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Doublon lifetimes in dissipative environments
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We study the dissipative decay of states with a doubly occupied site in a two-electron Hubbard model,
known as doublons. For the environment, we consider charge and current noise, which are modeled as a
bosonic heat bath that couples to the on-site energies and the tunnel couplings, respectively. It turns out that
the dissipative decay depends qualitatively on the type of environment, as for charge noise, the lifetime grows
with the electron-electron interaction. For current noise, by contrast, doublons become increasingly unstable with
larger interaction. Numerical studies within a Bloch-Redfield approach are complemented by analytical estimates
for the decay rates. For typical quantum dot parameters, we predict doublon lifetimes up to 50 ns.
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I. INTRODUCTION

In recent years experiments with strongly interacting cold
atomic gases have attracted much attention [1]. A particular
advantage of these systems is that their parameters can be con-
trolled to a high degree either directly or via oscillating forces
that lead to synthetic gauge fields [2,3]. This allows a flexible
engineering and simulation of many-body Hamiltonians. For
a theoretical description, one frequently employs the Hubbard
model. Despite its seeming simplicity, it captures a great
variety of condensed-matter phenomena ranging from metallic
behavior to insulators, magnetism, and superconductivity.

In the strongly interacting limit of the Hubbard model,
particles occupying the same lattice site can bind together,
even for repulsive interactions. This occurs when the on-site
interaction is much larger than the tunneling such that energy
conservation inhibits the decay into a state with two distant
particles. In principle, both bosons [4,5] and fermions [6] can
form such N -particle states. While the former allow any occu-
pation number, for fermions with spin s, the occupation of one
site is restricted to at most 2s + 1 particles. In particular, two
spin-1/2 fermions may reside in a singlet spin configuration
on one lattice site and, thus, form a doublon. Over the last
years, they have been investigated both theoretically [7–9] and
experimentally [10–14] with cold atoms in optical lattices.

In the context of solid-state based quantum information
and quantum technologies, arrays of tunnel coupled quantum
dots represent a recent platform for similar experiments with
electrons [15–17]. In comparison to optical lattices, however,
these systems are way more sensitive to decoherence and
dissipation stemming from the interaction with environmental
degrees of freedom such as phonons or charge and current
noise. Since environments may absorb energy, the separation
of two electrons in a doublon state is no longer energetically
forbidden. In this paper, we cast some light on this issue by
studying the lifetimes of doublons in a one-dimensional lattice
in the presence of charge and current noise, as is sketched in
Fig. 1. For the environment, we employ a Caldeira-Leggett
model [18,19] where depending on the type of noise, the bath
couples locally to the on-site energies or to the tunnel matrix
elements.

In Sec. II, we specify our model and sketch the derivation of
a Bloch-Redfield master equation for the dissipative dynamics.
Section III is devoted to the influence of charge noise, while the
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FIG. 1. Tight-binding lattice occupied by two electrons. The
initial state with a doubly occupied site (doublon) may decay
dissipatively into a single-occupancy state with lower energy. The
released energy is of the order of the on-site interaction U and will
be absorbed by heat baths representing environmental charge and
current noise.

results for current noise are worked out in Sec. IV. Boundary
effects and experimental consequences are discussed in Sec. V.
Details of the master equation approach and the averaging of
decay rates are provided in the appendix.

II. MODEL AND MASTER EQUATION

The Fermi-Hubbard model considers particles on a lattice
with nearest neighbor tunneling and on-site interaction. For
electrons, its Hamiltonian reads

HS = −J

N−1∑
j=1

∑
σ=↑,↓

(c†j+1σ cjσ + H.c.) + U

N∑
j=1

nj↑nj↓

≡ −JT + UD , (1)

with the hopping matrix element J and the interaction strength
U . The fermionic operator c

†
jσ creates an electron with

spin σ on site j , while njσ is the corresponding number
operator. For convenience, we define the hopping operator
between sites j and j + 1, as Tj = ∑

σ c
†
j+1σ cjσ + H.c. While
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the Hamiltonian (1) has open boundary conditions, we will
also study the case of periodic boundary conditions (ring
configuration) by adding the corresponding term for the
hopping between the first and the last site.

Henceforth, we focus on the case of two fermions forming
a spin singlet. Then we work in a Hilbert space that contains
two types of states, single-occupancy states

1√
2

(c†i↑c
†
j↓ − c

†
i↓c

†
j↑)|0〉 , 1 � i < j � N , (2)

and the double-occupancy states, known as doublons,

c
†
j↑c

†
j↓|0〉 , j = 1, · · · ,N . (3)

Both kinds of states are eigenstates of the operator D, which
in the Hilbert space considered is equal to the projector onto
the doublon states (3), in the following denoted as PD .

While being different from the states in Eqs. (2) and (3), for
sufficiently large values of U , the eigenstates of HS also discern
into two groups, namely N (N − 1)/2 states with energies
|εn| � 4J and N states, with energies |εn| ≈ U . We will refer
to the span of the former group as the low-energy subspaceH0,
and the span of the latter as the high-energy subspaceH1. In the
strongly interacting regime with U � J , treating the tunneling
term as a perturbation, it is possible to express the projector
onto the high-energy subspace P1 as a power series in J/U ,
see Ref. [20],

P1 = PD − J

U
(T + + T −) + O

(
J 2

U 2

)
, (4)

where T + = PDT (I − PD) and T − = (I − PD)T PD com-
prise the hopping processes that increase and decrease the
double occupancy respectively. I is the identity operator.

A key ingredient to our model is the coupling to envi-
ronmental degrees of freedom described as N independent
baths of harmonic oscillators [18,19], HB = ∑

j,n ωna
†
jnajn.

They couple to the Fermi-Hubbard chain via the Hamiltonian
HSB = ∑

j Xj ξj , where the Xj are system operators that will
be specified below. For ease of notation, we introduce the
collective bath coordinates ξj = ∑

n gn(a†
jn + ajn). Moreover,

we assume that all baths are equal and statistically independent,
such that 〈ξi(t)ξj (t ′)〉 = 2S(t − t ′)δij .

Assuming weak coupling and Markovianity, the time
evolution of the system’s density matrix ρ, can be suitably
described by a master equation of the form [21,22]

ρ̇ = −i[HS,ρ] −
∑

j

[Xj,[Qj,ρ]] −
∑

j

[Xj,{Rj ,ρ}]

≡ −i[HS,ρ] + L[ρ] (5)

with the operators

Qj = 1

π

∫ ∞

0
dτ

∫ ∞

0
dωS(ω)X̃j (−τ ) cos ωτ , (6)

Rj = −i

π

∫ ∞

0
dτ

∫ ∞

0
dωJ (ω)X̃j (−τ ) sin ωτ . (7)

The tilde denotes the interaction picture with respect to
the system Hamiltonian, X̃j (−τ ) = e−iHSτXje

iHSτ , while
J (ω) = π

∑
n |gn|2δ(ω − ωn) is the spectral density of the

baths andS(ω) = J (ω) coth(βω/2) is the Fourier transformed

kBT = 204 J
0.01 J

816 J

D

α = 0
α = 0.04

P
1

(J−1)

FIG. 2. Time evolution of the double occupancy in a system with
charge noise. The initial state consists of a doublon localized in a
particular site of a chain with periodic boundary conditions. Param-
eters: N = 5, U = 10J , and α = 0.04. (a) Comparison between free
dynamics (α = 0) and dissipative dynamics (α �= 0). Temperature is
set to kBT = 0.01J . The green line corresponds to the occupancy
of the high-energy subspace for the case with α �= 0 and illustrates
the bound given in (11). (b) Decay of the high-energy subspace
occupancy for different temperatures ranging from 0.01J to 1000J .
The slope of the curves at time t = 0 is the same in all cases and
coincides with the value given by (14) (red dashed line).

of the symmetrically ordered equilibrium autocorrelation
function 〈{ξj (τ ),ξj (0)}〉/2. J (ω) and S(ω) are independent
of j since all baths are identical. We will assume an ohmic
spectral density J (ω) = παω/2, where the dimensionless
parameter α characterizes the dissipation strength.

III. CHARGE NOISE

Fluctuations of the background charges in the substrate
essentially act upon the charge distribution of the chain.
Therefore we model it by coupling the occupation of each
site to a heat bath, such that

H
Q
SB =

∑
j,σ

nj,σ ξj , (8)

which means Xj = nj . This fully specifies the master
equation (5).

To get a qualitative impression of the decay dynamics
of a doublon, let us start by discussing the time evolution
of a doublon state in the strongly interacting regime shown
in Fig. 2. For α = 0, i.e., in the absence of dissipation, the
two electrons will essentially remain together throughout time
evolution. This is due to energy conservation and the fact that
kinetic energy in a lattice is bounded, it can be at most 2|J |
per particle. Thus particles forming a doublon cannot split, as
they would not have enough kinetic energy on their own to
compensate for the large U . However, since the doublon states
are not eigenstates of the system Hamiltonian, we observe
some slight oscillations of the double occupancy 〈D〉. Still the
time average of this quantity stays close to unity, see Fig. 2(a).

On the contrary, if the system is coupled to a bath, doublons
will be able to split releasing energy into the environment.
Then the density operator eventually becomes the thermal
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FIG. 3. Temperature dependence of the numerically obtained
decay rate for a chain with N = 5 and periodic boundary conditions
in the presence of charge noise. The interaction energy is set to
U = 10J . For values of the coupling strength α � 0.04, we obtain
approximately the same curve (continuous line). (Inset) Values for �

on a logarithmic scale demonstrating the proportionality ∝1/αT .

state ρ∞ ∝ e−βHS . Depending on the temperature and the
interaction strength, the corresponding asymptotic doublon
occupancy 〈D〉∞ may still assume an appreciable value.

A. Numerical analysis

To gain quantitative insight, we decompose our master
equation (5) into the system eigenbasis and obtain a form con-
venient for numerical treatment (for details, see Appendix A).
A typical time evolution of the occupancy 〈D〉 is shown in
Fig. 2(a). It exhibits an almost monoexponential decay, such
that the doublon lifetime T1 can be defined as the 1/e time of
the difference between initial and final value of 〈D〉,

〈D〉T1
− 〈D〉∞

1 − 〈D〉∞
= 1

e
. (9)

The corresponding decay rate � = 1/T1 is shown in Fig. 3
as a function of the temperature for different values of
the dissipation strength α. For small α and intermediate
temperatures, � increases with the temperature, reaching a
maximum after which the tendency inverts. For sufficiently
large temperatures, � ∝ (αkBT )−1.

B. Analytical estimate for the decay rate

An analytical estimate for the decay rates can often be
gained from the behavior at the initial time t = 0, i.e., from
ρ̇(0) = −i[HS,ρ0] + Lρ0 with ρ0 = ρ(0) being the pure initial
state. In the present case, however, the calculation is hindered
by the fast initial oscillations witnessed in Fig. 2(a). These
oscillations stem from the mixing of the doublon states with
the single-occupancy states. To circumvent this problem,
we focus for the present purpose on the occupancy of the
high-energy subspace, 〈P1〉 shown in Fig. 2(b). It turns out
that this quantity evolves more smoothly while it decays
also on the time scale T1. The reason for its lack of fast
oscillations is that the projector P1 commutes with the system
Hamiltonian, so that it expectation value is determined solely
by dissipation. Notice that the initial decay is temperature

independent, while at a later stage, the decay is strongest for
intermediate temperatures.

A formal way of understanding the similarity of the long-
time dynamics of 〈D〉 and 〈P1〉 is provided by the estimate

|tr(P1ρ) − tr(Dρ)| �
√

2‖ρ‖
√

N − tr(P1PD) (10)

� 2
√

2NJ/U , (11)

where the first lines follows from the Cauchy-Schwarz in-
equality for the inner product of operators, (A,B) = tr(A†B),
while the second line stems from the perturbative expansion
of P1 given by Eq. (4). The result implies that when neglecting
corrections of the order of J/U , we may determine T1

and � from either quantity. Nevertheless, it is instructive to
analytically evaluate � for the decay of both 〈D〉 and 〈P1〉.

Following our hypothesis of a monoexponential decay, we
expect

〈P1〉 � 
e−�t + 〈P1〉∞ , (12)

therefore,

� � − 1




d〈P1〉
dt

∣∣∣∣
t=0

= − tr(P1L[ρ0])

〈P1〉0 − 〈P1〉∞
. (13)

This expression still depends slightly on the specific choice
of the initial doublon state, in particular for open boundary
conditions (see Sec. V A, below). To obtain a more global
picture, we consider an average over all doublon states, which
can be performed analytically [23]. From Eq. (13), we find the
average decay rate

� = 1

N


∑
j

tr(PD[Qj,[Xj,P1]])

−tr(PD{Rj ,[Xj,P1]}) . (14)

For details of the averaging procedure, see Appendix B.
For a further simplification, we have to evaluate the

expressions (6) and (7), which is possible by approximating
the interaction picture coupling operator as X̃j (−τ ) � Xj −
iτ [HS,Xj ]. This is justified as long as the decay of the envi-
ronmental excitations is much faster than the typical system
evolution, i.e., in the high-temperature regime (HT). Inserting
our approximation for X̃j and neglecting the imaginary part
of the integrals, we arrive at

Qj � 1

2
lim

ω→0+
S(ω)Xj = π

2
αkBT Xj , (15)

Rj � −1

2
lim

ω→0+
J ′(ω)[HS,Xj ] = π

4
α[HS,Xj ] . (16)

With these expressions, Eq. (14) results in a temperature inde-
pendent decay rate. Notice that any temperature dependence
stems from the Qj in the first term of Eq. (14), which vanishes
in the present case. While this observation agrees with the
numerical findings in Fig. 2 for very short times, it does not
reflect the temperature dependent decay of 〈P1〉 at the more
relevant intermediate stage.

This particular behavior hints at the mechanism of the bath-
induced doublon decay. Let us notice that the coupling to
charge noise, Xj = nj , commutes with D. Therefore the initial
state is robust against the influence of the bath. Only after
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mixing with the single-occupancy states due to the coherent
dynamics, the system is no longer in an eigenstate of the nj ,
such that decoherence and dissipation become active. Thus it
is the combined action of the system’s unitary evolution and
the effect of the environment which leads to the doublon decay.

An improved estimate of the decay rate, can be calculated
by averaging the transition rate of states from the high-energy
subspace to the low-energy subspace. Let us first focus on
regime kBT � U in which we can evaluate the operators Qj

in the high-temperature limit. Then the average rate can be
computed using expression (14) and replacing PD by P1, see
Appendix A. With the perturbative expansion of P1 in Eq. (4)
we obtain to leading order in J/U the averaged rate

�HT � 4παJ 2

U 2

(2kBT + U ) , (17)

valid for periodic boundary conditions. For open boundary
conditions, the rate acquires an additional factor (N − 1)/N .
Notice that we have neglected back transitions via thermal
excitations from singly occupied states to doublon states. We
will see that this leads to some smaller deviations when the
temperature becomes extremely large. Nevertheless, we refer
to this case as the high-temperature limit.

In the opposite limit, for temperatures kBT < U , the
decay rate saturates at a constant value. To evaluate �

in this limit, it would be necessary to find an expression
for X̃j (−τ ) dealing properly with the τ dependence for
evaluating the noise kernel, a formidable task that may lead to
rather involved expressions. Nevertheless, one can make some
progress by considering the transition of one initial doublon
to one particular single-occupancy state. This corresponds to
approximating our two-particle lattice model by the dissipative
two-level system for which the decay rates in the Ohmic case
can be taken from the literature [24,25], see Appendix C.
Relating J to the tunnel matrix element of the two-level
system and U to the detuning, we obtain from Eq. (C8) the
temperature-independent expression

�LT � 8παJ 2

U

, (18)

which formally corresponds to Eq. (17) with the temperature
set to kBT = U/2.

Figure 4 provides a comparison of these analytical findings
with numerical results. The data in panel (a) reveal that the
transition between the low-temperature regime and the high-
temperature regime is rather sharp and occurs at U ≈ kBT .
Panel (b) shows � as a function of the temperature. For low
temperatures, the numerical values saturate at �LT obtained
from the approximate mapping to a two-level system. For
high temperatures, the analytical prediction �HT seems slightly
too large. The discrepancy stems from neglecting thermal
excitations, as mentioned above.

IV. CURRENT NOISE

Fluctuating background currents mainly couple to the
tunnel matrix elements of the system. Then the system-bath

10−1

100

101

102

101 102 103

Γ
Δ

/α
(J

)

U (J) kBT (J)

FIG. 4. Comparison between the numerically computed decay
rate and the analytic formulas (17) and (18) for a chain with N = 5
sites and periodic boundary conditions in the case of charge noise. The
dissipation strength is α = 0.02. (a) Dependence on the interaction
strength for a fixed temperature kBT = 20J . (b) Dependence on the
temperature for a fixed interaction strength U = 20J .

interaction is given by setting Xj = Tj and reads

HI
SB =

∑
j,σ

(c†j+1σ cjσ + c
†
jσ cj+1σ )ξj . (19)

Depending on the boundary conditions, the sum may include
the term with j = N . The main qualitative difference of this
choice is that in contrast to charge noise, HI

SB does not
commute with the projector to the doublon subspace and,
thus, generally tr(DL[ρ]) �= 0. This enables a direct dissipative
decay without the detour via an admixture of single-occupancy
states to the doublon states. As a consequence, for the same
value of the dimensionless dissipation parameter α, the decay
may be much faster. Also the temperature dependence of the
decay changes significantly, as can bee seen in Fig. 5. While
� is still proportional to α, it now grows monotonically with
the temperature.

As in the last section, we proceed by calculating analytical
estimates for the decay rates. However, since the time evolution
is no longer monoexponential (not shown), we no longer start
from the ansatz (14), but estimate the rate from the slope of
the occupancy 〈P1〉 at initial time,

� � − d〈P1〉
dt

∣∣∣∣
t=0

= −tr(P1L[ρ0]) . (20)

Γ
(J

)

αkBT (J)

α = 0.04

FIG. 5. Average decay rate of the doublon states under the
influence of current noise for various dissipation strengths as a
function of the temperature. The chain consists of N = 5 sites with
periodic boundary conditions, while the interaction is U = 10J .

045408-4



DOUBLON LIFETIMES IN DISSIPATIVE ENVIRONMENTS PHYSICAL REVIEW B 96, 045408 (2017)

Γ
/α

(1
03

J
)

U (J) kBT (J)

Ṗ1
t=0

FIG. 6. Numerically obtained decay rate in comparison with the
approximations (20), (21), and (22) for a chain with N = 5 sites and
periodic boundary conditions in the case of current noise with strength
α = 0.02. The results are plotted as a function of (a) the interaction
and the temperature kBT = 20J and (b) for a fixed interaction U =
20J as a function of the temperature.

We again perform the average over all doublon states for ρ0 in
the limits of high and low temperatures. For periodic boundary
conditions, we obtain to lowest order in J/U the high and low
temperature rates

�HT = 2πα(2kBT + U ) , (21)

�LT = 4παU , (22)

respectively, while open boundary conditions lead to the same
expressions but with a correction factor (N − 1)/N . In Fig. 6,
we compare these results with the numerically evaluated ones
as a function of the interaction [Fig. 6(a)] and the temperature
[Fig. 6(b)]. Both show that the analytical approach correctly
predicts the (almost) linear behavior at large values of U and
kBT , as well as the saturation for small values. However,
the approximation slightly overestimates the influence of
the bath.

While the rates reflect the decay at short times, it is
worthwhile to comment on the long time behavior under the
influence of current noise. For open chains as well as for closed
chains with an even number of sites, it is not ergodic as the
long-time solution is not unique. The reason for this is the
existence of a doublon state |�〉 = 1√

N

∑N
j=1(−1)j c†j↑c

†
j↓|0〉,

which is an eigenstate of HS without any admixture of single-
occupancy states. Since Tj |�〉 = 0 for all sites j , current noise
may affect the phase of |�〉, but cannot induce its dissipative
decay. For a closed chain with an odd number of sites, by
contrast, the alternating phase of the coefficients of |�〉 is
incompatible with periodic boundary conditions, unless a flux
threatens the ring. As a consequence, the chain eventually
resides in the thermal state ∝ exp(−βHS). The difference is
manifest in the final value of the doublon occupancy at low
temperatures. For closed chains with an odd number of sites,
it will fully decay, while in the other cases, the population of
|�〉 will survive.

Γ
(J

)

FIG. 7. Decay rates of the double occupancy for a chain with
N = 5 sites with open boundary as a function of the initial location
of the doublon. The values for � are taken as the inverse of the T1

time obtained from a numerical propagation of the master equation.
The red dashed line marks the value for closed boundary conditions.
The other parameters are U = 20J , α = 0.01, kBT = 5J .

V. DISCUSSION

A. Dimension and boundary effects

So far, we have considered decay rates as the averages
of all possible initial doublon or high-energy states. While
this is sufficient for a generic estimate of the lifetimes, it
ignores the fact that the behavior of individual states may differ
significantly, in particular when the initial state is located at
a boundary, which reduces the number of accessible decay
channels. In Fig. 7, we present the decay rates for doublons as
a function of the initial site. It reveals that in comparison to
states at the center, an initial localization at the first or last site,
may double the lifetime for charge noise and enhance by it by
a factor three for current noise. The dashed lines in these plots
marks the value for periodic boundary conditions, for which
the value is practically the same as for a state in the center.

This knowledge about the role of boundaries and nearest
neighbors provides some hint on the doublon lifetime in
higher-dimensional lattices. Let us notice that the decay rates
(13) and (20) contain one term for each single-occupancy state
that is directly tunnel coupled to the initial site. Assuming that
all terms are of the same order, we expect that � is by and
large proportional to the coordination number of the lattice
sites. Therefore the lifetime should decrease only moderately
with the dimension, roughly as T1 = �−1 ∼ 2−D . From the
data in Fig. 7(b), we can appreciate that for current noise,
the difference between center and border is even larger. Thus
increasing dimensionality should have a slightly larger impact
on the doublon lifetimes.

B. Experimental implications

A current experimental trend is the fabrication of larger
arrays of quantum dots [15,16], which triggered our question
on the feasibility of doublon experiments in solid-state
systems. While the size of these arrays would be sufficient
for this purpose, their dissipative parameters are not yet fully
known. For an estimate, we therefore consider the values
for GaAs/InGaAs quantum dots which have been determined
recently via Landau-Zener interference [26,27]. Notice that
for the strength of the current noise, only an upper bound
has been reported. We nevertheless use this value, but keep
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nj↑nj↓
D

(a)

(b)

FIG. 8. (a) Spatially resolved doublon dynamics in a chain
with N = 5 sites and open boundary conditions for the dissipative
parameters determined in Ref. [26], i.e., for the dissipation strengths
[27] αQ = 3 × 10−4 and αI = 5 × 10−6, the tunnel coupling J =
13 μeV, interaction U = 1.3 meV, and temperature T = 10 mK.
(b) Corresponding decay of the double occupancy (solid line) and
state purity (dashed).

in mind that it leads to a conservative estimate. In contrast
to the former sections, we now compute the decay for the
simultaneous action of charge noise and current noise.

Figure 8(a) shows the dissipative time evolution for a
doublon initially localized at the center of a chain with five
sites. The dynamics exhibits a few coherent oscillations in
which the doublon evolves into a superposition of the kind
|2,0,0〉 + |0,0,2〉, which represents an example of a NOON
state [28]. Each component propagates to one end of the chain,
where it is reflected such that subsequently the initial states
revives. In Fig. 8(b), we depict the evolution of the corre-
sponding doublon occupancy and the purity. Both quantities
decay rather smoothly. This agrees to the finding found in Sec.
IV for pure current noise which obviously dominates. It is also
consistent with the values for the respective analytical decay
rates in the low-temperature limit. Figure 9 shows the T1 times
for two different interaction strengths. It reveals that for low
temperatures T � J/kBT , the lifetime is essentially constant,
while for larger temperatures, it decreases moderately until
kBT comes close to the interaction U . For higher temperatures,
� starts to grow linearly. On a quantitative level, we expect
life times of the order T1 ∼ 5 ns already for a moderately low
temperatures T � 100 mK. Since we employed the value of
the upper bound for the current noise, the lifetime might be
even larger.

Considering the analytical estimates for the decay rates
at low temperatures, Eqs. (18) and (22), separately, lets us
conclude that for smaller values of U , current noise becomes
less important, while the impact of charge noise grows.
Therefore a strategy for reaching larger T1 times is to design
quantum dot arrays with smaller on-site interaction, such that
the ratio U/J becomes more favorable. The largest T1 is
expected in the case in which both low-temperature decay
rates are equal, �LT,charge = �LT,current, which for the present

U = 2.6

U = 4.16

T
1

T

U =
130 μ

FIG. 9. Doublon lifetime as a function of the temperature for
different interaction strengths. The other parameters are as in Fig. 8.
Vertical dashed lines mark the temperature corresponding to the
tunneling energy and the Hubbard interaction energy. (Inset) T1 time
for the optimized value of the interaction, U = 10J = 130 μeV and
a current noise with αI = 2 × 10−6. The latter is smaller than the
value in Fig. 8, but still realistic.

experimental parameters is found at U ∼ 10J (while our data
is for U ∼ 100J ). This implies that in an optimized device, the
doublon lifetimes could be larger by one order of magnitude to
reach values of T1 ∼ 50 ns, which is corroborated by the data
in the inset of Fig. 9.

VI. CONCLUSIONS

We have investigated the lifetimes of double-occupancy
states or doublons in a one-dimensional Hubbard model under
the influence of dissipating environments. While in optical
lattices, the resulting dissipative decay may be of minor
influence, for quantum dot arrays, it will be a limiting factor.

We have considered two different couplings between the
system and its environment, which physically correspond
to charge noise and current noise, respectively. Within a
Bloch-Redfield formalism, this model can be treated with a
master equation, which allows one to numerically determine
the lifetimes from the time evolution of the reduced density
operator. Moreover, it provides analytical estimates for the
initial decay rates. It turned out that the striking difference
between the two couplings is that the impact of charge noise
decreases with the interaction, while current noise becomes
increasingly relevant.

For present quantum dots, the doublon lifetime is expected
to be of the order 5 ns, which would limit the coherent
dynamics to only a few periods. However, our analytical
estimates suggest that for quantum dot arrays with smaller
on-site interaction, an extension by one order of magnitude
should be feasible. Thus the recent trend towards arrays
with ever more coherently coupled quantum dots will allow
the experimental realization of effects that so far have been
measured only in optical lattices. For these systems it is
desirable to investigate the dissipative decay of states with
more than two particles. Eventually, one may reach the regime
of highly correlated many-body states which also exhibit
intriguing dephasing properties [29].
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APPENDIX A: MASTER EQUATION IN
THE SYSTEM EIGENBAASIS

To bring the master equation (5) into a form that is
suitable for a numerical implementation, we have to evaluate
the τ integrals in Eqs. (6) and (7). This is possible after
a decomposition into the system eigenbasis {|φα〉} with
HS |φα〉 = εα|φα〉. Then the transformation to the interaction
picture provides phase factors yielding a Dirac delta function
and a principal value integral. Neglecting the latter, as it usually
consists in a renormalization of the free system parameters, and
using the notation ραβ ≡ 〈φα|ρ|φβ〉 and X

(j )
αβ ≡ 〈φα|Xj |φβ〉,

the master equation becomes

ρ̇αβ = −i(εα − εβ)ραβ +
∑
α′β ′

Lαβ,α′β ′ρα′β ′ . (A1)

The generalized golden-rule rates

Lαβ,α′β ′ =
∑

j

⎡
⎣(�β ′β + �α′α)X(j )

αα′X
(j )
β ′β

−δββ ′
∑
β ′′

�α′β ′′X
(j )
αβ ′′X

(j )
β ′′α′

−δαα′
∑
α′′

�β ′α′′X
(j )
β ′α′′X

(j )
α′′β

]
, (A2)

are determined by the transition matrix elements of the
system operator that couples to the bath and the factors
�αβ ≡ �(εα − εβ) with

�(ω) =
{
J (ω)(1 + nB(ω)) ω > 0

J (−ω)nB(−ω) ω < 0
, (A3)

and the bosonic occupation number nB(ω) = (eβω − 1)−1.
The Bloch-Redfield equation allows the direct computation

of decay rates averaged over all possible initial states, which in
our case are doublon states or high-energy states. To this end,
we distinguish those from a set I1 labeling the high-energy
states and I0 for the low-energy states. With the formulas for
the averages derived in the Appendix B and the projector to
the high-energy subspace P1, we arrive at

� = 1

N


∑
j

tr(P1[Qj,[Xj,P1]])

−tr(P1{Rj ,[Xj,P1]}) . (A4)

Notice that the factor 
 accounts for the finite final value of
the decay in Eq. (12). Therefore

� = − 1




d〈P1〉
dt

∣∣∣
t=0

= − 1



tr(P1L[ρ]) , (A5)

where the bar denotes the average over all pure states belonging
to the high-energy subspace, instead of the doublon subspace,

see Appendix B. An alternative form for this quantity is

�
 = − 1

N

∑
α,β∈I1

Lαα,ββ = 1

N

∑
α∈I0

∑
β∈I1

Lαα,ββ , (A6)

where the last equality follows from the trace preserving
property of the master equation,

∑
α Lαα,ββ = 0.

APPENDIX B: AVERAGE OVER PURE INITIAL STATES

As an ensemble of pure states, we consider normalized
linear combinations |ψ〉 = ∑N

n=1 cn|n〉 of orthonormal basis
states |n〉, n = 1, . . . ,N . For the probability distribution
of the coefficients cn, we request invariance under unitary
transformations which leads to

P (c1, · · · ,cN ) = (N − 1)!

πN
δ(1 − r2) (B1)

with r2 = ∑N
n=1 |cn|2. This corresponds to a homogeneous

distribution on the surface of a 2N -dimensional unit sphere,
while averages of the kind

cnc∗
m = 1

N
δnm , (B2)

cnc∗
mcn′c∗

m′ = 1

N (N + 1)
(δnmδn′m′ + δnm′δn′m) , (B3)

follow from integrals of polynomials over its (2N − 1)-
dimensional surface [30]. Consequently, we find the ensemble
averages

tr(ρA) = 1

N
tr(A) , (B4)

tr(ρAρB) = tr(A)tr(B) + tr(AB)

N (N + 1)
. (B5)

To compute average rates for the transitions between two
groups of states, cf. Eq. (A6), the initial linear combination
|ψ〉 is restricted to the doublon subspace, which has dimension
ND . Therefore we have to replace the prefactor N by ND and
the operators A and B by their projections to the subspace,
PDAPD and PDBPD .

APPENDIX C: TWO-LEVEL SYSTEM

For completeness, we summarize the Bloch-Redfield result
for the decay rates of the two-level system coupled to an Ohmic
bath [24,25]. For the notation used in the main text, it is defined
by the Hamiltonian

H = 


2
σx + ε

2
σz + 1

2
Xξ , (C1)

with the tunnel matrix element 
 and the detuning ε. The bath
coupling is specified by (i) X = σz for charge noise and (ii)
X = σx for current noise, respectively. To establish a relation to
our Hubbard chain, we identify the detuning by the interaction,
ε � U , and 
 = √

8J . Note that replacing charge noise by
current noise corresponds to interchanging ε and 
. Therefore
we can restrict the derivation of the decay rate to case (i).
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It is straightforward to transform the Hamiltonian into the
eigenbasis of the two-level system, where it reads

H ′ = E

2
σz + Xξ , (C2)

with E = √
ε2 + 
2, while the system-bath coupling becomes

X′ = ε

2E
σx + 


2E
σz . (C3)

In the interaction picture, it is

X̃(−τ ) = 1

2E
(εσx cos Eτ + εσy sin Eτ + 
σz) . (C4)

Again ignoring the imaginary part of the integral in (7), the
noise kernel can be written as

Q = ε

2E

S(E)

2
σx + 


2E

S(0)

2
σz . (C5)

The projector to the initial state is P1 = (σ0 + σz)/2, so that
the decay rate can be found as

�i = tr(P1[Q,[X,P1]]) =
( ε

2E

)2
S(E) , (C6)

where for an Ohmic spectral density

S(E) = 2παE coth(E/2kBT ) . (C7)

Accordingly, we find for case (ii) the rate

�ii =
(




2E

)2

S(E) , (C8)

which provides the analytical low-temperature result (18) for
charge noise.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] C. E. Creffield and F. Sols, Phys. Rev. A 84, 023630 (2011).
[3] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod.
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