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Hierarchical self-assembled meta-atoms are made from a larger number of suitably arranged metallic
nanoparticles. They constitute the basic building blocks for isotropic metamaterials. The properties of these meta-
atoms are usually studied upon illumination with a plane wave and by analyzing the multipolar composition of
the scattered field. This, however, does not always provide full information. The coupling between multiple meta-
atoms is usually not considered, and a physical understanding for the cause of the response is often incomplete.
Here we overcome these limitations by performing a spectral eigenvalue analysis of the transfer matrix of isolated
and coupled self-assembled meta-atoms. Emphasis is put on using a transfer-matrix formulation in either a local or
a global coordinate frame. We show that for the magnetic resonance, coupling to nearest neighbors is weak, sug-
gesting the possibility to preserve the response of the isolated meta-atom upon tight packaging in a metamaterial.
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I. INTRODUCTION

With the advent of metamaterials, many unprecedented
ways to manipulate the propagation of light came in reach
[1–8]. In general, metamaterials are composed of a dense
arrangement of basic building blocks. The effective optical
response of metamaterials, in lowest order approximation, is
derived from the optical response of its individual building
blocks. To emphasize this aspect, these building blocks are
called meta-atoms [9]. To ease the theoretical analysis, the
fabrication, and the characterization of metamaterials, meta-
atoms are most frequently periodically arranged [10–13].
However, this causes the effective response of the metamate-
rials to be affected by effects due to strong spatial dispersion;
and the material is usually anisotropic [14–16]. This is a
disadvantage for multiple applications envisioned. To miti-
gate these problems, isotropic self-assembled metamaterials
were suggested [17,18]. Many different approaches for their
realization have been presented in the past [19–25]. Here we
restrict our attention to the broader class of self-assembled
metamaterials where the meta-atoms are composed of many
metallic nanoparticles [26–30].

The properties of these meta-atoms are usually studied
upon illuminating a single meta-atom with a plane wave
and by decomposing the scattered field into contributions
from different multipole moments [31]. Such analysis, usually,
reveals the presence of a strong magnetic dipole moment along
with a contribution from an electric dipole moment. Higher
order moments are excited as well but very often they can
be neglected. Such analysis is insightful; but eventually it is
also limited for multiple reasons. Most notably, properties are
usually studied at the level of the dispersion in the multipole
moments at the isolated particle. This spectral dependence,
however, can be quite complicated if multiple resonances
contribute to such dispersion. This asks for a deeper physical
understanding. Moreover, the magnetic polarizability of most
meta-atoms is too weak to allow a sufficiently strong dispersion
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in the effective permeability in the metamaterial at low
filling fractions. Therefore, the meta-atoms have to be densely
packed [32]. For a dense arrangement the coupling to nearest
neighbors is important, something that is hard to capture using
a technique that depends on a specific illumination and that
considers only isolated meta-atoms. To study this coupling
process requires means of investigation that do not depend on
a specific illumination. The property must be attributable to
only the meta-atoms, i.e., the hybridization of their individual
plasmonic response needs to be studied.

Recently, multiple methods were proposed for this purpose.
They shed light on these issues from multiple perspectives.
The coupled dipole approximation [33,34] models the
particles as dipole (both electric and magnetic) and allows
us to study their interaction. As this technique is based on
the assumption that each particle’s response can be described
solely by its dipole moments, the use of this method is limited
to subwavelength particles.

Alternatively, the eigenmodes of the meta-atoms can
be found. Since the meta-atoms are characterized both by
dissipation and strong radiative losses, the scattering operator
describing the interaction of light with the meta-atoms is
non-Hermitian. This requires the consideration of quasinormal
eigenmodes that are linked to poles of the scattering oper-
ator in the complex frequency plane [35–38]. Quasinormal
eigenmodes are a powerful concept but they also leave a
few questions open; especially when applied to problems
that live on the real-frequency axis. Also, a local density of
states approach [39] has been applied to study the coupling of
core-shell systems. But the method suffers from its inability
to identify the modes involved in the coupling. Full wave
eigenmode analysis based on the volumetric method of mo-
ments has been used to predict the line broadening in dolmen
structures [40]. Another approach has been using a circuit
model to study the coupling of the dolmen structure [41]. Other
methods, such as the singularity expansion method have also
been proposed to determine the mode amplitude for antenna
application [42]. More recently, the spectral analysis of the
eigenvalues of the transfer matrix has been proposed to study
plasmonic resonances of metallic nanostructures [43]. This
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method, in general, seems to be suitable for our purposes,
since the transfer matrix contains all the information of how a
given object interacts with an arbitrary illumination at a given
real-valued frequency. It can also provide information about
the hybridization and the interaction among coupled objects.

Motivated by these developments, we study here plasmonic
resonances of self-assembled meta-atoms by diagonalizing
the respective transfer matrix. The considered meta-atoms are
made from metallic nanoparticles and they shall possess an
increasing complexity. This eigenvalue analysis allows us to
study the hybridization of modes among coupled meta-atoms.
This makes it comparable to hybridization theory but it
has the advantage of not being limited to the quasistatic
approximation. This eigenvalue analysis can be linked to the
scattering and absorption spectra for a given illumination by
solving additionally the eigenvalue of the transpose conjugate
transfer matrix and by applying suitable bi-orthogonality
relations [43]. We show that a spectral decomposition of the
eigenvalues into individual resonances with a Lorentzian shape
allows for insights into the physical effects that govern the
meta-atom response.

We emphasize the possibility to formulate the transfer
matrix in a global coordinate system. This will be called the
T matrix. It expresses the response of the entire meta-atom.
Alternatively, it can be also expressed in a local coordinate
system. This will be called the T matrix. It expresses the
response of each individual metallic nanoparticle that make
up the meta-atom. The combined use of both formulations
allows us to explore features that emerge at different length
scales of the hierarchical meta-atoms. Whenever we provide a
statement that applies to both formulations we will call it the
transfer matrix.

To demonstrate the applicability of the method, we start
with a basic meta-atom and increase gradually the complexity.
We stress that even though we apply the methodology to
specific examples, the method is not restricted to those
considered geometries. This makes the framework a powerful
tool to study the properties of individual and coupled meta-
atoms beyond the mere simulation of their optical response
upon plane wave illumination.

II. T-MATRIX FORMULATION

The transfer matrix describes how an incident field couples
to the scattered field by a given object. It is a quantity
unique to the scattering object and does not depend on the
illumination. The scattering process can be described in a
global coordinate system if the object is considered as an
isolated structure. Alternatively, if the object is composed out
of multiple elements, a local formulation for the transfer matrix
can be considered. Such local T matrix expresses the optical
response of an object to an illumination in terms of the response
of its constituents. Below we describe both formulations;
starting with the global formulation.

A. Global formulation

When considering meta-atoms that are locally confined in
space, the time harmonic electromagnetic fields involved in the
scattering process are most frequently expanded into vector
spherical harmonics Mmn(r,θ,φ) and Nmn(r,θ,φ). They ex-

press the fields with electric and magnetic parity [44]. Since we
are not interested in the internal structure of the field within a
meta-atom, i.e., we are only interested in how it is perceived by
an external observer, it suffices to expand the incident field as

Einc(r,θ,φ) =
N∑

n=1

n∑
m=−n

pnmN(1)
nm(r,θ,φ) + qnmM(1)

nm(r,θ,φ)

(1)

and the field scattered by the meta-atom as

Esca(r,θ,φ) =
N∑

n=1

n∑
m=−n

anmN(3)
nm(r,θ,φ) + bnmM(3)

nm(r,θ,φ).

(2)

pnm, qnm, anm, and bnm are the corresponding frequency
dependent expansion coefficients, n and m denote the quantum
numbers of the respective multipoles, and N expresses the
maximum multipolar order retained in the expansion. The
superscript denotes the choice of spherical Bessel (1) or
spherical Hankel (3) functions as the component of the vector
spherical harmonics. All quantities are frequency dependent.
The expansion is valid within the spatial domain that excludes
the scatterer.

The way an object scatters light is entirely described by
its corresponding T matrix [45]. It links the incident and
scattered field as (

T11 T12

T21 T22

)(
p

q

)
=

(
a

b

)
. (3)

The matrix on the left-hand side is the T matrix in a global
coordinate system. It transforms the incident field into
the scattered field with respect to the entire scatterer. The
submatrices T11, T12, T21, and T22 express the transformation
from electric to electric, from magnetic to electric, from
electric to magnetic, and from magnetic to magnetic
multipolar contributions, respectively.

The T matrix can be obtained by multiple means. For
a general object, it can be reconstructed from the optical
response obtained upon illuminating the object with a se-
quence of specific fields. For example, using plane waves as
an illumination, the scattered field expanded into outgoing
vector spherical harmonics delivers a column vector of the
T matrix [46]. To obtain the scattered field for a given
illumination, Maxwell’s equations have to be solved with a
full-wave solver of preference. For the hierarchical meta-atoms
we are interested in, the T matrix can be constructed from
the general multiple scattering problem. It will be mentioned
further below.

This global T matrix is not unique. Some ambiguities occur
when it comes to the proper choice of the coordinate system
with respect to which multipole expansion is performed. In
general, there is no easy answer concerning the proper choice
of this coordinate center, since eventually any given point in
space can be chosen. Technically, even a very remote point
can serve the purpose. However, the size of the T matrix
necessary to express the response will grow quite quickly for an
inappropriately chosen coordinate center, i.e., many multipole
moments have to be retained in the expansion. Therefore,
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in such global formulation the coordinate system should be
wisely chosen to retain the least number of multipole moments
in the expansion. For the meta-atoms of interest this is usually
a high symmetry point.

B. Local formulation

For some of the self-assembled meta-atoms, and especially
for the coupled systems we have in mind, such global formula-
tion is not convenient because the response of each individual
meta-atom is mixed together in the global coordinate system.
From the final considerations written in the previous section, it
is obvious that if the studied object is made out of two remotely
coupled meta-atoms, the T-matrix method as formulated in
a global coordinate system is cumbersome. The larger the
separation among the meta-atoms the larger the T matrix and
the less accessible will be the description of the response
in a physical sound language. Then, a local formulation is
much more convenient, where the local transfer matrices of
the individual objects are retained.

To sketch the derivation of such a local T -matrix formu-
lation, we write the incident field acting on a scatterer j in a
multiscatterer system as the sum of the external incident field
and the scattered field from other scatterers [47]. There, the
scattered field from scatterer l with respect to scatterer j can
be linked by the addition theorem of spherical harmonics [48]:

M(1)
nm(rj ) =

N∑
ν

ν∑
μ=−ν

Aνμ
nm(l,j )M(3)

νμ(rl) + Bνμ
nm(l,j )N(3)

νμ(rl),

(4)

N(1)
nm(rj ) =

N∑
ν

ν∑
μ=−ν

Bνμ
nm(l,j )M(3)

νμ(rl) + Aνμ
nm(l,j )N(3)

νμ(rl),

(5)

where A
νμ
nm and B

νμ
nm denote the translation coefficient of

spherical harmonics. Using these translation coefficients, the
vector spherical harmonics coefficients of the total incident
field due to an external field and the scattered field from other
objects can be written as

P j
nm = pj

nm −
J∑

l �=j

N∑
ν=1

ν∑
μ=−ν

al
νμAnm

νμ (l,j ) + bl
νμBnm

νμ (l,j ),

(6)

Qj
nm = qj

nm −
J∑

l �=j

N∑
ν=1

ν∑
μ=−ν

al
νμBnm

νμ (l,j ) + bl
νμAnm

νμ (l,j ),

(7)

where P
j
nm and Q

j
nm are used to expand the total incident

field on the scatterer j , and (pj
nm,q

j
nm) and (al

νμ,bl
νμ) are the

expansion coefficients for the external incident field in local
coordinate of the scatterer j and the expansion coefficients
for the scattered field from particle l, respectively. J is
the total number of scatterers. The scattered fields from
each scatterer are obtained by solving the self-consistent

equations

aj
nm =

N∑
α=1

α∑
β=−α

T
j,αβnm

11 P
j

αβ + T
j,αβnm

12 Q
j

αβ, (8)

bj
nm =

N∑
α=1

α∑
β=−α

T
j,αβnm

21 P
j

αβ + T
j,αβnm

22 Q
j

αβ. (9)

The above equations describe the scattering process in each
local coordinate system of the scatterers.

This representation has the advantage that it can trace
the multipolar moments of each scatterer individually, rather
than the “effective” multipolar moments of the structure with
respect to the global coordinate system. For a system made
from two objects, by combining Eqs. (6)–(9) and writing them
in matrix form, the localT matrix can be exemplarily written as⎛

⎜⎜⎜⎝
T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

p1

p2

q1

q2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a1

a2

b1

b2

⎞
⎟⎟⎟⎠, (10)

where the elements of T describe the coupling between
different multipolar components. For more scatterers or when
considering a higher number of multipole moments for each
meta-atom, the matrix needs to be extended, respectively.
Note that the T -matrix formulation in Eq. (10) can be linked
to the T matrix in Eq. (3) via the addition theorem for vector
spherical harmonics [49], which can be written as

T = WT WL, (11)

where W denotes the translation operator from local coordinate
1 and 2 to the global coordinates, which has been used as a
referential coordinate system in Eq. (3). The matrix on the
right side, WL denotes the left inverse of W . The left inverse
is also called Moore-Penrose pseudoinverse, defined as WL =
(W †W )−1W †, where W † is the transpose conjugate of W .

C. Eigenvalue formulation

To study the optical properties of meta-atoms detached from
a specific illumination as well as the coupling between meta-
atoms, we use on the one hand the basis set obtained from
diagonalizing the local T matrix

T = XHX−1. (12)

Here X is a matrix whose columns are eigenvectors of T .
H is a diagonal matrix whose diagonal components are the
eigenvalues of the matrix T . Note that an identical expression
holds when considering the global T matrix.

In both possible eigenvalue problems, the square of the
absolute eigenvalue |ηi |2 divided by ω2 is proportional
to the strength of a particular mode sustained by the meta-atom
or the coupled system, respectively. This eigenvalue is the pri-
mary quantity of interest. The eigenvalues in global and local
coordinates can be linked by (the proof is given in Appendix A)

H glo = Z−1WH locWLZ, (13)

where Z are the eigenvectors of (WH locWL) and H glo

and H loc are diagonal matrices containing the eigenvalues
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in global and local coordinates, respectively. The matrix
Z−1W and WLZ can be understood as projection matrices
that transform the modal strength of a particular mode (its
eigenvalue) from local coordinates to global coordinates.
It is important to note that these matrices are, in general,
rectangular matrices. This means that for a given number of
expansion orders, the local coordinates always (except if there
is only single particle) contain more modes when compared
to the global coordinates. The modes in global coordinates,
therefore, can be understood as the sum of the projection of
the modes in local coordinates. Note that the exact locations
of each particle are needed to transform the eigenvalue from
local to global coordinates and vice versa.

For the T matrix, i.e., in a global coordinate system, the
far field scattering contribution of that mode is proportional to
this eigenvalue. The actual scattering cross section σsca for a
given incident field expanded into vector spherical harmonics
can be decomposed into the eigenvectors of the T matrix via

σsca = 4π

k2
b

∑
i

∑
j

ηiη
∗
j 〈G|Xj 〉 〈Xi |G〉 〈Yi |Yj 〉 , (14)

where G denotes the coefficients of the incident field (pq) = G,
Yi denotes the eigenvector of the transpose conjugate of the T
matrix, and 〈Xi |Xj 〉 denotes the inner product of vector Xi and
Xj . Such formulation is necessary to accommodate the non-
Hermitian character of the T matrix [43]. On the other hand, in
the local coordinates description, the scattering cross section
can be decomposed as (proof will be given in Appendix B)

σsca = 4π

k2
b

∑
f

∑
g

ηgη
∗
f 〈G|Xf 〉 〈Xg|G〉 〈Yf |W †W |Yg〉 ,

(15)

where, in contrast with the expression in Eq. (14), each
variable corresponds to the variable obtained in the local
coordinate (i.e., η is now the eigenvalue of T matrix). For
the same expansion order, the summations are J times larger
than the summation required for the decomposition using
modes obtained from a global coordinates description. Note
that the cross coupling related weight (〈Yf |W †W |Yg〉) now
also depends on the translation operator (W ) from local to
global coordinates. From Eq. (15), the eigenvalue can also
be interpreted as how easy the modes can be excited from
outside (modal strength). The second part of the equation in
the right-hand side (〈G|Xf 〉 〈Xg|G〉) tells us the information
of how the incident field couples to the modes. Finally, the
last part (〈Yf |W †W |Yg〉) denotes how the modes coupling to
each other and more importantly, as opposed to the expression
in Eq. (14), for the same mode, the value of 〈Yi |W †W |Yi〉 in
general will not be one, as it depends on the translation operator
W . This suggests the importance of the location of each particle
when considering its impact in measurable quantities, such as
scattering cross section.

Each eigenvector Xi contains information on the multipolar
composition of the particular mode. This holds for both the
local and the global formulation. Since the decomposition
of the T matrix is done independently with respect to the
frequency, a mode tracking algorithm needs to be used that
links the eigenmodes found at each frequency. In our work,

we track the modes by calculating at first all eigenvalues for a
small number of n frequencies (f1,f2, . . . ,fn−1,fn). Typically
a value of n = 5 is used. The eigenvalues are then assigned
to belong to a specific mode upon visual inspection. Far
away from any resonance frequency of the system, the proper
assignment does not constitute a problem, as the eigenvalue
of the eigenmodes are well separated in amplitude. Then,
an automatic procedure is applied to track the modes for
increasing frequencies. For this purpose, the amplitudes of
the modes at n lower frequencies are fitted with a polynomial
of order n − 2. The corresponding mode for frequency fn+1 is
the mode with an eigenvalue that is closest to the extrapolated
eigenvalue of all modes obtained from such fitting. This allows
us to link the newly calculated eigenvalues in an automatic
manner to the eigenvalues of the same mode calculated at
lower frequencies. For degenerate eigenvalues, a refined mode
tracking algorithm is used, where the inner product of the
corresponding degenerate modes for frequency fn and fn+1

are used. Here the maximum value of inner product between
eigenvector of mode i for frequency fn and all eigenvectors
for frequency fn+1 denotes the mode i for frequency fn+1.

III. STUDY OF SELECTED META-ATOMS

After introducing the methodology, we will apply it now to
selected hierarchical self-assembled meta-atoms. Throughout
this paper, we consider gold nanospheres embedded in air.
The permittivity of gold is considered by means of a Drude
model as

εAu = ε∞ − ω2
p

ω(ω + iγ )
. (16)

Here ε∞ = 9, h̄ωp = 9 eV, and h̄γ = 0.05 eV [50]. We stress
that we use a spectral method and, in general, at each frequency
a permittivity can be considered that is independent from the
permittivity at other frequencies. Using a Drude model is done
here rather for convenience. It provides a smooth dependency
of all quantities of interest on the frequency and is not affected
by experimental details of the permittivity function.

In the following, we start with the trivial example of an
isolated sphere. We continue by considering two coupled
spheres to highlight the features that can be observed in
the hybridization of the modes. Then, we study a single
hierarchical meta-atom and finally the hybridization of two
coupled hierarchical meta-atoms. We consider as an example
for a hierarchical meta-atom a core-shell particle where a shell
made from metallic nanoparticles decorates a core sphere. The
structure is canonical in a sense that it allows us to induce a
strong magnetic dipole moment. It has been investigated both
theoretically and experimentally [27,51,52].

A. Sphere

For a single sphere there exists an analytical solution for the
scattering strength of a particular mode. This is given through
the Mie coefficients. Each mode is composed out of a single
vector spherical harmonic. No cross coupling occurs because
of the high symmetry of the problem. Therefore, the T matrix
is already diagonal.
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The modal strength and the projection parameter ci =
4πc2| 〈G|Xi〉 |2, which describes how an incident field couples
to mode i, are shown in Figs. 1(a) and 1(b), respectively. Note
that, since for a single sphere the T matrix is a diagonal matrix,
the cross coupling terms in Eq. (14) (〈Yi |Yj 〉 for i �= j ) are zero.
It suggests that the mode scattering strength only depends on
the projection of the incident wave and the eigenvalue of the
related eigenvector. It can be seen that the system is dominated
by both electric multipolar [dipole (De) and quadrupole (Qe)]
components and also to a smaller extent by a magnetic dipole
mode (Dm). It can be seen that the scattering cross section can
be linked directly to the strength of the modes. This in turn
can be linked to the eigenvalues of the T matrix. Since we
have a symmetric system, we expect the appearance of several
degenerate modes. For example, modes consisting of a purely
Dx

e have the same modal amplitudes as D
y
e modes, where the

superscript denotes the direction of the dipole moment. From
these values, it is also possible to study the related scattering
cross section of the structure. The scattering cross section
obtained from a modal decomposition σ

eig
sca , as well as the

scattering cross section obtained directly from the T matrix
using Eq. (3), σ dir

sca [by using the corresponding expansion
coefficients of incident field in Eq. (3)] of a single sphere
illuminated by a linearly polarized plane wave are shown in
Fig. 1(c). It can be seen that the direct calculation from the T
matrix and the modal decomposition yield the same result.

The magnitude difference between eigenvalue simply de-
notes how easy a mode can be excited. A bigger sphere will
have a stronger response compared to a smaller sphere, and this
fact is linked directly into the eigenvalue of the T matrix, as all
the eigenvectors are normalized. This fact can be understood
from Eq. (14), where the scattering cross section depends on
the eigenvalue as well as on the projection of the incoming
wave to the eigenvectors. As a larger sphere will scatter more
light, its eigenvalue will be larger when compared to the
eigenvalue of a smaller sphere.

B. Coupled spheres

We continue to apply both formulations of a local T
matrix and a global T matrix to study a dimer made of gold
nanospheres. The basic geometry is illustrated in the inset
of Fig. 2. To simplify the problem, we calculate the modes
for a dimer within dipole approximation (that is, N = 1). We
model our dimer as two gold spheres with radius 3 nm and with
a center-to-center distance of d = 7 nm. The sizes were pur-
posely chosen to allow for a comparison to ordinary hybridiza-
tion theory. But this is by no means a limitation. The transfer-
matrix formulations of Eqs. (3) and (10) will be used and we
will highlight the differences between the two approaches.

Figure 2(a) show the modal strength obtained with global
formulation. Again, the quantity that is plotted corresponds
to the square of the absolute eigenvalue |η|2 divided by ω2.
Three peaks are observed. Two of these peaks are distinct
in that they have a much stronger magnitude. The third
one can only be seen on a logarithmic scale. The stronger
peaks correspond to modes with a dominant electric dipole
contribution. This explains why their magnitude is so much
stronger, since for sufficiently small particles, only the electric
dipole will survive. Therefore, the excitation of such modes

FIG. 1. (a) Modal strength for each eigenmode of a small gold
sphere with a radius of R = 90 nm. De, Dm, and Qe denote electric
dipole, magnetic dipole, and electric quadrupole contributions,
respectively. (b) The projection parameter of the incident plane wave
onto the eigenvector of each mode and (c) modal decomposition of
the scattering cross section. Results from the modal decomposition
are compared to the direct solution. Perfect agreement is found.

is most likely. The individual dipoles of the spheres are in
phase with each other. One parallel to the connecting axis and
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FIG. 2. (a). Modal strength obtained using T matrix in the global coordinate system [Eq. (3)]. The red dot denotes the coordinate system
used to calculate the transfer matrix. Different modes are characterized by different colors. The inset in (a) shows the same quantity but in a
logarithmic scale. (b) The scattering scenario of dimer structure, where the incident field is a plane wave with wave vector denoted by the red
arrow with tan θ = 2

3 and the electric field of the incident field always in x-z plane. (c) Projection parameter of the incident field described in
(b) onto eigenmodes of the structure and (d) the decomposition of scattering cross section to each eigenmode of the structure in global coordinate
[Eq. (14)]. Comparison to a direct solution is equally obtained and excellent agreement is found.

another one perpendicular to it. The third mode is dominated
by a magnetic dipole contribution in the central coordinate. It
has a much weaker magnitude. For that mode, the individual
electric dipole moments of the spheres are perpendicular to the
connecting axis and point in opposite direction, i.e., they are
π out of phase.

To link the modal strength to observable quantity, we take
as an example the scattering response from dimer structure
as described in Fig. 2(b). Here the amplitude of the incoming
field is normalized and the wave vector makes an angle θ to
dimer axis, as described in the caption. Using this scenario, the
projection parameter as well as the modal decomposition of
the scattering cross section for a certain illumination scenario
are shown in Figs. 2(c) and 2(d), respectively. Here mode 1
(2) denotes the mode with resonance at 639.6 (662.5) THz.
As the contribution from the mode with resonance frequency
around 648 THz is negligible, we omit this mode contribution
in the figure. In the case of the dimer structure, the global
coordinate modes are still orthogonal to each other, which
implies that the coupling terms in Eq. (14) are zero. This
makes the analysis much easier. We see that the scattering
cross section of the dimer in this illumination scenario is
mainly due to the contribution from two modes. These

modes denote the modes that are in phase with each other,
which results in a stronger modal strength compared to the
other mode.

By diagonalizing the T matrix in Eq. (10), it is possible
to capture further modes supported by the dimer, as seen in
Fig. 3(a). There we obtain four distinct resonances which
correspond to the modes with different dipole orientation.
Three of these modes correspond to the modes as seen in the
global formulation. The resonance frequencies match exactly.
The fourth mode, which is not seen in the global formulation,
is a mode where the two dipole moments are out of phase
and they are parallel to the connecting axis. Such in-plane
orientation will lead to an electric quadrupolar response that is
not captured when formulating the global T matrix in dipole
approximation. It occurs, of course, once the quadrupole terms
are taken into account as well.

The amplitude differences in the eigenvalues shown in
Figs. 2(a) and 3(a) are the result of the coordinate transfor-
mation from the local coordinate of each subsystem to the
global coordinate, as described in Eq. (13). Physically, it can
be understood as how the effective modal strength (in the
global coordinate) can be decomposed into excitations from
its individual subsystem, i.e., it measures the modal strength
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FIG. 3. (a). Modal strength obtained using T matrix in the local coordinate system [Eq. (10)]. The red dot denotes the coordinate system
used to calculate the transfer matrix. Different modes are characterized by different colors. (b) Projection parameter of the incoming field
described in Fig. 2 onto eigenmodes of local T matrix, (c) the self-coupling terms 〈Yi |W †W |Yi〉 for each eigenmode obtained from T matrix,
and (d) the decomposition of scattering cross section to each eigenmode of the structure in local coordinate [Eq. (15)]. Comparison to a direct
solution is equally obtained and excellent agreement is found.

of the entire ensemble. In contrast, the modal strength in
the local coordinate expresses how easy a mode in each of
the subsystems can be excited. The same mode can exhibit
different properties depending on the projection operators
that linked the local and global coordinate formulation. For
example, let us consider the modes where both electric dipole
moments sustained in the individual spheres are in phase with
each other (639.6 and 662.5 THz). In the local coordinate, the
amplitude of the modal strengths (|η|/ω) are around

√
2 and

1, respectively. Since in both cases, the electric dipoles are in
phase and we have two identical subsystems, intuitively, the
total modal strength in the global coordinate of these modes
has to be the sum of both of them. This gives us the value
around 2

√
2 and 2, or in terms of (|η|2/ω2), 8 and 4, exactly

as observed in Fig. 2(a). In contrast, the opposite is observed
for the mode sustained at the frequency of 648.3 THz. For this
mode, the electric dipoles oscillate π out of phase. The net
electric dipole moment of this mode in the global coordinate
system is zero. But this configuration is characterized by a
notable magnetic dipole moment in the global coordinate. But
as the magnetic dipole moment can only be weakly excited
because the particle is so small, it explains why the amplitude
of such mode in the global coordinate system has several orders
of magnitude difference compared to the same mode in the
local coordinate system.

On the other hand, it is also possible to decompose the
scattering cross section into modes obtained from a local
coordinate description, as can be seen in Fig. 3. In this case,
the modes with resonance frequency around 648 and 670 THz
are particularly interesting. Even though their modal strengths
(η) are comparable to the other two modes, the projection
of scattering cross section to both modes are negligible. This
happens because of two factors. The projection of incident field
cloc
i onto eigenmodes of the structure [as seen in Fig. 3(b)] and

the self-coupling term 〈Yi |W †W |Yi〉 [Fig. 3(c)] are very small
for both modes. As the scattering cross section is the result
of a multiplication of all the factors contained in Eq. (15), the
contribution of both modes can be neglected. It is shown here
that, by analyzing the modal strength and projection parameter,
it is possible to engineer the response of the structure (for
example, to excite just a single mode in the structure). Finally,
it can be concluded that the final observable quantity will
always be the same, irrespective of the chosen local or global
formulation. Of course, this requires a sufficient large number
of orders to be retained in the expansion.

For a given maximum multipolar order, the matrix size
of the local approach is larger than for the global approach.
This explains why more modes can be identified in the
local approach. Increasing the multipolar order of the global
approach would recover the missing modes.
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FIG. 4. Peak position (circles) of the different modes as obtained
from the diagonalization of the T matrix in (a) global or (b) local
formulation and the resonance position as predicted by hybridization
theory (straight line) for the dimer structure.

The validity of both formulations (T or T ) can be assessed
by varying the distance between the spheres, extracting the
spectral resonance frequencies of the respective modes, and
by comparing it to the resonance position obtained using
hybridization theory [50] (as shown in Fig. 4). The functional
dependency of the spectral position of the modes perfectly
agrees among the different methods. In Fig. 4 it can be seen
that when using a global coordinate system and while sticking
to dipole approximation, we miss the fourth mode, as this
mode effectively is a quadrupole mode with respect to a central
coordinate, as discussed before. This problem does not occur
if we employ the local formulation as this method captures the
response of each individual sphere.

Using our method based on the diagonalization of the
transfer matrix, it is possible to study the hybridization
of particles with an arbitrary size beyond the quasistatic
approximation. This is shown in the following section, where
the modes of a hierarchical meta-atom and its coupling to a
second meta-atom are discussed.

C. Cluster of spheres

The considered self-assembled meta-atom consists of 60
gold nanospheres. A conceptual sketch is shown in Fig. 5.
Each nanosphere has a radius of 20 nm. The nanospheres

FIG. 5. Geometry of the considered self-assembled meta-atom.
It is made of a larger number of nanoparticles that reside on top of a
spherical surface.

are assembled on top of a virtual sphere with a radius of
76 nm. These nanospheres are ordered in a highly symmetric
way, as defined in Ref. [32]. Such a symmetric assembly of
nanoparticles preserves the degeneracy of the modes, which
assists their understanding. The analysis of the modes of
the isolated meta-atom is done by using the formulation of
a global T matrix with respect to the center of the cluster.
Previously, the study of clusters of spheres using their T matrix
has been done by calculating the scattering response of such
a structure [53]. In this paper, however, we take a different
approach by identifying the mode of the structure via their T
matrix, as will be discussed in the following paragraphs.

Since the size of the corresponding meta-atom is compara-
ble to the wavelength of interest, the meta-atom cannot be
described by quasistatic approximation anymore. Here we
show the versatility of this approach by calculating the T
matrix while retaining modes up to the fourth multipolar
order. Figure 6 shows the modal strength of the dominant
modes (eigenvalues divided by ω2) calculated using dipole
approximation (N = 1) as well as the strength of the three
dominant modes using a higher order correction (N = 4). De

and Dm are electric and magnetic dipole modes, respectively.
For N = 1 the modes obviously have a dipolar character
only. By increasing the multipolar order, the modes tend to
have contributions from different vector spherical harmonics.
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FIG. 6. Frequency dependent strength of the three dominant
modes that were found from diagonalizing the global T matrix of the
meta-atom. We distinguish a mode that is dominated by an electric
dipole contribution (red line), a mode that is dominated by a magnetic
dipole contribution (blue line), and a mode that is dominated by an
electric quadrupole contribution (black line).
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However, the contribution from dipole terms are still dominant
to these modes, i.e., larger than 80%. Therefore, we still
call them the electric and magnetic dipolar modes. Moreover,
the spectral position of their resonances changes slightly and
additional peaks appear in their spectrum. These are small
modifications that occur due to the finite size of the meta-atom.
An electric quadrupole mode (Qe) also appears. We emphasize
that each dipolar mode is threefold degenerate due to the highly
symmetric arrangement.

To understand the resonance structure in more detail,
we fit the spectral dependency of the dipolar modes to the
coherent sum of multiple Lorentzian oscillators. Each of these
oscillators shall correspond to a specific type of resonance
sustained by the meta-atom in the specific dipolar scattering
channel. For this purpose, we fit in a least-square sense the
strength of the modes to the following functional dependency:

f (ω) = ω2

∣∣∣∣∣
L∑

n=1

fn

ω2
n − ω2 − iγnω

∣∣∣∣∣
2

. (17)

Here the nth Lorentz oscillator is characterized by its oscillator
amplitude fn, a central frequency ωn, and a damping coeffi-
cient γn. Note that the multiplication factor of ω2 appears as
a direct consequence of the scaling of the eigenvalue of the T
matrix.

The magnetic dipole mode, shown in Fig. 6, can be repro-
duced by a single Lorentzian oscillator, i.e., if plotted above
each other the curves are indistinguishable. The resonance
frequency of that mode is 500.9 THz.

The spectral position and the emergence of such resonance
can be understood if we consider the shell made out of the
nanospheres as an effective medium. Its effective permittivity
can be expressed using Clausius-Mossoti effective medium
theory. It expresses the effective permittivity of an ensemble
of spheres as

εeff(ω) = εb
3 + 2Nα(ω)

V

3 − Nα(ω)
V

, (18)

where εeff(ω) is the effective permittivity, εb is the background
permittivity, α(ω) is the electric polarizability of a single
nanosphere, and N

V
is the filling fraction, i.e., the number of

nanoparticles N per volume V .
The effective permittivity of the pertinent shell material is

shown in Fig. 7. We observe a Lorentzian resonance around
a central frequency of 592 THz, given by the resonance
frequency of the localized surface plasmon polariton sustained
in each nanoparticle. At smaller frequencies, the permittivity
is large and positive. For a magnetic mode resonance to occur,
the only option is to excite a magnetic Mie-type resonance in
the object that consists of a shell with a given thickness made
from the effective medium just discussed. The Mie resonance
occurs at frequencies with a large and positive permittivity.
This is just what we observe in Fig. 6.

The story is not that easy for the electric dipole mode.
Indeed, at first glimpse three resonances seem to appear. A
strong resonance occurs and two weaker ones are coherently
modulated on top of it at higher frequency. By performing a fit
with three Lorentzians, we encountered insufficient agreement
with the actual strength of the electric dipole mode. A
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FIG. 7. Effective permittivity of a medium made of gold
nanospheres with a radius of 20 nm embedded in air. The filling
fraction was obtained by equating the total volume of the nanospheres
and the volume of the spherical shell (with inner radius 76 nm and
outer radius 116 nm). The black dotted lines represent the plasmonic
resonance conditions of the layered sphere in dipole approximation
using resonance conditions derived in [54].

much better agreement was found when using five Lorentzian
oscillators. The magnitude of the electric mode along with the
five individual Lorentzians used to fit the response is shown in
Fig. 8.

Similarly as before, the five Lorentzians can be explained
when considering the resonances as sustained by a shell
made from a material with a dispersive permittivity as shown
in Fig. 7. First of all, in this figure we have marked with
dashed lines those permittivity values that would allow us
to observe a plasmonic resonance in a metallic shell with the
considered geometry. These permittivities can be derived from
a quasistatic analysis [54]. In principle, the dispersion of the
shell material attains these values at four different frequencies.
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FIG. 8. Magnitude of the electric dipole mode as obtained from
the eigenvalue analysis of the T matrix and its decomposition into
five Lorentzian oscillators.
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FIG. 9. Geometrical details of the two clusters of spheres that are
considered.

From the five Lorentzians, the third (@ 618.4 THz) and
the fifth (@ 701.1 THz) match closely to the two possible
frequencies where the necessary dispersion is offered by the
shell material. These frequencies are far away from the actual
resonance frequency of the shell material where absorption is
quite weak. Hence, the resonance are well resolved. The two
further frequencies predicted here are close to the resonance
where absorption is high. This prevents the notable excitation
of a plasmonic mode at these frequencies.

Besides these two Lorentzians with electric dipolar plas-
monic origins, we notice that two further Lorenzians have reso-
nance frequencies in the spectral region where the permittivity
of the shell material attains positive values. This suggests that
the first Lorentzian (@ 502.6 THz) and the second Lorentzian
(@ 555.3 THz) correspond to electric type Mie resonance that
require for their excitation a large and positive permittivity.

The last remaining Lorentzian mode, i.e., the Lorentzian
mode that is expressed by the fourth Lorentzian (@
676.6 THz), is a dominantly electric quadrupolar plasmonic
mode that also has a small electric dipolar contribution. Overall
this Lorentzian mode is weakly excited but it needs to be
considered.

D. Coupled cluster of spheres

In this section we study the coupling between two self-
assembled meta-atoms. Figure 9 shows a sketch of the
considered geometry. We vary the distance between the
clusters and calculate the modes of the system by employing
first, Eq. (3) for each individual meta-atom with respect to its
central coordinate and second, this T matrix as an input to
construct the T matrix. It expresses the T matrix of the entire
system in a local formulation. Modal strength of this T matrix
are presented. To simplify the discussion, we only focused
on the “effective” dipole response of each meta-atom, as the
hybridization between them can be already clearly observed,
as depicted in Fig. 10.

The modal strength of the modes formed due to the
coupling between two clusters of spheres is shown in Fig. 11
for a selected distance. Here we see that the degenerate
modes observed for a single cluster of spheres split into new
modes formed due to the coupling between the clusters, as
observed also in the dimer structure. The response is overall
is quite complex and further insights are only possible when
decomposing the response again into Lorentzian resonances.

Figure 12(a) shows the resonance positions of the
Lorentzian decomposition of the electric dipole modes that
occur upon hybridization [ωn as described in Eq. (17)]. We
only focus on the three most dominant Lorentzian contribu-

FIG. 10. All possible modes for hybridization of electric or
magnetic dipole of the two cluster system.

tions of the modes that occur at lower frequencies. Figure 12(b)
shows the resonance positions of the magnetic dipole modes
that occur upon hybridization. The resonance positions were
extracted from Lorentzian fits of the respective modal strength
of the mode that was obtained from diagonalizing the T
matrix, i.e., the kind of data that was shown in Fig. 11 for
a selected separation between the clusters. For each mode of
the isolated meta-atom, it will split into four modes, which
always correspond to an in phase and out of phase excitation
of the dipole moment in each individual cluster, as depicted in
Fig. 10. The dipoles can be arranged parallel or perpendicular
to the connecting axis, giving rise to the complicated spectra,
i.e., they are in phase or out of phase. The spectral positions
of these modes sensitively depend on the distance between
the two meta-atoms. Oscillation of these mode frequencies
can be seen when the meta-atoms approach each other.
They can be associated with the constructive and destructive
interference between the reflected waves from one meta-atom
to another.
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FIG. 11. Modal strength of each hybridized mode of two clusters
of spheres with d = 301 nm. The dashed (solid) lines correspond to
magnetic (electric) dipole modal strength, while the dotted lines show
the hybridized mode of electric quadrupole.
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FIG. 12. Peak positions of (a) three dominant Lorentzians from
the decomposition of the hybridized electric dipole modes and (b)
hybridization of magnetic dipole modes. The colors correspond to
the modes as shown in Fig. 10. The black lines correspond to the
resonance frequencies of the isolated meta-atom.

It is important to note that the electric dipole interactions
have a much stronger impact compared to magnetic ones.
This can be seen from the oscillation of the resonances in
the coupled meta-atoms with respect to the resonances of the
isolated meta-atom. Whereas the resonance frequency of the
dominant electric modes shift by up to 90 THz, the magnetic
modes shift only by up to 25 THz. The resonance frequencies
of the magnetic modes of the hybridized systems are less
dispersive and less sensitive to the coupling with a nearest
neighbor.

A similar behavior has been observed in Ref. [55] and
theoretically explained in Ref. [56] for planar metasurfaces.
There, the introduction of spatial disorder into a system of
periodically arranged meta-atoms that have both an electric
and magnetic resonance had a much weaker impact on the
magnetic response when compared to the electric response.
The magnetic resonance indeed was quite insensitive against
disorder in the system. The reason for the weaker response
has been the dominant contribution of nonradiative losses to
the magnetic resonance. When compared to the total losses,
less scattered field is generated at the magnetic resonance when

FIG. 13. (a) Schematic view of a scattering scenario of two
clusters of spheres where the distance between the clusters is 301 nm
(the electric field of the incident field always in x-z plane) and (b) the
scattering enhancement for a different illumination scenario.

compared to the electric resonance. The effective dispersion in
the magnetic permeability of the metasurface has been largely
independent on the degree of disorder. This suggests that
these meta-atoms, when operated at their magnetic resonance
frequency, virtually do not see their nearest neighbors. Since
we observe a similar behavior in the coupling process among
self-assembled meta-atoms, we can expect that the effective
properties of a metamaterial made from these meta-atoms does
not degrade upon tight packaging. Large filling fractions can
be realized without causing a degradation. Coupling to nearest
neighbors does not deteriorate to a notable extent the magnetic
dipolar resonance properties when compared to the isolated
meta-atom. This is an important finding towards the realization
of densely packed self-assembled meta-atoms.

The scattering response of the two coupled meta-atoms
can be compared to the scattering response of two individual
meta-atoms. In this context, it is easier to discuss the scattering
enhancement factor β defined here as

β = σ cc

2σ i
, (19)

where σ cc denotes the scattering cross section of the two
clusters and σ i is the scattering cross section of an individual
cluster. The dependency of β on the frequency and for various
incident field scenarios, as depicted in Fig. 13(a), can be
seen in Fig. 13(b). Here, due to the symmetry breaking of
the system, the scattering response depends on the incoming
angle θ . Depending on θ and frequency, the scattering can be
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reduced or enhanced with respect to the scattering from the
two isolated subsystems. This makes it a perfect platform for
applications which require the tunable properties of scattering
response, e.g., to direct the emission of light with antennas to
route information. We emphasise the fact that this analysis is
quite conveniently done with the formalism we have developed
here. The eigenmode analysis of the T matrix only needs to
be done once; and the actual observable feature is calculated
by projecting the incident field on the eigenmodes. This is an
analysis that can be quickly done.

IV. CONCLUSIONS

We show that the diagonalization of the transfer matrix is
a convenient tool to study the modes of isolated and coupled
meta-atoms. The transfer matrix can be formulated in either
a global or a local coordinate system. Both approaches are
equally valid but are more insightful depending on a specific
situation. The validity of this method has been checked
by comparing spectral positions of plasmonic resonances to
predictions made with hybridization theory. Emphasis was put
in our work on studying the coupling between hierarchical
meta-atoms as employed in the context of self-assembled
metamaterials. It was shown that the dispersion of the
individual modes occurs because of different resonances that
are sustained in the meta-atom. Each of these resonances can be
explained on physical grounds, which explains and quantifies
the observed spectral features. Moreover, when studying
the hybridization among modes in coupled self-assembled
meta-atoms, it was found that the mode with a dominating
magnetic dipolar contribution in the individual meta-atom is
less sensitive against an interaction to a nearest neighbor. This
is an encouraging finding to fabricate metamaterials out of
these meta-atoms even at very high filling fractions. We stress
the fact that the methodology is not limited in its application to
a specific meta-atom. With that, the present work will provide
impetus for the broader field of optical nanoantennas and
plasmonics.
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APPENDIX A: RELATION BETWEEN EIGENVALUE
IN LOCAL AND GLOBAL COORDINATES

The eigenvalue decomposition of the T matrix can be
written as

T = XlocH
locX−1

loc . (A1)

By arranging the term, left multiply both sides by the
translation matrix W , and applying the fact that WLW = I ,
the following equation can be obtained:

WT WLWXloc = WXlocH
loc. (A2)

The operator on the left-hand side WT WL is just the T
matrix in a global coordinate system. By proceeding further

and applying the left inverse of the translation operator on
both sides, and then proceed using the eigendecomposition of
matrix WH locWL = ZAZ−1, we arrived at

T WXlocW
LZ = WXlocW

LZA. (A3)

It can be seen that the eigenvalues in global coordinate H glo is
the diagonal matrix A. It can be concluded that

Xglo = WXlocW
LZ, (A4)

H glo = Z−1WH locWLZ. (A5)

From the above equations, it can be seen that the eigenval-
ues and eigenvectors in global coordinates depend on the
transformation operator W . The matrix Z−1W and WLZ

can be interpreted as transformation operators, which map
the multipole moments from individual scatterers in local
coordinates to the multipole moments of the entire structure in
global coordinates. Note that, if W is an unitary matrix (which
is the case for a single particle), the left inverse of W is just its
inverse, WL = W−1. It can be proven easily that the matrix Z

is the same as W (as matrix WH locWL = WH locW−1), which
resulted in H loc = H glo and Xglo = WXloc. It can be proven
in the same way that

Xloc = WLXgloW
LL

V, (A6)

H loc = V −1WLH gloWLL

V, (A7)

where WLL

is the left inverse of the left inverse of W and V is
the eigenvectors of matrix WLH gloWLL

.

APPENDIX B: DECOMPOSITION OF SCATTERING
CROSS SECTION IN LOCAL COORDINATE

The eigenvalue equation of the T matrix can be written as

T |Xi〉 = ηi |Xi〉 . (B1)

And for its transpose conjugate:

T † |Yi〉 = η∗
i |Yi〉 . (B2)

With the following bi-orthogonality relations hold:

〈Xm|Yn〉 = δmn, (B3)
∑
f

|Yf 〉 〈Xf | =
∑
f

|Xf 〉 〈Yf | = I. (B4)

The scattering cross section is defined as

σsca = 4π

k2
b

〈a|a〉 = 〈T Gglo|T Gglo〉 = 〈Gglo|T †T |Gglo〉 .

(B5)

Applying the fact that T = WT WL, and using the fact that
the incident field in local coordinate |Gloc

i 〉 = WL |Gglo
i 〉, we

arrived at

σsca = 4π

k2
b

〈Gloc|T †W †WT |Gloc〉 . (B6)
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Now, applying the bi-orthogonality relation, the following
equation can be obtained:

σsca = 4π

k2
b

∑
f

∑
g

〈Gloc|Xf 〉 〈Yf |η∗
f W †Wηg|Yg〉 〈Xg|Gloc〉 .

(B7)

By arranging term, we finally have

σsca = 4π

k2
b

∑
f

∑
g

ηgη
∗
f 〈G|Xf 〉 〈Xg|G〉 〈Yf |W †W |Yg〉 .

(B8)
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