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Lost surface waves in nonpiezoelectric solids

Eugene A. Eliseev,1 Anna N. Morozovska,2,3,* Maya D. Glinchuk,1 and Sergei V. Kalinin4,†
1Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krjijanovskogo, 03142 Kyiv, Ukraine

2Institute of Physics, National Academy of Sciences of Ukraine, 46 Prospekt Nauky, 03028 Kyiv, Ukraine
3Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 14-b Metrolohichna Street, 03680 Kyiv, Ukraine

4Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
(Received 5 January 2017; revised manuscript received 30 May 2017; published 11 July 2017)

The existence of shear surface acoustic waves (SAWs) has been regarded as impossible in nonpiezoelectrics
with homogeneous flat surfaces. We show that transverse shear SAWs can propagate near the flat surfaces of
all crystalline dielectrics due to the omnipresent flexoelectric coupling. It appears that the penetration depth
of the previously unexplored SAW is defined by the flexocoupling strength. Since the SAW occurs due to
the flexoelectric coupling, we name it the flexoelectric SAW (flexo-SAW). We predict that the phonon spectra
corresponding to the flexo-SAWs and bulk phonon modes can be separated in thin nonpiezoelectric films, such
as strontium titanate.
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I. INTRODUCTION

A. Dynamics at the surfaces of solids

The physical processes taking place at the surface of
solids are so versatile that they have become an inexhaustible
subject of fundamental research [1,2]. In particular, since the
discovery of surface waves in solids [3], they have attracted the
increasing attention of scientists [4,5], because experimental
and theoretical studies of them can serve as the source of
unique information about the surface impact on the dynamics
and structure of atomic lattice [6], structural instabilities, and
phase transitions induced by the surface [7], and with them the
properties of phonons in spatially confined systems [8,9] can be
explored. In addition to the fundamental aspects, the surface
oscillations and waves are indispensable for applications in
modern nanoacoustics [10] and nanoplasmonics [11].

B. Surface waves: From discovery to now

The existence of surface acoustic waves (SAWs) in solids
of arbitrary symmetry (including the isotropic one) had been
predicted at the end of the 19th century by Lord Rayleigh [3].
The main conclusion made from the Rayleigh solution is that
the shear surface wave cannot propagate along the flat surface.
The longitudinal-transverse Rayleigh waves are a mixture of
shear and dilatation waves of expansions and compressions,
in contrast to the acoustic waves propagating in the bulk of
a solid matter, which have two transverse shear modes and
a longitudinal dilatational one [12]. Only at the end of the
1960s had Bleustein [13] and Gulyaev [14] shown that purely
shear surface waves can propagate in some solids without
an inversion center (e.g., at definite crystallographic cuts of
piezoelectrics), and naturally their appearance is impossible
in all nonpiezoelectrics with a homogeneous flat surface.
Nonlinear Rayleigh waves propagating along the flat surface
of a homogeneous solid medium covered by a thin film were
considered in 1998 by Eckl et al. [15]. The influence of
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standing SAWs on the diffusion of an adatom was theoretically
studied in 2011 by Taillan et al. [16]. Recently interest in the
theoretical consideration of classical linear SAWs was renewed
by Romero [17], who considered several types of SAWs in
piezoelectrics with an ideal flat surface.

Notably, if the surface is not flat the shear waves can appear.
In particular, Auld and Gagnepain [18] revealed that any
periodic corrugation of the surface (including a very shallow
one) leads to shear surface waves. Furthermore, Love waves
[12,19] are shear surface waves of a planar substrate coated
with a thin layer. The appearance of shear surface waves for a
planar substrate supporting an array of mechanical resonators
has been reported [20]. Hence one can readily imagine the
situation that the observation of shear SAWs at the surface
of a nonpiezoelectric will be attributed to surface corrugation
[18], artificial inhomogeneities [20], or additional layers [19].
However, in the latter case, SAWs are possible only for a
certain ratio between the elastic modules of the layer and
the substrate [19]. The conditions for the existence of shear
SAWs on corrugated surfaces essentially depend on the form of
the inhomogeneity [18]; they are far from being omnipresent.
Running ahead, the aim of this work is to show that for the flat
surface of an arbitrary solid body (including an isotropic one
in the sense of elastic properties) the localization of transverse
acoustic waves is always possible under the influence of the
omnipresent flexoelectric effect, including the case when all
previous theories predicted the complete absence of transverse
SAWs.

C. Experimental observations of SAWs

The questions of how to investigate experimentally SAWs
and how to verify existing theoretical predictions [13–17],
along with many others, naturally arise. Since the frequency
of the soft-mode-related optic and acoustic phonons in
piezoelectric and paraelectric ferroics typically lays within
the THz region and corresponding wave vectors are in the
range (0.05–5) nm−1, the phonon spectra ω(k) can be extracted
from the inelastic neutron scattering experiments [21–26] by
a conventional procedure. Namely each experimental point of
the spectra ωi(ki) (e.g., shown in Fig. 2 in Ref. [21]) is defined
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from the energy position h̄ωi of the inelastic neutron scattering
intensity peak measured at fixed wave vector ki (see, e.g., Fig. 1
in Ref. [21]).

Hamilton et al. [27] performed the first experimental
demonstration that SAWs in quartz can be probed by diffrac-
tion of cold neutrons. Much earlier Soffer et al. [28] proposed
an optical imaging method for direct observation and study of
SAWs at the nonpolar Y cut of piezoelectric LiNbO3 (typical
manifestation of Bleustein and Gulyaev waves). Pyrak-Nolte
et al. [29] made the first direct observation of the new class
of elastic interface waves propagating along the discontinuity
of a synthetic fracture in aluminum. De Lima, Jr. et al. [30]
presented the experimental observation of Bloch oscillations,
the Wannier-Stark ladder, and Landau-Zener tunneling of
SAWs in perturbed grating structures on a solid substrate (in
that case the vertical surface displacement has been measured
by interferometric methods).

Fine aspects of the SAWs can be explored by Brillouin
[11,31,32] and Raman [33,34] scattering, the ultrasonic
pulse-echo method [31,32] allowing hypersound spectroscopic
measurements, and surface-enhanced Raman scattering based
on incomplete internal reflection [35]. Also there are many ad-
vanced techniques for SAW observations operating in the GHz
range of frequencies, such as laser ultrasonic experiments [36],
optical interferometry [37], and surface Brillouin light scatter-
ing [38,39]. These methods are mostly relevant for SAW obser-
vations up to the (10–100) GHz range; however it is unlikely
that they can “see” SAWs in the THz range of frequencies that
is typical for proper and incipient inorganic ferroelectrics.

Thus (except for the THz region) the experimental methods
of SAW observation are well evolved and precise enough
to probe their finest properties and to verify the most
sophisticated theoretical predictions.

D. Expected role of flexocoupling on surface waves

It should be noted that the static flexoelectric effect [40–43],
consisting of the appearance of polarization due to the strain
gradient (direct flexoeffect) and the appearance of strain due to
the polarization gradient (converse flexoeffect), was not taken
into account in all known theories of SAWs [3,12–17]. The
strain induced by the flexoelectric coupling is linearly propor-
tional to the polarization gradient, usf

ij = −fijkl(∂Pk/∂xl); here
fijkl are the components of the flexocoupling tensor [40–45],
and Pk are polarization components. The static flexoelectric
effect exists in all solids, as allowed by arbitrary symmetry,
and its strength can be small, moderate, or giant, because fijkl

ranges from (0.1–1) volts [41–45] to hundreds of volts [44].
Moreover the notion of the dynamic flexoelectric effect

[43,45,46], consisting of the appearance of polarization P
df

i

in response to accelerated motion of the medium in the time

domain, and its impact on phonon spectra has been absent until
recently [47,48]. The dynamic flexoelectric effect was first
introduced by Tagantsev [43,49] as P

df

i = −Mij (∂2Uj/∂t2),
where Uj is an elastic displacement and Mij is a flexodynamic
tensor.

Nevertheless, an elastic wave of any kind is inevitably
accompanied by a periodic gradient of mechanical strain and
stress. This gradient is proportional to the wave vector of the
oscillation and is obviously small for longer wavelengths. For
a medium of arbitrary symmetry (including an isotropic one)
the wave of the strain gradient will cause a wave excitation
of electric polarization (i.e., the local polarization, the mean
value of which is zero) due to the direct flexoelectric effect.
The latter, in turn, will affect the elastic stresses associated
with the wave due to the converse flexoelectric effect. Thus the
flexocoupling should influence the properties of surface waves
in all solids, since it essentially affects the bulk phonon spectra
in different ferroelectrics and paraelectrics [46–49], and the
influence should be more pronounced for shorter wavelengths.

E. Research motivation, impact, and methods

Recently using the Landau-Ginzburg-Devonshire (LGD)
phenomenological continuum media approach Morozovska
et al. [47,48] demonstrated the significant influence of the
flexocoupling on the appearance of spatially modulated phases
and on the properties of optic and acoustic phonons in the
ferroelectric and paraelectric phases of ferroelectrics PbTiO3

and Sn2P2(S,Se)6, and paraelectric SrTiO3. Motivated by these
results we used the LGD approach for SAW description
in paraelectrics. We revealed that the surface shear waves
similar to the waves of Bleustein [13] and Gulyaev [14]
can exist in dielectrics of any symmetry (e.g., in paraelectric
SrTiO3) and for an arbitrary orientation of the surface due
to the flexoelectric coupling. The wave is the oscillation
of shear strain coupled with electric polarization. Below
we classify these types of waves as “flexocoupling-induced
SAWs” (briefly as “flexo-SAWs”).

Note that previously known types of SAWs (see, e.g.,
Refs. [12–19]) have been revealed within the phenomenologi-
cal continuum media approach. We emphasize that our choice
of the phenomenological LGD approach conditions the gener-
ality of the obtained results, and it shows that the predicted
flexo-SAWs exist for all nonpiezoelectric solids, whereas
microscopic ab initio approaches are material specific.

II. STATEMENT OF THE PROBLEM ALLOWING FOR
FLEXOCOUPLING

LGD expansion of bulk (FV ) and surface (FS) parts of the
Helmholtz free energy F on the polarization vector (Pi) and
strain tensor components (uij ) has the form [47,48]

FV =
∫

V

d3r

(
aij

2
PiPj + aijkl

4
PiPjPkPl − PiEi + gijkl

2

(
∂ Pi

∂xj

∂ Pk

∂xl

)
− qijkluijPkPl − fijkl

2

(
Pk

∂ uij

∂xl

− uij

∂ Pk

∂xl

)

+ cijkl

2
uijukl + vijklmn

2

(
∂ uij

∂xm

∂ ukl

∂xn

))
, (1a)

FS =
∫

S

d2r
aS

ij

2
PiPj . (1b)
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The components of tensor aij are positively defined
constants for linear dielectrics and explicitly depend on tem-
perature T for ferroelectrics and paraelectrics. In particular,
a Barrett-type [50] formula aij = αT

ij [Tq coth(Tq/T ) − TC]
is valid for incipient paraelectrics like SrTiO3, wherein
αT

ij are the inverse Curie-Weiss constants, TC is the Curie
temperature, and Tq is a characteristic temperature. All other
tensors in the free energy (1) are supposed to be temperature
independent. Tensor aijkl should be positively defined for the
functional stability in paraelectrics and ferroelectrics; it can
be neglected for linear dielectrics. Tensors gijkl and vijklmn,
which determine the magnitude of the gradient energy, are
also regarded positively defined. Coefficients qijkl are the
components of electrostriction tensor; cijkl are the components
of the elastic stiffness tensor. Polarization is conjugated with
electric field Ei that can include external and depolarization
contributions (if any exist). The flexoelectric energy is written
in the form of the Lifshitz invariant, fijkl

2 (Pk
∂ uij

∂xl
− uij

∂ Pk

∂xl
),

where fijkl is the flexocoupling stress tensor.
The Lagrange function is

L =
∫

t

dt(F − K), (2)

where the kinetic energy K is given by the expression
[43,45,47,49]

K =
∫

V

d3r

[
μ

2

(
∂Pi

∂t

)2

+ Mij

∂Pi

∂t

∂Uj

∂t
+ ρ

2

(
∂Pi

∂t

)2
]
,

(3)

which includes the dynamic flexoelectric coupling tensor Mij .
Ui is the elastic displacement and ρ is the density of a
material. The strain components are related to the displacement
derivatives in a conventional way, uij = 1

2 ( ∂Ui

∂xj
+ ∂Uj

∂xi
).

Dynamic equations of state have the form of Euler-
Lagrange (E-L) equations:

δL

δPi

= −�
∂Pi

∂t
,

δL

δUi

= 0. (4)

For most of the cases one can neglect the polarization
relaxation by setting � = 0 and omit the high-order elastic
strain gradient by setting vijklmn = 0, if the flexoelectric
coefficients are below the critical values f cr

ijkl [51,52]. For the
flexoelectric coefficients higher than the critical ones the spa-
tially modulated phase occurs [48], at which the relationship
f cr

ijqsf
cr
klqs

∼= gijmncklmn is valid under the condition vijklmn = 0
[48,51,52].

Hereinafter we regard that the dynamic flexoeffect tensor
is diagonal, Mij = Mδij , and the inequality M2 < ρμ should
be valid for the stability of kinetic energy [see Eq. (3)]. Below
we use an isotropic approximation for the tensor coefficients
aS

ij = αS0δij and aij = α(T )δij , where αS0 is the surface energy
coefficient, α(T ) = αT [Tq coth(Tq/T ) − TC], and δij is the
Kronecker-delta symbol.

The boundary conditions at the mechanically free surface
can be obtained from the variation of the free energy (1) on
polarization and strain:

gkjimnk

∂Pm

∂xj

+ αS0Pi = −fjkim

2
ujknm

∣∣∣∣
S

, σijnj

∣∣
S

= 0.

(5)

Here nk are the components of the external normal to the
surface; the elastic stress tensor σij = −δFV /δuij satisfies the
mechanical equilibrium equation, ∂σij /∂xj = 0. The most ev-
ident consequence of the flexocoupling is the inhomogeneous
terms in the boundary conditions (5).

Note that the application of the LGD-type continuum
theory for the description of acoustic phonon dispersion
for long enough waves with wave vectors k < 1 nm−1 does
not require any special justifications as it is widely used
in the literature (see e.g., Refs. [12–17,19,31–35,47,48] and
paragraph 3.2 in Ref. [49]), and the results obtained from
LGD theory agree well with experimentally measured phonon
spectra [31–35,48]. For shorter waves with k > 1 nm−1 the
results presented below have only qualitative significance,
but we hope that semiquantitative description of the SAWs
can be sufficient to stimulate the search of their experimental
verification.

III. ANALYTICAL SOLUTION FOR A LOST
SURFACE WAVE

A. Explicit form of the Euler-Lagrange boundary problem for
transverse surface waves

Let us consider the transverse wave of electric polarization
P2(x1,x3,t) and elastic displacement U2(x1,x3,t) propagating
along direction x1 near the surface x3 = 0 of a semi-
infinite nonpiezoelectric solid (see Fig. 1). The wave is not
damped by the influence of depolarizing effects because
div �P (x1,x3,t) = 0.

The explicit form of the E-L equations (4) for the purely
transverse surface waves with the boundary conditions at the
surface x3 = 0 is derived in Appendix A of the Supplemental
Material [53]. These equations can be linearized in dielectrics
and paraelectrics (i.e., at α > 0). For the considered geometry
the linearized E-L equations along with the boundary con-
ditions (5) acquire relatively simple form (compare with the

FIG. 1. Geometry of the surface wave propagating in a semi-
infinite nonpiezoelectric (dielectric or paraelectric) material. Red
arrows are the elementary dipoles, which are zero at the surface
in the particular case αS0 = ∞ [because P2(x1,0,t) = 0 at αS0 = ∞].
Black grid illustrates the deformation of the unit cells caused by the
displacement U2(x1,x3,t) (the scale is distorted).
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equations in paragraph 3.2 in Ref. [49]):

ρ
∂2U2

∂t2
+ M

∂2P2

∂t2
− 	(c44U2 + f44P2) = 0, (6a)

μ
∂2P2

∂t2
+ M

∂2U2

∂t2
+ αP2 − 	(g44P2 + f44U2) = 0. (6b)

The symbol 	 stands for the Laplace operator. Boundary
conditions (5) acquire the form(

c44
∂U2

∂x3
+ f44

∂P2

∂x3

)∣∣∣∣
x3=0

= 0,

(
αS0P2 − g44

∂P2

∂x3
− f44

∂U2

∂x3

)∣∣∣∣
x3=0

= 0. (6c)

Hereinafter the inequality f 2
44 < c44g44 is regarded as valid

for the system stability.

B. General expressions relating the amplitudes, frequency
dispersion, and penetration depth of the traveling surface waves

Let us look for the solution of the linearized boundary
problem (6) in the form of a traveling surface wave:

P2(x1,x3,t) = exp [i(kx1 − ωt) − ξx3]p̃(k),

U2(x1,x3,t) = exp [i(kx1 − ωt) − ξx3]ũ(k). (7)

Here k is the wave vector in the direction of the wave
propagation, ω is its frequency, and ξ is inverse penetration
depth of the wave. Since the solid occupies the semispace
x3 � 0, only the exponents either vanishing or not increasing
at x3 → ∞ are present, so that the inequality Re(ξ ) � 0 should
be valid.

The substitution of expressions (7) in Eqs. (6) leads to
the system of linear algebraic equations for the amplitudes
p̃ and ũ:

[ρω2 + c44(ξ 2 − k2)]ũ + M ω2p̃ + f44(ξ 2 − k2)p̃ = 0,

[μω2 − α+g44(ξ 2−k2)]p̃+M ω2ũ+f44(ξ 2−k2)ũ = 0.

(8)

The condition of the system (8) zero determinant gives the
condition of the SAW existence

[ρω2 + c44(ξ 2 − k2)][μω2 − α + g44(ξ 2 − k2)]

= [M ω2 + f44(ξ 2 − k2)]2. (9)

The solution of Eq. (9) for the penetration depth of the
wave is

ξ 2
1,2 = k2 + −B(ω) ±

√
B2(ω) − 4[c44g44 − (f44)2]C(ω)

2(c44g44 − (f44)2)
,

(10a)

wherein the functions B(ω) and C(ω) are given by expressions

B(ω) = (μω2 − α)c44 + ρω2g44 − 2M ω2f44, (10b)

C(ω) = ρω2(μω2 − α) − (M ω2)2. (10c)

The conditions c2
44R

2(k) � 4(ρω2 − c44k
2)2 and

(c44μ+g44ρ−2M f44) ω2−α(T )c44

(c44g44−f 2
44)

− 2k2 < 0 are required for
Re(ξi) � 0.

Substitution of the solution (7) rewritten in the explicit
form Q2 = [q1 exp(−ξ1x3) + q2 exp(−ξ2x3)] exp[i(kx1 − ωt)]
(where the symbol q = p for polarization P or q = u for
the strain field U ) into Eqs. (8) and boundary conditions (6c)
leads to the two independent equations for the penetration
depths ξi :

ξ1 = ξ2, (11a)

αS0(ρω2 − c44k
2 − c44ξ1ξ2) = (ξ1 + ξ2)ξ1ξ2[c44g44 − (f44)2].

(11b)

Along with Eqs. (11) the following relation between the
amplitudes p and u should be valid:

ui = −
(

M ω2 + f44
(
ξ 2
i − k2

)
ρω2 + c44

(
ξ 2
i − k2

)
)

pi. (12)

If the shear strain wave is excited by polarization, its
resonant enhancement at definite frequency ω is possible
under the condition ρω2(k) + c44{ξ 2

i [k,ω(k)] − k2} = 0. The
dispersion law ω(k) will be derived and analyzed below.

The evident form of Eq. (11a) is equivalent to the condition
of the zero determinant in Eq. (10a), namely

B2(ω) − 4C(ω)[c44g44 − (f44)2] = 0. (13)

Note that the solution of Eq. (13) with respect to frequency
is independent of the wave vector. A solution with a similar
property was found by Romeo et al. [17], who noted that for
this case the “frequency dispersion” is limited to the discrete set
of frequency values ωn(kn), which is unlikely to be observed.

Really in the secular case ξ1 = ξ2 = ξ [Eq. (11a)]
the expressions (7) for the solution should be modi-
fied as P2 = (p1 − p2ξx3) exp[i(kx1 − ωt) − ξx3] and U2 =
(u1 − u2ξx3) exp[i(kx1 − ωt) − ξx3]. A detailed considera-
tion of the secular case, presented in part D of the Supplemental
Material [53], leads to the conclusion that the surface wave can
exist under the validity of a very specific boundary condition,
αS0 = 0. Since it exists for a definite frequency, the solution
(11a) is the “isolated” point that is unlikely to be observed
experimentally.

C. Impact of the boundary conditions for polarization on the
surface waves’ existence

In contrast to the pessimistic scenario of the experimental
verification of the secular case (11a), the solution of Eq. (11b)
is valid at all values of αS0 and can be simplified for two
limiting cases, αS0 = 0 and αS0 = ∞, considered below.

(a) The “bulklike” case I corresponds to the natural
boundary condition for polarization at the surface, which is
the zero normal derivative, ∂P2/∂x3|x3=0 = 0, since αS0 = 0.
Mathematically case I is equivalent to the condition ξ1ξ2 = 0,
because ξ1 + ξ2 �= 0. Setting ξ = 0 in Eq. (9) we immediately
obtain the dispersion relation

(ρω2 − c44k
2)(μω2 − α − g44k

2) = (M ω2 − f44k
2)2.

(14)

In fact Eq. (14) represents the dispersion relation for a
transverse phonon mode in the bulk, because its decay factor
ξ given by Eqs. (10) is zero. As anticipated Eq. (14) coincides
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with Eq. (13b) from Ref. [47] in a paraelectric phase with
PS = 0 and 2α → α (due to the absence of factor 1/2 in the
free energy in Ref. [47]).

(b) The SAW case II corresponds to zero polarization at
the surface, P2(x1,0,t) = 0, since αS0 = ∞ and thus ρω2 −
c44k

2 − c44ξ1ξ2 = 0 from Eq. (11b). The latter condition
jointly with the condition p1 = −p2 is sufficient to satisfy
the boundary conditions (6c). The dispersion relation obtained
from Eqs. (11b) and (10a) is

(ρω2 − c44k
2)

2

c2
44

= (ρω2 − c44k
2)(μω2 − α − g44k

2) − (M ω2 − f44k
2)

2

c44g44 − (f44)2 .

(15)

The most important point is that under the absence of static
(f44 = 0) and dynamic (M = 0) flexocoupling the dispersion
relation (15) reduces to the bulk dispersion law, ρω2 = c44k

2,
excluding the separate frequency point ρω2

c44
= μ ω2−α

g44
. In the

presence of flexoelectric coupling the explicit form of Eq. (15)
is a biquadratic equation

A(k)ω4 − Q(k)ω2 + αc44k
2

c44g44 − f 2
44

= 0, (16a)

where the functions Q(k) = αρ

c44g44−f 2
44

+
( g44ρ+c44μ−2M f44

c44g44−f 2
44

− 2 ρ

c44
)k2 and A(k) = ρμ−M2

c44g44−f 2
44

− ρ2

c2
44

are introduced. Since c44g44 > f 2
44 for the system stability,

and α > 0 for dielectrics and paraelectrics, the last term in
Eq. (16a) is positive for the these materials. Since we regard
that ρμ > M2 for the Lagrangian (2) stability, the first term
A(k) can be of arbitrary sign, but inevitably becomes positive
under the condition f 2

44 → c44g44, i.e., when the flexoelectric
coefficient increases towards the critical value. Under the
condition Q(k) > 0 and relatively high f 2

44 Eq. (16a) has two
roots, a transverse optic (TO) and acoustic (TA) mode. At
Q(k) < 0 and A(k) < 0 it contains only one TA mode. The

corresponding equation for the decay factors can be derived
from Eqs. (9) and (10), namely,

ξ 4 + R(k)ξ 2 + (ρω2 − c44k
2)

2

c2
44

= 0, (16b)

where the function R(k) = (c44μ+g44ρ−2M f44) ω2−α(T )c44

(c44g44−f 2
44)

− 2k2

is introduced. Since the last term in Eq. (16b) is positive
because of c44g44 > f 2

44, the conditions for which both
decay factors ξi become real are R(k) < 0 and c2

44R
2(k) �

4(ρω2 − c44k
2)2. Both ξi are complex in the case c2

44R
2(k) <

4(ρω2 − c44k
2)2, and purely imaginary under the conditions

c2
44R

2(k) � 4(ρω2 − c44k
2)2 and R(k) > 0.

Expressions (13)–(16) are the formal analytical solution of
the considered problem, but only Eqs. (16) [being the explicit
form of Eq. (15)] contain the “lost” transverse surface wave
induced by the flexoelectric coupling, which we abbreviate
as flexo-SAWs below. The existence of flexo-SAWs is not
limited to a particular material, but for the sake of concreteness,
we have chosen a well-studied quantum paraelectric SrTiO3

(STO) for which the majority of constants are known. Below
we explore the wave dispersion in a transverse direction and
its penetration under the STO surface.

IV. FLEXOCOUPLING IMPACT ON SURFACE WAVE
PROPERTIES IN NONPIEZOELECTRIC SOLIDS

A. Frequency dispersion, phase velocity, and penetration depth
of SAWs in SrTiO3

Using Eqs. (16) we calculated the frequency dispersion ω(k)
of the traveling wave vector for the case of paraelectric STO
at temperatures (100–400) K. TA and TO modes penetrating
in the bulk were calculated from Eq. (14). Most of STO
material parameters are well known. Numerical values of the
unknown STO parameters have been extracted from the fitting
[48] of phonon spectra obtained from the inelastic neutron
scattering [21]. STO parameters are listed in Table I. Using the
parameters and the detectable limit of displacement fluctuation

TABLE I. Description, dimension, and numerical values of parameters in Eqs. (16) collected from Refs. [54–57].

Description of the physical parameter Symbol and dimension Numerical value for SrTiO3 Refs.

Coefficient at P 2 α(T ) (×C−2 m J) αT [Tq coth(Tq/T ) − TC] [50]
Inverse Curie-Weiss constant αT (×105 C−2 m J/K) 15 [54–57]
Curie temperature TC (K) 30 [54–57]
Characteristic temperature Tq (K) 54 [54–57]
Surface energy coefficient αS0 (×C−2 J) ∞ N/A
LGD coefficient at P 4 β (×108 J C−4 m5) 81 [54–57]
LGD coefficient at P 6 γ (×109 J C−6 m9) 0 [54–57]
Electrostriction coefficient q44 (×109 J m/C2) 2.4 [54,57]
Elastic stiffness coefficient c44 (×1010 Pa) 11 [54–57]
Gradient coefficient at (∇p)2 g44 (×10−10 C−2 m3 J) 0.5 (fitting parameter) [48]
Elastic strain gradient (∇u)2 v (×10−9 V s2/m2) 0 (fitting parameter) This work
Static flexoelectric coefficient f44 (V) +2.1 (exp. value) [48]
Dynamic flexoelectric coefficient M (×10−8 V s2/m2) −1 (fitting parameter) [48]
Kinetic coefficient μ (×10−18 s2 m J) 1.45 (fitting parameter) [48]
Material density at norm. cond. ρ (×103 kg/m3) 4.930 at 120 K Handbook
Lattice constant a (nm) ax = ay = az = 0.395 at 120 K Handbook
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FIG. 2. (a) Frequency dispersion of the bulk (dashed curves) and
surface (solid curves) phonon modes calculated for STO parame-
ters. Transverse optic (TO) and acoustic (TA) modes are shown.
(b) Dependence of penetration depth of the surface TA wave on
its wavelength. (c) Phase velocity of the surface TA wave in
dependence on the wavelength. (d) Phase velocity dependence on
the surface wave frequency. Different curves in (a)–(d) correspond
to the temperatures T = 100, 200, 300, and 400 K, which values are
specified near the curves. Static flexoelectric coefficient f44 = 2.1 V,
dynamic flexocoupling constant M = −1 × 10−8 V s2/m2, surface
energy parameter αS0 = ∞. Other material parameters of STO are
listed in Table I.

amplitude U2 ∼ 1 pm we obtained the value of polarization
amplitude P2 ∼ 0.05 C/m2 from Eq. (12).

The dispersion curves of the lowest transverse acoustic (TA)
and transverse optic (TO) surface phonon modes are shown by
solid curves in Fig. 2(a). The frequency of TO mode is rather
high, and the minimal distance between the TO and TA modes
is about 5 THz at k ≈ 1.2 nm−1. The modes’ interaction is very
weak in STO, which is typical for paraelectrics. For the sake of
comparison the dispersions corresponding to the bulk TA and
TO phonon modes are presented by dashed curves in Fig. 2(a).
The difference between the dispersion curves for the bulk and
surface TO modes is the most pronounced [∼(2–5) THz] for
small wave vectors k < 0.5 nm−1 but remains essential for all
considered values 0 � k � 5 nm−1. The difference between
the frequency dispersion of the bulk and surface TA modes be-
comes noticeable only for the wave vector values k > 2 nm−1.
Thus the differences between the bulk and surface TO modes
decreases, while the differences between the bulk and surface
TA modes increases with the temperature increase [compare
solid and dashed curves of different colors in Fig. 2(a)].

Despite that the difference between the frequency dis-
persions of the surface and bulk TA modes is essentially
smaller than between the corresponding TO modes, we
further limit our consideration to surface TA mode properties,
primarily because their penetration depth is real [Fig. 2(c)]

and the acoustic frequency is much lower that the optical one
[Fig. 2(a)]. These properties of surface TA modes open the
interesting possibilities for their excitation and experimental
observation. In contrast, it appeared that TO mode penetration
depth is purely imaginary for STO (ξ = iqz) and so it is not
localized near the surface. In particular the TO mode calculated
from Eqs. (16) is a standing wave reflected from the surface
x3 = 0, and it disappears with the flexocoefficient f44 decrease
below 1.5 V. As a matter of fact the impact of the flexocoupling
on the standing TO waves requires a separate study, because
their amplitude can be noticeable in thin films (see the next
section).

The dependencies of the surface TA wave penetration
depths 1/ξ1 and 1/ξ2 on the wavelength λ are shown in
Fig. 2(b) for several temperatures (100–400) K. Because the
penetration depth 1/ξ1 rapidly increases with the wavelength
increase [see solid curves in Fig. 2(b)], the surface wave
properties gradually tend to the ones of the bulk wave in the
limit λ → ∞. The depth 1/ξ2 first increases, then reaches a
very smooth maximum (or a plateau), and then saturates with
the temperature decrease. Both penetration depths 1/ξ1 and
1/ξ2 almost coincide at small λ < 1 nm [compare dashed
and solid curves in Fig. 2(b)]. Note that the depth 1/ξ1

monotonically increases with the temperature increase, and the
depth 1/ξ2 decreases with the temperature decrease [compare
black, red, purple, and blue dashed curves in Fig. 2(b)]. Since
the depths determine the localization of the surface wave, only
the highest value 1/ξ = max[1/ξ1,1/ξ2] matters.

The dispersion laws for Rayleigh, Bleustein, and Gulyaev
waves are similar to those for the bulk elastic (infrasound,
acoustic, or ultrasound) waves. Their frequency ω is pro-
portional to the wave number k, namely ω = vP k, where
vP is the wave velocity. The dependence of the surface TA
wave phase velocity vP = ω/k on its wavelength λ = 2π/k

is shown in Fig. 2(c) for several temperatures from the range
(100–400) K. First the phase velocity increases sharply enough
and monotonically with the wavelength increase from 0.1 nm
to 10 nm, and then it saturates and tends to the phase velocity
of the shear wave in the bulk of material. Smaller vP values
correspond to the lower temperatures [compare black, red,
purple, and blue curves in Fig. 2(c)]. The saturation starts at
λ values about 5 nm for T = 400 K, and about 30 nm for
T = 100 K.

The frequency spectrum of the phase velocity is shown
in Fig. 2(d) for several temperatures (100–400) K. The
velocity monotonically decreases with the frequency increase
at frequencies less than the critical value ωcr, at which
ωcr ≈ 3.7 THz at 100 K and ωcr ≈ 8.75 THz at 400 K [compare
black, red, purple, and blue curves in Fig. 2(d)]. At frequencies
ω > ωcr the velocity is zero; hence the second-order phase
transition occurs at ω = ωcr. Numerical values of the phase
velocity ∼ (1–4) km/s are in the same interval as the SAW
velocity (3472.5 ± 1.5) m/sec measured by Soffer et al. [28]
at the nonpolar Y cut of piezoelectric LiNbO3. Soffer waves
are typical manifestations of Bleustein and Gulyaev SAWs.
However the considered SAWs have the eigenfrequencies
ω(k) ∼ 5 THz at the wave vectors k = (1–100) nm−1, while
the SAWs in LiNbO3 were excited at resonant frequency about
40 MHz at k = 0.1 mm−1. The several orders of magnitude
difference calls into question the opportunity to observe and
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FIG. 3. Dependence of the TA wave penetration depth 1/ξ (a)
and frequency ω (b) on flexocoefficient f44 calculated at 300 K for
M = 0 (dashed curves) and M = −1 × 10−8 V s2/m2 (solid curves).
Different curves correspond to the wave vectors k = (0.5,1,2,4) nm−1

specified near the curves. STO parameters are listed in Table I.

study flexo-SAWs in paraelectrics using the optical spatial
filtering technique [28].

B. Impact of flexocoupling on the SAW frequency dispersion
and penetration depth

Note that Fig. 2 is calculated for the static flexoelectric
coefficient f44 = 2.1 V and dynamic flexocoupling constant
M = −1 × 10−8 V s2/m2 extracted from the soft phonon
spectra measured by inelastic neutron scattering (see Fig. 2
in Ref. [21]). Note that the extracted value f44 = 2.1 V is
in surprising agreement with the value f44 = (2.18 ± 0.05)
V determined from the bending of the STO crystal by
Zubko et al. [58], but earlier they measured that f44 = 1.3 V
[59]. The dynamic flexocoupling constant absolute value
1 × 10−8 V s2/m2 is within the range (0–20) × 10−8 V s2/m2

whose physical reasonability was estimated in Refs. [47,48].
Since exact values of fij and M are still under debate for most
ferroics including ferroelectrics and quantum paraelectrics
[60–62], it seems reasonable to explore the properties of the
revealed surface TA wave on the value of fij varying in the
actual range (0–3) V. Hereinafter we consider M < 0 for STO,
because the inequality Mf44 < 0 is in much better agreement
with the phonon spectra [21–23] and bending measurements
[58] than the case Mf44 > 0. Results are presented in Figs. 3
and 4. The case M = 0 is shown in the figures for comparison.

Figure 3(a) shows the dependences of the SAW penetration
depth 1/ξ on the static flexoelectric coefficient f44 calculated
for several wave vectors kn and zero (M = 0) and negative
(M < 0) dynamic flexoconstants. Under the condition M = 0
the penetration depth 1/ξ sharply increases (up to cm) with
the flexoelectric coefficient f44 decrease below 0.5 V and
diverges when its value tends to zero [see dashed curves
in Fig. 3(a)]. When the penetration depth 1/ξ diverges, the
surface wave properties coincide with the ones of a bulk wave.
For wave vectors k > 1 nm−1 and 1 V < f44 < f cr

44 the TA
wave penetration depth 1/ξ becomes less than 100 nm, so it
indeed becomes a SAW. The depth 1/ξ very sharply increases
(up to infinity) in the immediate vicinity of f44 → f cr

44, and
becomes imaginary at f44 > f cr

44 indicating the onset of the
spatially modulated phase. The critical value of the spatially
modulated phase appearance is f cr

44 = √
g44c44 ≈ 2.45 V, and

it is independent of the dynamic flexocoupling value as

FIG. 4. Contour maps of the TA mode penetration depth 1/ξ

[(a), (b)] and frequency ω [(c), (d)] in coordinates “wave vector
k – flexoelectric coefficient f44” calculated for T = 300 K, M =
−1 × 10−8 V s2/m2 [(a), (c)] and M = 0 [(b), (d)]. Parameters
corresponding to STO are listed in Table I.

anticipated [48]. The divergence of 1/ξ at f44 = 0 disappears
for negative M and positive f44. The corresponding curves
have a sharp maximum only at f cr

44 [see solid curves in
Fig. 3(a)]. Actually we established that the divergence 1/ξ

can originate from the last term (Mω2 − f44k
2)2 in Eq. (15)

for the TA mode frequency ω. Since the term is positive for the
case f44M < 0, the corresponding penetration depths given by
Eqs. (10) are finite. The negative sign of f44 induces the
additional divergence of 1/ξ at negative M values. At the
same time the inequality Mf44 > 0 seems in contradiction
with the values extracted from the neutron scattering [22,23]
and bending [58] experiments in STO. However the condition
Mf44 � 0 is far from excluded for other materials.

Figure 3(b) shows the dependence of the TA mode fre-
quency ω on the static flexoelectric coefficient f44, calculated
for the cases M = 0 and M < 0, respectively. The difference
between these two cases is relatively small [compare the solid
and dashed curves in Fig. 3(b)], leading to the conclusion
that the impact of the dynamic flexoconstant value on the
frequency ω of the surface TA mode is relatively small (at
least in comparison with its influence on the penetration
depth). For both cases M = 0 and M < 0 the frequency
ω becomes higher than 2.5 THz for small wave vectors
k � 0.5 nm−1 and flexocoefficients f44 lying in the range
(0–3) V. The frequency values are relatively high (>4 THz)
and almost independent of the flexoelectric coefficient f44

for wave vectors k < 1 nm−1; they start to decrease slowly
with f44 increasing for k > 1 nm−1. Note that THz values are
typical for the soft phonon frequencies in proper and incipient
ferroelectrics.

Figures 4(a) and 4(b) demonstrate the dependencies of the
SAW penetration depth 1/ξ on the flexoelectric coefficient f44

and wave vector k calculated for the cases M = 0 and M <

0, respectively. Under the condition M = 0 the penetration
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depth 1/ξ sharply increases (up to cm) with the flexoelectric
coefficient f44 decrease below 0.5 V and diverges when its
value tends to zero [see different contour lines in Fig. 4(a)]. The
divergence of 1/ξ at f44 = 0 disappears for negative M and
positive f44. The corresponding curves have a sharp maximum
at f cr

44 only [see different contour lines in Fig. 4(b)].
Figures 4(c) and 4(d) show the dependence of the surface

TA mode frequency ω on the flexoelectric coefficient f44 and
wave vector k calculated for the cases M = 0 and M < 0,
respectively. The difference between these cases is relatively
small. For both M = 0 and M < 0 the frequency ω becomes
higher than 1 THz for small wave vectors k � 0.2 nm−1 and
flexocoefficient 0 < f44 < 3 V. The frequency ω is almost
independent of f44 for wave vectors k < 1 nm−1 [see almost
vertical contour lines of constant ω in Figs. 4(c) and 4(d)]. Un-
der the condition k > 1 nm−1 the frequency relatively slowly
and monotonically decreases with f44 increase [Figs. 4(c)
and 4(d)].

To resume the analyses of the graphical results presented
in Sec. IV we can state that the existence and penetration
depth of the revealed surface TA phonon mode is ruled by
the static and dynamic flexocouplings. In particular the mode
transforms to the bulk wave in the absence of the couplings.
So the flexoelectricity indeed generates previously unexplored
types of acoustic waves, further abbreviated as flexo-SAWs,
which can travel near the flat surface of any solid. Next we
can speculate on whether these surface waves be excited and
detected separately from the classical bulk phonon modes.

V. POSSIBILITIES OF FLEXO-SAW EXCITATION AND
EXPERIMENTAL OBSERVATION

Since the calculated frequency dispersion ω(k) of the flexo-
SAW is within THz region for the wave vectors in the range k =
(0.05–5) nm−1 in nonpiezoelectric paraelectrics with relatively
small coefficient α ∼= 1/ε0ε (corresponding to the high relative
dielectric permittivity ε � 100), the waves can be excited
similarly to the bulk acoustic phonons, and the dispersion ω(k)
can be determined from inelastic neutron scattering [21,22].
For instance the dispersion curves of the bulk and surface TO
and TA modes in STO are shown in Fig. 5(a) for the actual
range of neutron energies (5 meV � 2πh̄2k2/mn � 50 meV)
and different temperatures (100 � T � 400 K).

We expect that the peaks of inelastic neutron scattering
intensity corresponding to the surface and bulk phonon modes
can be separated in thin nonpiezoelectric paraelectric layers,
where the phonon spectra near the surface becomes more and
more important with the thickness decrease, and corresponding
peak either splits or shifts. This is possible because the
difference between the energy of the surface and bulk phonons
is 	ETO(k) = (1–3) meV for TO modes at k = (0.1–5) nm−1,
and 	ETA(k) = −(0.5–3) meV for TA modes at k > 2 nm−1 at
temperatures (100–300) K [see Fig. 5(c)]. The corresponding
penetration depth of the TA mode ξ−1(k) is about or less than
10 nm at k > 1 nm−1 and T = 100 K, and at k > 2 nm−1 and
T = 300 K [see Fig. 5(b)]. So we expect that the surface and
bulk phonon modes can be separated in thin nonpiezoelectric
layers with a thickness of about several penetration depths,
which is about or less than 50 nm for STO. In thin layers both
surfaces contribute to the response. For a macroscopic sample

FIG. 5. (a) Energy dispersion h̄ω(k) of the bulk (dashed curves)
and surface (solid curves) phonon modes calculated in STO. Trans-
verse optic (TO) and acoustic (TA) modes are shown. Symbols are
initial experimental data from Fig. 2 in Ref. [21]. (b) Dispersion
of the surface TA mode penetration depth ξ−1(k). Different curves
in (a) and (b) correspond to the temperatures T = 100, 175, 300,
and 400 K, which values are specified near the curves. (c) Energy
difference 	E(k) of the surface and bulk TO modes (top curves
with label 	ETO) and TA modes (bottom curves with label 	ETA).
(d) Dispersion of the TO mode wave vector qz(k) in the direction
x3, normal to the surface. Corresponding localization depth is purely
imaginary, ξ = iqz. Different curves in parts (c) and (d) correspond
to the temperatures T = 100, 175, and 300 K, which values are
specified near the curves. STO parameters obtained from the fitting
of experimental data [21] are listed in Table I.

each peak position corresponds to the response of each bulk
acoustic or optic mode, which positions are well known for
many ferroics and typically tabulated (e.g., for STO).

TO modes, whose “penetration depth” appeared purely
imaginary for STO parameters [see Fig. 5(d)], can be imagined
as standing TO waves reflected from the surface x3 = 0. As
was mentioned, the TO mode disappears with flexocoefficient
f44 decrease below 1.5 V. The standing TO waves are expected
to be noticeable in thin films, whose thickness is an integral
multiple of their period 2π/qz(k).

The dispersion of the TA shear strain wave amplitudes
ui(k) calculated from Eq. (12) is shown in Fig. 6(a). The
amplitude is normalized on the polarization amplitudes pi

regarded proportional to the applied electric field E0, pi ∼
χijE

0
j . Contour maps of amplitudes of polarization P2(x1,x3,t)

and displacement U2(x1,x3,t) components in the TA wave
are shown in Figs. 6(b) and 6(c), respectively. The maps
were calculated from Eq. (7) for fixed frequency ω(k),
time t = 2π/ω(k), and wave vector k = 1 nm−1. As one can
see from Fig. 6(b) the polarization wave is zero at the surface
x3 = 0 for the case αS0 = ∞, because p1 = −p2. The wave
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FIG. 6. (a) The dispersion of the normalized TA wave strain
amplitudes ui[ω(k),k] calculated in STO at temperatures 100, 175,
and 300 K, which values are shown near the curves. The amplitude is
normalized on the polarization amplitudes pi . Insets: Contour maps of
the TA wave amplitudes P2(x1,x3,t) (b) and U2(x1,x3,t) (c) calculated
from Eq. (7) for fixed wave vector k = 1 nm−1 and time t = 2π/ω(k).
STO parameters are listed in Table I.

amplitude has a maximum at depth x3 ≈ 2 nm and becomes
negligibly small at x3 > 15 nm. Displacement is maximal
at x3 = 0 and exponentially vanishes at x3 > 5 nm. So the
neutron scattering in thin STO films of thickness less than
(20–50) nm should give us information about the surface TA
phonons coupled with flexoelectricity.

To resume the section, the possibility of flexo-SAW
observation by inelastic neutron scattering is much more
favorable in thin layers (<50 nm) of paraelectrics and incipient
ferroelectrics with dielectric permittivity ε 
 100 (i.e., in STO
or KTO at low temperatures) in comparison with linear low-k
dielectrics with ε � 10. Also we hope that some of the pre-
dicted properties of flexo-SAWs can be verified and explored
using optical imaging, infrared spectroscopy, Raman and
Brillouin scattering, and surface-enhanced Raman scattering
based on incomplete internal reflection. Also lattice dynamics
calculations (complementary to the LGD approach) could be
in order, but unfortunately they are beyond our possibilities.

VI. CONCLUSION

The existence of the shear SAWs was regarded as impos-
sible in nonpiezoelectrics with a flat homogeneous surface
without taking into account the flexoelectric coupling. We
predict that shear transverse SAWs can propagate in all
crystalline dielectrics with the flexoelectric coupling, and
name them flexo-SAWs. In particular, we predict that the
flexo-SAWs should have rather unusual dispersion properties,
whose main features are the following:

(1) The existence and penetration depth of the flexo-SAW
is ruled by the static and dynamic flexoelectric couplings.
In particular, the penetration depth of the acoustic mode is
relatively small (several nm) for moderate and high values
of the flexocoupling strength and diverges in the absence of

the flexoelectric coupling, and in the latter case these waves
become indistinguishable from the bulk waves.

(2) With decreasing the wave vector k the wave velocity
along the surface approaches the speed of bulk shear waves,
while the penetration depth tends to infinity.

(3) For wavelengths about micrometer order and less
the phase velocity of the surface wave decreases, and its
penetration depth increases up to tens of microns.

(4) The dispersion relation for flexo-SAWs depends
strongly on the boundary conditions for the electric polar-
ization at the surface of the material.

Since the SAW transforms to the bulk wave in the absence
of the couplings, we conclude that the flexoelectricity indeed
generates previously unexplored types of SAWs, flexo-SAWs,
which can travel near the flat surface of any solid. The
flexo-SAW has THz frequency in the paraelectric SrTiO3, and
its penetration depth varies from nanometers to hundreds of
microns depending on the wave vector varying from 0.1 nm−1

to 10 nm−1.
We expect that the peaks of inelastic neutron scattering

intensity corresponding to the flexo-SAW and bulk phonon
modes can be separated in paraelectric layers of thickness
less than (20–50) nm, giving us an independent opportunity
to define the flexoelectric coefficients, which are poorly
measured by other methods. The absence of the experimental
observations of flexo-SAWs can be explained by a very small
neutron scattering intensity in thin layers.

In contrast to acoustic modes, it appears that the penetration
depth of transverse optic modes is purely imaginary for
strontium titanate and so they are not localized near the
surface. In fact the mode is a standing wave reflected from
the surface, and it disappears with the flexoelectric coefficient
decrease. The impact of the flexocoupling on the standing
waves deserves a separate theoretical study, because their
amplitude can be noticeable in thin paraelectric films.
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