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Electromagnetic field enhancement in Bloch surface waves
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We present a systematic comparison between guided modes supported by slab waveguides and Bloch surface
waves (BSWs) propagating at the surface of truncated periodic multilayers. We show that, contrary to common
belief, the best surface field enhancement achievable for guided modes in a slab waveguide is comparable to that
observed for BSWs. At the same time, we demonstrate that if one is interested in maximizing the electromagnetic
energy density at a generic point of a dielectric planar structure, BSWs are often preferable to modes in which
light is confined uniquely by total internal reflection. Since these results are wavelength independent and have
been obtained by considering a very wide range of refractive indices of the structure constituent materials, we
believe they can prove helpful in the design of future structures for the control and the enhancement of the
light-matter interaction.
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I. INTRODUCTION

When light is confined in one or more dimensions its
electromagnetic field is enhanced along with its capacity to
interact with matter. In the case of 3D light confinement, this
enhancement is usually directly proportional to the square root
of the ratio between the dwelling time of light in the resonator
and the mode volume. For instance, this can be exploited
to increase and control the spontaneous emission rate of a
molecule [1–3]. Similarly, in the case of propagating modes,
the strength of the light-matter interaction is typically inversely
proportional to the square root of the area or length in which
light is confined, depending on whether we are dealing with 2D
or planar waveguides, and directly proportional to the square
root of the time that it spends propagating in the waveguide,
which is given by the ratio between the waveguide length
and the group velocity. This enhancement is responsible, for
example, for the large nonlinear response in silicon nanowires
[4,5]. Naturally, the size of the mode area (or length) depends
on the wavelength under consideration, on the waveguide
materials and, above all, on the confinement mechanism, which
can be based on total internal reflection (TIR), on interference,
or on more exotic phenomena, such as the coupling with free
charges in metal, as it happens for surface plasmon polaritons
(SPPs) [6,7].

Even considering only the case of planar dielectric struc-
tures, one finds a quite surprising variety of confined modes,
from D’yakonov waves, which exist at the interface between
anisotropic and isotropic media [8,9], to guided modes in
Bragg waveguides [10,11]. Light confinement in dielectric
multilayers has been extensively investigated in fundamental
studies of the light-matter interaction and for the development
of photonic technologies [12–14]. Ultimately, the choice of a
particular geometry depends on the specific application and on
other factors such as material availability and the wavelength
range under consideration.

In the last decade, we witnessed a growing interest in Bloch
surface waves (BSWs) [15–22], which are electromagnetic
modes that propagate at the interface between a truncated
periodic multilayer and a dielectric external medium. Light
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confinement in BSWs occurs near the multilayer surface
and is caused by TIR from the homogeneous layer and
by the presence of a photonic band gap (PBG) from the
multilayer. Although these modes have been known since
the late seventies [23–26], this renewed interest is due to
the improvement of those fabrication and growing techniques
that today make high-quality multilayers available for a vast
class of materials, from semiconductors to oxides and organic
compounds [27,28]. More in general, other kinds of surface
waves have been observed in fully three-dimensional periodic
structures, either dielectric or metallic, showing the recent
strong interest of the community in asymmetric confinement
relying on a PBG on one side [29–31]

So far, BSWs have primarily been used in all those
situations that require the enhancement of the light-matter
interaction near the structure surface, with applications ranging
from optical sensing to the control of light emission [32–
40]. However, despite numerous experimental and theoretical
results, it appears as if in many works the authors take for
granted that BSWs have a strategic advantage in terms of
surface field enhancement over simpler solutions such as
guided modes in dielectric slab waveguides [41–43]. This
seems to be in part due to the confusion between the field
enhancement, which depends on the area (or length) in which
light is confined, and the amount of energy that can be
accumulated at the surface of the structure due to the external
excitation of the guided mode.

To clarify this point, let us consider the resonant excitation
of a guided mode supported by a generic dielectric planar
waveguide. We assume the incoming light to be monochro-
matic, described by a properly polarized plane wave, and
evanescently coupled into the mode through a prism located
at a given distance D. It is possible to show, by calculating
the structure Fresnel coefficients, that the energy accumulated
in the guided mode, and thus the electric field at the structure
surface, increases with D, i.e., when the coupling strength
decreases [44,45]. Thus, theoretically, it is always possible
to achieve any value of the electric field at the surface by
simply adjusting the coupling distance D independently of
the mode field distribution or the input pump power, making
any comparison between different structures in terms of the
electric field measured at their surface somewhat arbitrary.
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FIG. 1. Photonic structure under consideration: (a) asymmetric
slab waveguide of core thickness d and real refractive index n1 =
n2 + �n sandwiched between two semi-infinite dielectric media of
refractive indices ne on the external side and n2 on the substrate
side; (b) truncated periodic multilayer with a unit cell consisting of
refractive indices n1 = n2 + �n and n2 and of thicknesses d1 and d2;
the structure is semi-infinite and truncated with a layer of height σd1,
where 0 < σ < 1, and refractive index n1.

On the contrary, in this communication we present a
systematic comparison between dielectric slab waveguides
and truncated multilayers in terms of the electromagnetic field
enhancement, which is an intrinsic property of the guided
modes under study. We do this by considering a very wide
range of refractive indices for the structure materials to clarify
the situations in which BSWs in truncated multilayers are
preferable to guided modes in slab waveguides, for example to
enhance the interaction with 2D materials or in the design of
new types of resonators [46–50]. In Sec. II we start by defining
the structures under consideration and our figures of merit. In
Sec. III we present our numerical results. Finally in Sec. IV
we draw our conclusions.

II. STRUCTURE GEOMETRY AND FIGURES OF MERIT

The structures under consideration are shown in Figs. 1(a)
and 1(b). They are an asymmetric slab waveguide and a
truncated periodic multilayer, both in air (ne = 1) and com-
posed of the same two materials having real refractive indices
n1 and n2 and refractive index contrast �n = n1 − n2 > 0.
The slab waveguide has a core layer with refractive index
n1 and thickness d, and a substrate with refractive index
n2. In the slab, light confinement occurs uniquely by TIR,
with guided modes having effective refractive index n2 <

nwg < n1 and propagation wave vector β = 2πnwg/λ0, with
λ0 the wavelength in vacuum. The periodic multilayer under
consideration has a unit cell with two layers having thicknesses
d1 and d2 and refractive indices n1 and n2, respectively. The
multilayer is terminated with a layer of thickness σd1 (with
0 < σ < 1) and refractive index n1. In this structure, light is
confined by TIR from the upper cladding and by the PBG from

FIG. 2. Wavelength-scaled modulus of the electric field of (a) the
TE0 mode supported by an asymmetric slab waveguide of core index
n1 = 1.7 and cladding index n2 = 1.5 and d/λ0 = 0.354; the core
thickness was found by minimizing the mode length; (b) the BSW
supported by a semi-infinite truncated periodic multilayer with unit
cell having indices n1 = 1.7 and n2 = 1.5 and thicknesses d1/λ0 =
0.243, d2/λ0 = 0.400; for this structure, σ = 0.467; the structure
parameters were found using Eq. (5) to minimize the mode length of
the BSW.

the multilayer. In our analysis we shall consider only confined
modes having effective index 1 < nBSW < n2, for which TIR
does not occur at any interface within the multilayer. Thus,
we focus only on planar dielectric structures in which the
multilayer surface is accessible from the upper cladding and,
at the same time, we avoid working with membranes, as it
would be in the case of a symmetric slab waveguide. This
choice is motivated by typical experimental conditions in
which one prefers to work with structures having a solid
substrate. Finally, we restrict our analysis to the case of
modes having the electric field in the plane of the multilayer,
i.e., TE (transverse electric)-polarized, for which it is not
possible to exploit SPPs to enhance the field at the structure
surface. In Figs. 2(a) and 2(b), we show two examples of the
electric field distribution for the fundamental TE mode of an
asymmetric slab waveguide and the TE BSW supported by
a truncated multilayer, respectively. The field distribution has
been calculated by using the transfer matrix method [14]. The
results are normalized to the mode wavelength in vacuum
to take advantage of the scalability of Maxwell equations
[51], with the plots and the results presented in the following
sections being scale invariant.

Now, we consider the following questions: (1) Which one
of the two structures maximizes the electromagnetic energy
density at a generic point along z? (2) Which one provides
the largest electric field at the structure surface (i.e., z = 0)?
To answer these questions we use the following two figures
of merit (FoMs); the first one is, in strict analogy with 3D
resonators [52], the mode length, and it can be defined as

Lmod = 1

max[ε(z)|E(z)|2]

∫ ∞

−∞
ε(z)|E(z)|2dz, (1)
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where E(z) is the electric field and ε(z) = ε0n
2(z), with ε0

the vacuum permittivity. For a fixed amount of energy in the
mode, maximizing the electromagnetic energy density in a
given point is equivalent to minimizing the mode length Lmod.1

The second FoM is simply the value |E(0)|λ0 of the
modulus of electromagnetic field at the structure surface, taken
on the cladding side. In this case, a fair comparison between
the structures requires that each mode profile E(z) is properly
normalized. Here we use [53]

A

∫ +∞

−∞
ε(z)|E(z)|2dz = h̄ω

2
, (4)

where A is a normalization area in the plane of the structure
(taken to be 1 m2), ω = 2πc/λ0, and where we have neglected
chromatic dispersion of the refractive indices nearby λ0. It
should be noticed that the choice of normalizing the energy
in the mode to that of a photon guarantees that Lmod/λ0

and |E(0)|λ0 are scale invariant, which leads to energy-
independent conclusions.

III. RESULTS AND DISCUSSION

Our analysis consists in finding the structures that mini-
mize Lmod/λ0, i.e., maximize the field confinement, and/or
maximize |E(0)|λ0, i.e., maximize the field at the surface; this
is done for any given pair (n1, n2) of refractive indices, with
n2 ∈ [1.4,2.1] and n1 ∈ [1.4,4.1].

In the case of the asymmetric slab waveguide, this task
is accomplished by following the semianalytical approach
illustrated in Appendix A: for any (n1,n2), we find the
expression of the electric field profile as a function of d/λ0,
and we search for the values of d/λ0 that maximize the FoMs.
The presence of only one independent structure parameter,
namely d/λ0, makes it easy to determine the two structures
that give the best FoMs among all the possible asymmetric
slab waveguides of the form depicted in Fig. 1(a).

In the multilayer case, the search for the optimal structure
is more challenging, as there are three independent parameters
d1, d2, and σ . To reduce the dimensionality of the problem, we
choose d1 and d2 to guarantee the fastest decay of the envelope
function of the electric field in the multilayer. This corresponds
to the generalized λ/4 condition:

di = λ0

4
√

n2
i − n2

BSW

, (5)

assuming a BSW having effective index nBSW. Under these
hypotheses, one considers all the possible effective indices

1It should be noticed that, in spite of its name and units, Lmod does
not measure how tightly light is confined. A measure of the size of
the mode can be obtained by calculating

σ 2
mode =

∫ ∞
−∞(〈z〉 − z)2ε(z)|E(z)|2dz∫ ∞

−∞ ε(z)|E(z)|2dz
, (2)

with

〈z〉 =
∫ ∞

−∞ zε(z)|E(z)|2dz∫ ∞
−∞ ε(z)|E(z)|2dz

. (3)

FIG. 3. (a) Wavelength-scaled mode length Lmod /λ0 of the TE0
mode supported by an asymmetric slab waveguide as a function of
the index contrast �n = n1 − n2 for selected values of the substrate
refractive index n2; (b) scaled mode length Lmod /λ0 of the BSW
supported by a truncated periodic multilayer as a function of the
refractive index contrast �n = n1 − n2 for selected values of the
lower refractive index n2. The stars correspond to the modes shown
in Fig. 2.

nBSW ∈ [1,n2] by calculating the corresponding multilayer
truncation and searching for the structures that maximize
the two FoMs. It should be noticed that, in principle, this
approach does not guarantee to find the best structures among
all the possible truncated periodic multilayers of the kind
shown in Fig. 1(b). Yet, our strategy starts from the reasonable
assumption that the largest field enhancement is obtained by
maximizing the field decay in the multilayer. In fact, we have
verified, by a brute force optimization for some selected (n1,
n2) in the range of interest, that the best structures for both the
FoMs are either identical to those found through our strategy
or do not differ significantly from them. This approach has
also the undeniable advantage of providing a quick and handy
rule to design the multilayer.

In Fig. 3 we plot the best (i.e., the smallest) Lmod/λ0 for (a)
the guided mode in the asymmetric slab waveguide and (b) the
BSW in the truncated multilayer as a function of the refractive
index contrast �n = n1 − n2. We consider four different
values for the low refractive index, namely n2 = 1.4,1.5,1.7,
and 2.1. There are some important indications that can be
obtained by this first set of results: (i) in both structures
the mode length is essentially independent of n2, while it is
strongly dependent on the refractive index contrast �n; (ii)
for a given �n, the best mode length that can be obtained
by TIR in a slab waveguide is similar to that achievable in a
truncated multilayer. By looking at Figs. 2(a) and 2(b), which
correspond to the points indicated in Figs. 3(a) and 3(b), one
can notice that indeed the maximum of ε(z)|E(z)|2 in both
cases is about the same. This happens in spite of the fact that
the BSW field extends in the multilayer deeper than in the
case of the asymmetric slab waveguide, showing that Lmod

is not immediately related to how tightly light is confined.
In particular, in the BSW case, the result can be understood
as a consequence of the damped oscillatory behavior of
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FIG. 4. Contour plot of the ratio between the smallest mode
lengths of the BSW supported by the truncated periodic multilayer
and of the TE0 mode supported by the asymmetric slab waveguide as
a function of the lower index n2 and the refractive index contrast �n.
The black dashed line indicates the value for which the modes have
the same mode length. The star corresponds to the refractive indices
of the structure supporting the modes in Fig. 2.

the field in the multilayer associated with the presence of
the PBG.

In Fig. 4 we compare the two structures by showing the
ratio between the smallest mode length obtainable with the
truncated multilayer and that achievable for the asymmetric
slab waveguide as a function of n2 and �n. The plot confirms
the small dependence of Lmod/λ0 on n2 and shows the presence
of three different regimes depending on the refractive index
contrast: (i) for �n > 0.6 the largest electromagnetic energy
density in a point is obtained with a truncated multilayer,
and the differences with respect to the slab waveguide mode
increases with �n; (ii) for small refractive index contrasts
(�n < 0.5) the largest electromagnetic energy density in a
point is obtained with the asymmetric slab waveguide, and
the difference with the truncated multilayer increases as the
�n gets smaller; (iii) there exists an intermediate region,
with 0.5 < �n < 0.6, in which the optimization of the two
structures leads to the same result. Naturally, these conclusions
depend also on our initial choice of having considered air
(n = 1) as our upper cladding, yet a qualitatively similar
result is expected also for larger values of the cladding
refractive index. Finally, we remind the reader that the results
shown in Fig. 4 are wavelength independent because of the
normalization condition (4).

We now turn to the analysis of the surface field. In Figs. 5(a)
and 5(b) we show the highest value of the surface field
achievable for a guided mode in the asymmetric slab and
the truncated multilayer, respectively, as a function of the
refractive index contrast �n and for some selected value of
n2. In both structures the surface field enhancement increases
with �n as a consequence of the smaller mode length. At the
same time, it decreases as n2 increases, in particular when
light is confined uniquely by TIR. The analysis of the field
distribution (not shown here) reveals that in both cases this
behavior is caused by a shift of the maximum of the field

FIG. 5. (a) Wavelength-scaled surface field |E(0)|λ0 of the TE0
mode supported by an asymmetric slab waveguide as a function of
the index contrast �n = n1 − n2 for selected values of the substrate
refractive index n2. (b) Wavelength-scaled surface field |E(0)|λ0 of
the BSW supported by a truncated periodic multilayer as a function
of the refractive index contrast �n = n1 − n2 for selected values of
the lower refractive index n2. The mode field profiles are normalized
according to Eq. (4), and the stars correspond to the modes shown in
Fig. 2.

far from the surface as the average refractive index of the
structure increases. Finally, we notice that in Figs. 5(a) and
5(b), the largest achievable values of the surface fields are
comparable.

For a complete comparison of the two structures, in Fig. 6
we plot the ratio between the largest surface field achievable
for the TE BSW in the truncated periodic multilayer and that
obtained for the fundamental TE mode in the asymmetric slab
waveguide as a function of n2 and �n. The plot shows that

FIG. 6. Contour plot of the ratio between the optimized surface
fields of the BSW supported by the truncated periodic multilayer and
the TE mode supported by the optimal asymmetric slab waveguide as
a function of the lower index n2 and the refractive index contrast �n.
The star represents the refractive indices of the structures supporting
the modes in Fig. 2.
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the largest value of the surface field is always obtained for
a BSW, with an enhancement up to 45% with respect to the
best possible scenario for an asymmetric slab waveguide with
n2 > 1.7 and 0.4 < �n < 0.8. Interestingly, this situation
corresponds to the one in which the two structures have a
similar mode length, showing that the advantage of BSW is not
due to a smaller mode length, but rather to the particular energy
distribution in the structure associated with a confinement
mechanism based on interference rather than TIR.

These results suggest that, in general, the need for a
large surface field may not be sufficient to justify the choice
of working with BSWs. Indeed, while truncated dielectric
periodic multilayers can be characterized by a large electric
field at the structure surface, the enhancement with respect to
the best waveguide is usually quite modest, especially when
�n increases. Naturally, the two structures have many other
different properties which are not discussed in this work,
but that could help identify the best solutions for specific
applications.

IV. CONCLUSIONS

We carried out a thorough comparison between the funda-
mental TE mode supported by an asymmetric slab waveguide
and the BSW supported by a truncated periodic multilayer
in terms of two figures of merit, namely the mode length
and the value of the electric field at the structure surface. We
considered dielectric structures composed of materials having
refractive indices varying between [1.4,4.1] with a refractive
index contrast from 0 to 2, in the case in which absorption
losses can be neglected.

Our results indicate that—perhaps surprisingly—modes
confined by TIR are not always characterized by the smallest
mode length (i.e., the largest electromagnetic energy density
in a point). In particular, we found that for a sufficiently
strong refractive index contrast (�n > 0.6) of the constituent
materials, BSWs can exhibit smaller mode length than any
mode supported by asymmetric slabs. This result is obtained
for a proper truncation of the multilayer and the optimization of
the unit cell according to a properly generalized λ/4 condition,
typically used for the design of DBRs.

In terms of the surface electric field, the overall trend
indicates that BSWs always exhibit the largest surface field
with respect to that of the best scenario in asymmetric slab
modes. Here, we clarify that the enhancement with respect
to the waveguide is limited to 45%, suggesting that in some
cases simple slab waveguides might be indeed an equally
valuable solution to achieve strong light-matter interaction at
the structure surface.

These results are wavelength independent and valid for a
large class of multilayered structures made of semiconduc-
tors, oxides, and organic materials. Thus, we believe they
will be of great help in the choice of the best platform
to study and exploit the light-matter interaction in planar
structures.
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APPENDIX

1. Results for the asymmetric slab waveguide

The z dependence of the fundamental TE mode in an
asymmetric slab waveguide can be taken as

Em(z) =

⎧⎪⎨
⎪⎩

Ce−qz if z � 0

C
(

cos(hz) − q

h
sin(hz)

)
if − d � z < 0

C
(

cos(hd) + q

h

)
ep(z+d) if z < −d

,

(A1)

where C is a normalization constant, h, q, and p are the
transversal components of the wave vector in each layer, i.e.,

h =
√(ω

c
n1

)2
− β2 (A2)

q =
√

β2 −
(ω

c
ne

)2
(A3)

p =
√

β2 −
(ω

c
n2

)2
, (A4)

and n1, n2, and ne are, respectively, the refractive indices of
the core layer, of the substrate, and of the external medium, as
in Fig. 1.

The normalization constant C can be evaluated by normal-
izing the field, that is by imposing that each mode transports
the energy of a photon

A

∫ +∞

−∞
ε(z)|E(z)|2dz = h̄ω

2
, (A5)

where A is a normalization area (taken as A = 1 m2 throughout
this paper). This translates to

C =
√

h̄ω

2(Iext + Icore + Isub)
, (A6)

where

Iext = C2εext

2q
(A7a)

Isub = C2εsub
[
cos(hd) + q

h
sin(hd)

]2

2p
(A7b)

Icore = C2εcore

2

[
d + sin(2hd)

2h
+ q2

h2

(
d − sin(2hd)

2h

)

+ q

h2
(1 − cos(2hd))

]
. (A7c)

In order for the slab to support the mth TE mode, its
thickness must be capped by

dmax

λ
= 1

2π

√
n2

core − n2
sub

[
mπ + arctan

√
n2

sub − n2
ext

n2
core − n2

sub

]
.

(A8)

Here we have focused on the fundamental TE0 mode, since
we were interested in maximum confinement, therefore in our
simulations we set m = 0.
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The maximum of the field can be calculated analytically by
deriving the expression given in Eq. (A1); the result is

Emax = C

√
h2 + q2

h
. (A9)

When the electric field is defined as above, the surface field
is simply Em(0) = C, thus it can be calculated by properly
normalizing the electric field.

2. Results for truncated periodic multilayer

Let us now consider a periodic multilayer with a unit cell
consisting of refractive indices n1 and n2 and thicknesses d1

and d2, as shown in Fig. 1. Let the period of this structure be
	 = d1 + d2.

The electric field in each layer can be written in terms of
forward and backward components, i.e.,

Ej (z) = E+
j eikj z + E−

j e−ikj z. (A10)

Components across layers are linked via the interface
matrices, i.e.,(

E+
j

E−
j

)
= 1

2tj,j−1

(
1 rj,j−1

rj,j−1 1

)(
E+

j−1
E−

j−1

)
,

(A11)

where the r and t Fresnel coefficients for TE polarization are
defined as

rj,j−1 = wj − wj−1

wj + wj−1
(A12)

tj,j−1 = 2wj

wj + wj−1
; (A13)

the propagation of the field components within a layer can be
obtained by resorting to propagation matrices, i.e.,(

E+
j (z + dj )

E−
j (z + dj )

)
=

(
eiwj dj 0

0 e−iwj dj

)(
E+

j−1(z)
E−

j−1(z)

)
.

(A14)

Carrying out products of interface and propagation ma-
trices allows one to calculate the transfer matrix for the
photonic system under scrutiny and ultimately to express field
components in each layer of the structure. Once these terms
are known, it is possible to calculate the FoMs for the BSW.

In order for the multilayer to support a BSW at a given β,
the first layer must be truncated to a length σd1, as explained
in Ref. [33], where the truncation factor 0 < σ < 1 is given by

σ = 1

2iw1L1
log

[
M12(qext − iw1)

(M11 − e−q	)(iw1 + qext)

]
, (A15)

where qext = �{wext}.
The evanescent field in the semi-infinite external medium

contributes to the overall mode length Lmod with

Lext
mod = εext

|E−
ext|2

2qext
. (A16)

The contribution to the mode length due to each layer
can be calculated according to the general definition
given in Eq. (1), where the integral is extended only

to the layer under scrutiny. The resulting expression
is

L
j

mod = εj [|E+
j |2 + |E−

j |2] + εj�
[
E+

j E
−,∗
j (e2iwj dj − 1)

wj

]
,

(A17)

where wj = √
(2π/λ0)2εj − β2 is the transversal component

of the wave vector in each layer.
In order not to include finite-size effects, we have consid-

ered only semi-infinite structures, i.e., multilayers consisting
of an infinite repetition of a bilayer unit cell surmounted by
a truncated layer. According to Bloch’s theorem, E(z + 	) =
eikBlochzE(z), and since BSWs live in the PBG, the Bloch wave
vector kBloch is imaginary and E(z + 	) = e−q	E(z). This
means that after one period the field has decayed by e−q	,
and therefore its intensity has decreased by the square of this
expression. To calculate the integral of the modulus square
of the electric field due to the whole semi-infinite periodic
structure, one can then calculate Iu.c., i.e., the integral extended
to the first unit cell, multiply it by the sum of the geometric
series of ratio k = e−2q	, and sum the contribution due to the
truncation layer and the external medium, so that

Lsemi−∞
mod = K

[
Vext + Vtrunc + Iu.c.

1 − e−2q	

]
, (A18)

where K is the inverse maximum electromagnetic energy
density appearing in Eq. (1), and Iu.c. is given by

Iu.c. = ε1[|E+
1 |2 + |E−

1 |2] + ε1�
[
E+

1 E
−,∗
1 (e2iw1d1 − 1)

w1

]
(A19)

+ ε2[|E+
2 |2 + |E−

2 |2] + ε2�
[
E+

2 E
−,∗
2 (e2iw2d2 − 1)

w2

]
.

(A20)

To complete the expression for the mode length, we need to
find an expression for the maximum field intensity contained
in this prefactor K; this can be obtained by deriving the general
term in Eq. (A17), which yields

∂L
j

mod

∂z
= 0 → �[E+

j E
−,∗
j e2ikj z] = 0. (A21)

The solution we are after is then

zmax = − 1

2kj

arctan{φ(E+
j E

−,∗
j )}, (A22)

where φ(E+
j E

−,∗
j ) is the phase of the complex number

E+
j E

−,∗
j , i.e.,

φ(E+
j E

−,∗
j ) = �[E+

j E
−,∗
j ]

	[E+
j E

−,∗
j ]

. (A23)

To calculate the maximum field intensity, it is sufficient to
calculate εj |Ej (zmax)|2 in the truncation layer and the unit cell
and to select the maximum value among them.

(ε|E|2)max = max
j

{εj |E(zmax,j )|2} (A24)

By combining all the results, the overall mode length is
the sum of the terms given by Eq. (A17) and the external
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contribution (A16), divided by the maximum field intensity
given by Eq. (A24):

Lmod = 1

max
j

{εj |E(zmax,j )|2}
[
Vext + Vtrunc + Iu.c.

1 − e−2q	

]

(A25)

If we assume that the x axis lies on the interface between
the truncation layer and the semi-infinite external dielectric
medium, the surface field is given essentially by

Sfield = E−
ext. (A26)
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