpret the momentum distribution along the y axis
as the energy spectrum of the SSH model; the vertical units can
be gauged taking into account that the dashed circle denotes the
maximum detected momentum (k0 NA). Thin dashed lines are the
expected energy bands for the SSH model extended to include
next-nearest-neighbor coupling J ′′ (J ′ ≈ 0.5J and J ′′ ≈ 0.1J ).
(c) The dotted curve is the energy band of a simple lattice (J = J ′,
lattice constant a/2), and the solid and dashed curves are the energy
band in the presence of a weak imbalance (J �= J ′) (see text). We use
the same color scheme as in Fig. 1. (d) Like (b) but for SPPs excited
at the topological defect (site I) [see Fig. 2(d)].

Fig. 4(c). However, instead of reconstructing the spectrum
in the first Brillouin zone, our experimental technique gives
us access to the full decomposition in momentum components
in the higher Brillouin zones [35]. The maximum detected
momentum (k0 NA) is determined by the NA of our objective
lens (see dashed circle in the figure), which allows us to
precisely gauge the scale of the momentum (kx) and energy
(kz) axes. Hence, with the knowledge of the lattice constant
a, we can precisely identify the boundaries of the different
Brillouin zones (vertical dashed lines). Since we excite a single
waveguide, all quasimomenta are occupied, as shown by the
broad energy band distribution along the kx axis. To understand
the observed intensity distribution within the bands in more
detail, it is instructive to first consider the case of a bulk 1D
system with identical separations a/2 between waveguides,
and hence same coupling, J = J ′. This results in a single

cosinelike band, as indicated by the dotted line in Fig. 4(c),
with a first Brillouin zone twice as large (4π/a). For this simple
lattice, one expects a uniform occupation of this single band.
If every second site is shifted by a small amount, thereby
introducing an imbalance between J and J ′, we retrieve
the Brillouin zones of the SSH model. As a result of the
small perturbation, the momentum-resolved energy spectrum
acquires a gap in the kz direction at the boundaries between
Brillouin zones, while the intensity distribution remains largely
unchanged, that is, strong (weak) occupation of the band
indicated by the solid (dashed) line in Fig. 4(c). This simple
model explains qualitatively the observed intensity distribution
in Fig. 4(b). We attribute the slightly different spectral widths
of the two observed bands to a weak next-nearest-neighbor
coupling, which constitutes a small perturbation to the SSH
model breaking its chiral symmetry.

Figure 4(d) displays the momentum-resolved spectrum of
the SSH model in the case in which we excite the waveguide
array in the proximity of the defect (excitation site I). We
observe an additional mode with midgap position, which
agrees with the prediction of the SSH model of an edge
state with topological protection. This gives us a third strong
evidence that the excited edge state is in fact of topological
nature. We explain the small deviation from the exact band-
gap center in terms of a nonvanishing next-nearest-neighbor
coupling. Moreover, we infer from the high intensity of
the edge state at the zone boundary that the amplitudes of
the edge state alternate on every second waveguide, with
vanishing population on the other sublattice. This gives a
further confirmation of the observation in Fig. 3 that the edge
mode is restricted to one sublattice, and therefore that this is
the topologically protected edge state of the SSH model.

Alongside the interpretation of our experimental results
based on the SSH model, we have also performed numerical
calculations based on a finite element method in frequency
space. We solve the Helmholtz equation in the transverse plane
(assuming translational symmetry along the waveguides) for
plasmonic waveguide arrays with and without the topological
defect in the center. We thereby obtain the eigenmodes and
the corresponding complex effective refractive indices, neff =
β λ/(2π ), with β being the propagation constant related to
kz, Re(β) = kz. For the calculations, the array size is limited
to 50 waveguides, and the cross sections of the plasmonic
waveguides as well as their separations are chosen according
to the experiments. Figures 5(a) and 5(b) show the calculated
electric field distribution of bulk modes (quasimomentum
k = 0), demonstrating the bonding and antibonding orbitals for
the lower and upper band, respectively. The calculated electric
field distribution of the topological edge mode is depicted
in Fig. 5(c), showing that the field has minima on every
second waveguide. Bulk modes, as well as the topological
edge mode, have similar attenuation coefficients Im(β), with
small variations in the range of 30%.

The real-space evolution of the SPP amplitudes in a given
array is determined by decomposing the excitation field in
terms of the eigenmodes, and by letting each eigenmode
acquire a phase determined by the corresponding effective
refractive index. For the decomposition, we simply consider
the magnetic field of each eigenmode sampled in the center
of the waveguides. Momentum-resolved spectra are obtained
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defect. The color scale shows the norm in arbitrary units.

from the real-space field distributions by a two-dimensional
Fourier transform. Figures 6(a) and 6(b) display the calculated
real-space intensity distribution and momentum-resolved
spectrum, respectively, for a single site excitation in the
bulk of the SSH model. These calculations show the same
features characterizing the experimental results [see Figs. 2(b)
and 4(b)]. In particular, we observe a ballistic spreading of the
wave packet in the calculated real-space intensity distribution
and two bands with slightly different spectral widths in the
momentum-resolved spectrum. Analogously, the calculated
real- and Fourier-space data for the case of the excitation
at the boundary between the two dimerizations of the SSH
model (excitation site I) are presented in Figs. 6(c) and 6(d),
respectively. As in the experiment, in addition to the bulk states
we observe a localized mode at the boundary in the real-space
intensity distribution and the additional mode in the midgap
position in the momentum-resolved spectra. We note that our
calculation of SPP evolution does not assume nearest-neighbor
coupling, but takes into account all coupling terms in the array.
Our analysis shows a nonvanishing next-nearest-neighbor
coupling term of the same magnitude as that observed in the
experiment [see Figs. 4(b) and 4(d)]. This gives independent
confirmation of our assumption that the observed deviations
from the ideal SSH model’s prediction originates from a
nonvanishing next-nearest-neighbor coupling. Its contribution
can be further suppressed by increasing a. However, this
demands fabricating next-generation SPP waveguide arrays
with significantly reduced absorption losses, for example,
using Ag instead of Au or using longer wavelengths [32,36,37].
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FIG. 6. Calculated SPP real-space intensity distributions and
momentum-resolved spectra. From top to bottom, the calculations
correspond to the experiments presented in Figs. 2(b), 4(b) 2(e),
and 4(d), respectively. Units and color scales are the same as in the
corresponding experimental graphs. The calculations are based on a
finite element method in frequency space (see text).

In conclusion, we have experimentally demonstrated the
existence of a topologically protected edge state at the interface
connecting the two topological phases of the SSH model. To
provide strong experimental evidence of its topological nature,
we have shown through both real-space and momentum-
resolved measurements that the edge state has a midgap energy
and populates only one sublattice, as predicted by theory.
Our work shows that combining real space with momentum-
resolved imaging gives new valuable physical insight that
cannot be obtained from one domain only. In future work, it
would be interesting to study the topological protection against
different classes of deformations of the system’s parameters.
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