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Spin precession and spin waves in a chiral electron gas: Beyond Larmor’s theorem
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Larmor’s theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit
coupling this invariance is lost and Larmor’s theorem is broken: for systems of interacting electrons, this gives
rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb
many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor
quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach
based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain
analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths
α and β. Comparison with experimental data from inelastic light scattering allows us to extract α and β as well
as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation
for spin-dependent electron systems.
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I. INTRODUCTION

Larmor’s theorem [1,2] states that in a system of charges, all
with the same charge-mass ratio q/m, moving in a centrally
symmetric electrostatic potential and in a sufficiently weak
magnetic field B, the charges precess about the direction of
the magnetic field with the frequency

�L = g
qB

2m
(1)

(in SI units), where g is the gyromagnetic ratio or g factor.
In condensed-matter physics, Larmor’s theorem applies

to the long-wavelength limit of spin-wave excitations in
magnetic systems which are invariant under spin rotation [3].
In particular, the electrons in a two-dimensional electron gas
(2DEG) in the presence of a constant uniform magnetic field
carry out a precessional motion at the single-particle Larmor
frequency, despite the presence of Coulomb interactions.

If spin-rotational invariance is broken—for instance, in the
presence of spin-orbit coupling (SOC)—Larmor’s theorem is
no longer guaranteed to hold, and there will be corrections
to �L. This was experimentally observed over three decades
ago for a 2DEG in a GaAs/AlGaAs heterostructure, using
electron spin resonance (ESR) [4]. Subsequently, several
theoretical studies addressed Larmor’s theorem in collec-
tive spin excitations in 2DEGs [5–13]. The corrections to
�L are caused by a subtle interplay between SOC and
Coulomb many-body effects, which poses significant for-
mal and computational challenges; on the other hand, this
offers interesting opportunities for the experimental deter-
mination of SOC parameters and the study of many-body
interactions.

In this paper, we present a joint experimental and theoretical
study of the spin-wave dispersions of a partially spin-polarized
2DEG in a semiconductor quantum well. The influence
of Rashba and Dresselhaus SOC on collective electronic
modes in quantum wells was first theoretically predicted to
cause an angular modulation of the intersubband plasmon

dispersion [14,15]. The effect was later experimen-
tally confirmed [16] and then extended to spin-wave
dispersions [17–20].

In the absence of SOC, the real part of the spin-wave
dispersion of a paramagnetic 2DEG has the following form
for small wave vectors [21]:

h̄ωsw(q) = Z + 1
2Sswq2, (2)

where Z is the bare Zeeman energy and Ssw is the spin-wave
stiffness, which depends on Coulomb many-body effects
(explicit expressions for Z and Ssw will be given in Sec. II).
Note that for a partially spin-polarized 2DEG the spin-wave
stiffness Ssw is negative; by contrast, for ferromagnetic systems
one finds Ssw > 0 [3].

We recently discovered [20] that, to first order in the
Rashba and Dresselhaus SOC strengths α and β, the spin-wave
dispersion is unchanged apart from a chiral shift by a constant
wave vector q0 (defined in Sec. III) which depends on α, β,
and the angle ϕ between the magnetization direction and the
[010] crystalline axis (see Fig. 1). In other words, to quadratic
order in the wave vector, we find

h̄ωSO
sw (q) = Z + 1

2Ssw|q + q0|2 + O(α2,β2). (3)

The spin-wave stiffness Ssw remains unchanged, to leading
order in α,β. The physical interpretation is that the spin
wave behaves as if it were transformed into a spin-orbit
twisted reference frame. This opens up new possibilities for
manipulating spin waves, which may lead to new applications
in spintronics.

To account for higher-order SOC effects in the spin-wave
dispersion, it is sensible to rewrite Eq. (3) in a more general
manner:

ωSO
sw (q) = E0(ϕ) + E1(ϕ)q + E2(ϕ)q2, (4)

where the coefficients E0, E1, and E2 depend on the propaga-
tion direction ϕ (see Fig. 1). From Eq. (3), the linear coefficient
is given to leading order in SOC by E1(ϕ) = Sswq · q0/q,
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FIG. 1. Reference frames R′ (black) and R (red) used to describe
the electronic states in a quantum well with in-plane magnetic field
B and spin-wave propagation direction q.

which can be expressed as [20]

E1(ϕ) = − 2

ζ

Z

(Z∗ − Z)
(α + β sin 2ϕ), (5)

where ζ is the spin polarization of the 2DEG, and Z∗
is the renormalized Zeeman splitting, to be defined below
in Sec. II B.

We will present a linear-response approach based on time-
dependent density-functional theory (TDDFT) which allows
us to obtain analytical results for E0, to second order in α,β,
and numerical results for E0, E1, and E2 to all orders in
SOC. The breaking of Larmor’s theorem is expressed in the
coefficient E0, which has ϕ-dependent corrections to Z. In
Sec. IV we will obtain the following result to leading order in
SOC:

E0(ϕ) = Z + 2πNs

Z∗fT

[(α2 + β2)(3fT + 2)

+ 2αβ sin(2ϕ)(fT + 2)], (6)

where fT = (Z − Z∗)/Z∗.
Our analytical and numerical results will be compared with

experimental results, obtained via inelastic light scattering in
a CdMnTe quantum well sample. By fitting E0, E1, and E2

we are able to extract values for Z∗, α, and β and present
evidence for the ϕ dependence of E0 and E2, which had not
been considered in our earlier work [20]. Comparison to theory
shows significant deviations from the standard approximation
in TDDFT, the adiabatic local-density approximation (ALDA).
This provides new incentives to search for better exchange-
correlation functionals for transverse spin excitations of
electronic systems.

This paper is organized as follows. In Sec. II we discuss
Larmor’s theorem without SOC: first, for completeness, we
present a general proof for interacting many-body systems, and
then we discuss Larmor’s theorem from a TDDFT perspective.
This will lead to a new constraint for the exchange-correlation
kernel of linear-response TDDFT. In Sec. III we consider
the electronic states in a quantum well with SOC and an
in-plane magnetic field. Section IV contains the derivation
of the spin-wave dispersions from linear-response TDDFT, in
the presence of SOC. In Sec. V we compare our theory with
experimental results and discuss our findings. Section VI gives
our conclusions.

II. LARMOR’S THEOREM

In this section we consider Larmor’s theorem in a 2DEG,
from a general many-body perspective (the proof given in
Sec. II A is not new [2] but included here to keep the paper
self-contained), and from the perspective of TDDFT. This will
set the stage for the discussions in the following sections where
the effects of SOC are included.

A. Long-wavelength limit of spin waves in a 2DEG

Let us consider a 2DEG in the presence of a uniform
magnetic field B = Bêz, where êz is a unit vector lying in
the plane of the 2DEG. The Hamiltonian is

Ĥ =
∑

i

[
p̂2

i

2m
+ Z

2
σ̂z,i

]
+ e2

2

∑
ij

1

|ri − rj | . (7)

Here, m and e are the electron mass and charge, Z = gμBB

is the Zeeman energy (the splitting between the spin-up and
spin-down bands), and μB = |e|h̄/2m is the Bohr magneton.
For a 2DEG embedded in a semiconductor, m, e, and g are
replaced by the effective mass, charge, and g factor, m∗, e∗,
and g∗, where g∗ could be a positive or negative number.

Since the magnetic field is applied in the plane of the 2DEG
(in this section, we assume for simplicity that the 2DEG has
zero thickness), its only effect is on the electron spin and there
is no Landau level quantization. Later on, when we discuss
quantum wells of finite width, we will exclude situations where
the magnetic length lB = √

h̄/|eB| is smaller than the well
width, and hence continue to disregard any orbital angular
momentum contributions.

Let us define the spin-wave operator [2,22–24]

Ŝ+,q = 1

2

∑
i

σ̂+,ie
−iq·ri , (8)

where σ̂+ = σ̂x + iσ̂y . This operator satisfies the Heisenberg
equation of motion

d

dt
Ŝ+,q = 1

ih̄
[Ŝ+,q,Ĥ ] = iωsw(q)Ŝ+,q, (9)

where ωsw(q) is the spin-wave frequency dispersion of the
2DEG. We are interested in the special case q = 0, and ab-
breviate ωsw(q = 0) = ωsw,0. The operator Ŝ+,0 = 1

2

∑
i σ̂+,i

commutes with the kinetic and electron-electron interaction
parts of Ĥ , and we obtain

[Ŝ+,0,Ĥ ] = Z

4

∑
i

[σ̂+,i ,σ̂z,i] = −ZŜ+,0,

where we used the standard commutation relations between
the Pauli matrices σ̂x , σ̂y , and σ̂z. Together with Eq. (9), this
yields

d

dt
Ŝ+,0 = i

h̄
ZŜ+,0, (10)

and hence

h̄ωsw,0 = Z. (11)

Larmor’s theorem thus says that the long-wavelength limit
of the spin-wave dispersion of a 2DEG is given by the
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bare Zeeman energy, regardless of the presence of Coulomb
interactions. By comparison with Eq. (1) we have �L = Z/h̄.

B. TDDFT perspective

TDDFT is a formally exact approach to calculate excitations
in electronic systems [25,26]. In the most general case of a
magnetic system, TDDFT can be formulated using the spin-
density matrix n as basic variable, whose elements are defined
as

nσσ ′(r,t) = 〈
(t)|ψ̂†
σ ′(r)ψ̂σ (r)|
(t)〉, (12)

where 
(t) is the time-dependent many-body wave function,
and ψ̂σ (r),ψ†

σ ′(r) are fermionic field operators for spins σ

and σ ′, respectively. The spin-density matrix is diagonal for
spatially uniform magnetic fields if the spin quantization
axis is along the direction of the field. However, spin-flip
excitations involve the transverse (off-diagonal) spin-density
matrix response.

The frequency- and momentum-dependent linear-response
equation for a 2DEG has the following form:

n
(1)
σσ ′(q,ω) =

∑
ττ ′

χ int
σσ ′,ττ ′(q,ω)v(1)

ττ ′(q,ω), (13)

where v
(1)
τ ′τ ′(q,ω) is a spin-dependent perturbation, and

χ int
σσ ′,ττ ′(q,ω) is the spin-density matrix response function of

the interacting many-body system.
The TDDFT counterpart of Eq. (13) is

n
(1)
σσ ′(q,ω) =

∑
ττ ′

χσσ ′,ττ ′(q,ω)v(1)eff
ττ ′ (q,ω), (14)

where χσσ ′,ττ ′(q,ω) is the response function of the corre-
sponding noninteracting 2DEG, and the effective perturbation
is

δv
(1)eff
ττ ′ (q,ω) = v

(1)
ττ ′(q,ω)

+
∑
λλ′

[
2π

q
+ f xc

ττ ′,λλ′(q,ω)

]
n

(1)
λλ′ (q,ω).

(15)

Here, f xc
ττ ′,λλ′(q,ω) is the exchange-correlation (xc) kernel for

the spin-density matrix response of the 2DEG.
Let us now consider a noninteracting spin-polarized 2DEG

with the Kohn-Sham Hamiltonian

ĥ =
∑

i

[
p̂2

i

2m
+ Z∗

2
σ̂z,i

]
, (16)

which produces two parabolic, spin-split energy bands
h̄2k2/2m + ε↑,↓ (spin-up and spin-down are taken with respect
to the z axis). In the following let us assume that ε↑ − ε↓ > 0,
so ζ < 0. The renormalized Zeeman energy is therefore given
by

Z∗ = ε↑ − ε↓ = Z + vxc↑ − vxc↓. (17)

From the xc energy per particle of a spin-polarized 2DEG
[27] exc(n,ζ ) (where n and ζ are the density and spin polari-
zation, respectively), the spin-dependent xc potentials are

obtained as

vxc↑ = exc + n
∂exc

∂n
+ (1 − ζ )

∂exc

∂ζ
, (18)

vxc↓ = exc + n
∂exc

∂n
− (1 + ζ )

∂exc

∂ζ
, (19)

so the renormalized Zeeman energy is [23,28]

Z∗ = Z + 2
∂exc

∂ζ
. (20)

Now let us calculate the collective spin-flip excitations using
linear response theory. Since the ground state of the 2DEG
has no transverse spin polarization, the spin-density-matrix
response decouples into longitudinal and transverse channels,
and we can write the associated noninteracting response
functions as

χ
L

(q,ω) =
(

χ↑↑,↑↑ χ↑↑,↓↓
χ↓↓,↑↑ χ↓↓,↓↓

)
, (21)

χ
T

(q,ω) =
(

χ↑↓,↑↓ χ↑↓,↓↑
χ↓↑,↑↓ χ↓↑,↓↑

)
, (22)

and similarly for the interacting case. The transverse part of the
interacting response function is diagonal, and can be expressed
via TDDFT as

χ int
T

(q,ω) =
( χ↑↓,↑↓

1−χ↑↓,↑↓f xc
↑↓,↑↓

0

0 χ↓↑,↓↑
1−χ↓↑,↓↑f xc

↓↑,↓↑

)
. (23)

We now consider the case q = 0, where the spin-flip Lindhard
functions have the simple form

χ↑↓,↑↓(0,ω) = − nζ

ω − Z∗ , (24)

χ↓↑,↓↑(0,ω) = nζ

ω + Z∗ (25)

(for a comprehensive discussion of the Lindhard function—the
response function of the noninteracting electron gas—see
Ref. [29]). We get a collective excitation at that frequency
where χ int

T
is singular. We substitute Eqs. (24) and (25) into

Eq. (23) and set the determinant of the 2 × 2 transverse
response matrix χ int

T
to zero. Furthermore, because the system

has no transverse spin polarization in the ground state, we have

f xc
↑↓,↑↓(q,ω) = f xc

↓↑,↓↑(q,ω) ≡ f xc
T (q,ω). (26)

This yields the q = 0 limit of the spin-flip wave of the 2DEG
as

ωsw,0 = Z∗ − nζf xc
T (0,ωsw,0). (27)

This expression is formally exact. Comparing with the many-
body result (11), and using Eq. (20), gives

f xc
T (0,Z) = 2

nζ

∂exc

∂ζ
. (28)

Equation (28) is an exact constraint on the transverse xc
kernel of the 2DEG, based on Larmor’s theorem. It is not
difficult to show that it is satisfied by the adiabatic local-density
approximation (ALDA), where the xc kernel is frequency- and
momentum-independent [23,30].
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Larmor’s theorem in the 2DEG can be understood from
rather simple physical arguments [23]. A collective excitation
of the spin-polarized ground state by coherently flipping all
spins does not change the overall exchange energy of the
2DEG; hence, the q = 0 spin-wave mode has no Coulomb
contributions, and ωsw,0 = Z. By contrast, flipping the spin
of a single electron with respect to all other spins causes
an exchange energy penalty; the energy difference between
collective and single-particle excitation is Z∗ − Z > 0.

For small but finite wave vectors, one obtains the long-
wavelength spin-flip wave dispersion [23]:

ωsw,q = Z − 1

|ζ |
Z

Z∗ − Z

h̄

2m
q2, (29)

which yields the spin-wave stiffness Ssw = − 1
|ζ |

Z
Z∗−Z

h̄
m

; see
Eq. (2). Interestingly, and in contrast with magnon dispersions
in ferromagnetic systems, Ssw is negative, except for very low
densities (rs � 25). To understand this, we use the expression
e0 = πn(1 + ζ 2)/2 for the noninteracting kinetic energy per
particle of a spin-polarized 2DEG [29] and recast the spin-
wave stiffness as Ssw = (e′

xc + e′
0)/|ζ |e′

xc, where the prime is a
shorthand for ∂/∂ζ . Ssw thus has kinetic and xc contributions,
which have opposite signs, except for the low-density limit in
which the 2DEG becomes ferromagnetic. The xc contribution
tends to increase the Coulomb energy as q increases, since
more spins become antiparallel; however, the kinetic energy
contribution becomes more negative, and turns out to be
the dominant one. Therefore, the spin-wave energy decreases
with q.

III. QUANTUM WELL WITH IN-PLANE
MAGNETIC FIELD AND SOC

In this section we will consider the electronic ground state
of an n-doped semiconductor quantum well with in-plane
magnetic field and Rashba and Dresselhaus SOC, using
DFT and the effective-mass approximation. The problem of
interacting 2D electrons in the presence of SOC and external
fields has been well studied [11–13,31–37]; however, to our
knowledge the results derived in this section have not been
given in the literature before.

The setup is illustrated in Fig. 1, which defines two
reference frames. The reference frame R′ is fixed with respect
to the quantum well: the quasi-2DEG lies in the x ′-y ′ plane,
where the x ′ axis points along the crystallographic [100]
direction and the y ′ axis points along the [010] direction. The
z′ axis is along the direction of quantum confinement of the
well.

The coordinate system R is oriented such that its x-z
plane lies in the quantum well plane, and the z axis points
along the in-plane magnetic field B. In the inelastic light
scattering experiments that we will discuss below, B is always
perpendicular to the wave vector q of the spin waves. Here, q
is along the x axis, which is at an angle ϕ with respect to the
x ′ axis.

The single-particle states in the reference frame R′ can be
written as


 ′
jk(r′) = eik·r′

ψ ′
jk(z′). (30)

Here, k = (kx ′ ,ky ′ ,0) is the in-plane wave vector and j is the
subband index; in the following, we are only interested in
the lowest spin-split subband, so the subband index j will be
replaced by the index p = ±1. The two-component spinors
ψ ′

pk(z′) are obtained from the following Kohn-Sham equation:

[h0σ̂0 + hx ′ σ̂x ′ + hy ′ σ̂y ′ ]ψ ′
pk(z′) = Epkψ

′
pk(z′), (31)

where σ̂0 is the 2 × 2 unit matrix. The spin-independent,
diagonal part of the single-particle Hamiltonian is

h0 = k2

2
− 1

2

d2

dz′2 + vconf(z
′) + vH(z′) + v+

xc(z′). (32)

Here, vconf(z′) is the quantum well confining potential (an
asymmetric square well), vH(z′) is the Hartree potential, and
we define v±

xc(z′) = [vxc↑(z′) ± vxc↓(z′)]/2.
The off-diagonal parts in Eq. (31) contain the Zeeman

energy Z plus xc and SOC contributions:

hx ′ = −
(

Z

2
+ v−

xc(z′)
)

sin ϕ + αky ′ + βkx ′ , (33)

hy ′ =
(

Z

2
+ v−

xc(z′)
)

cos ϕ − αkx ′ − βky ′ , (34)

where α and β are the standard Rashba and Dresselhaus
coupling parameters.

To find the solutions of the Kohn-Sham system, it is
convenient to transform into the reference system R of Fig. 1,
whose z axis is along the magnetic field direction. We introduce
two in-plane vectors, q0 and q1, whose components (in the
frame R′) are

q0x ′ = 2(α cos ϕ + β sin ϕ), (35)

q0y ′ = 2(α sin ϕ + β cos ϕ), (36)

and

q1x ′ = 2(−α sin ϕ + β cos ϕ), (37)

q1y ′ = 2(α cos ϕ − β sin ϕ). (38)

With this, Eq. (31) transforms into[
h0σ̂0 +

(
Z − k · q0

2
+ v−

xc

)
σ̂z + k · q1

2
σ̂x

]
ψpk = Epkψpk

(39)

(the scalar products k · q0 and k · q1 are invariant under this
coordinate transformation). The solutions of Eq. (39) can be
written as follows:

Epk = k2

2
+ ε↑ + ε↓

2
+ p

2

√
(Z∗ − k · q0)2 + (k · q1)2,

(40)

where Z∗ = ε↑ − ε↓ and p = ±1. The associated eigenfunc-
tions are

ψ+,k(y) = 1√
1 + b2

(
1
b

)
φ(y), (41)

ψ−,k(y) = 1√
1 + b2

(−b

1

)
φ(y), (42)
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FIG. 2. Spin-split lowest subband, Eq. (40), of an asymmetrically
doped 20 nm CdTe quantum well with B = 4.18 T, with α =
2.2 meV Å and β = 3.9 meV Å, taken at an angle ϕ = 45o (i.e., along
[110]). The inset shows the quantum well profile and the electronic
density distribution.

and

b = 1

k · q1
[
√

(Z∗ − k · q0)2 + (k · q1)2 − Z∗ + k · q0].

(43)

The solutions (40)–(43) have been expressed in terms of the
solutions in the absence of SOC, ε↑,↓ and φ(y), which follow
from [

h0 − k2

2
±

(
Z

2
+ v−

xc

)]
φ↑,↓ = ε↑,↓φ↑↓. (44)

The spin-up and spin-down envelope functions φ↑ and φ↓ are
practically identical for the systems considered here, which
allowed us to use φ↑ ≈ φ↓ ≡ φ to express the solutions
(41) and (42) in a relatively compact form. This implies
that the dependence of v−

xc(z′) on z′ can be neglected in
Eq. (44).

Finally, let us expand the solutions (40)–(43) in powers of
the SOC coefficients α and β. We obtain to second order in
SOC

Epk = k2

2
+ ε↑ + ε↓

2
+ p

2

(
Z∗ − k · q0 + (k · q1)2

2Z∗

)
(45)

and

ψ+(y) =
(

1 − (k·q1)2

8Z∗2

k·q1

2Z∗ + (k·q0)(k·q1)
2Z∗2

)
φ(y), (46)

ψ−(y) =
(− k·q1

2Z∗ − (k·q0)(k·q1)
2Z∗2

1 − (k·q1)2

8Z∗2

)
φ(y). (47)

We illustrate the energy dispersion (40) of the lowest spin-
split subband in Fig. 2. Here, we consider an asymmetrically
doped CdTe quantum well of width 20 nm and electron density
2.6 × 1011 cm−1. An applied magnetic field of B = 4.18 T
leads to the bare and renormalized Zeeman energies

Z = 0.40 meV and Z∗ = 0.573 meV, respectively, using
the LDA. Here, we use the effective-mass parameters m∗ =
0.105m, e∗ = 1/

√
10, and g∗ = −1.64 for CdTe.

We choose the Rashba and Dresselhaus parameters α =
2.2 meV Å and β = 3.9 meV Å (see below), which causes the
two subbands to be slightly displaced horizontally with respect
to one another (in Fig. 2, we plot k along the [110] direction,
i.e., for ϕ = 45o).

IV. SPIN-FLIP WAVE DISPERSION

A. Linear-response formalism

In the following, we are interested in the collective
spin-flip modes in a quantum well with in-plane magnetic
field and SOC. Based on the translational symmetry in the
x-z plane, one can Fourier transform with respect to the
in-plane position vector r = (x,z); this introduces the in-plane
wave vector q. The TDDFT linear-response equation (14) then
becomes

n
(1)
σσ ′(q,y,ω) =

∑
ττ ′

∫
dy ′χσσ ′,ττ ′(q,y,y ′,ω)v(1)eff

ττ ′ (q,y ′,ω),

(48)

where the noninteracting response function is given by

χσσ ′,ττ ′(q,y,y ′,ω)

= −
±1∑
pp′

∫
d2k

(2π )2

θ (EF − Epk)

ω − Epk + Ep′k−q + iη

× ψpσ (k,y)ψ∗
p′σ ′(k − q,y)ψ∗

pτ (k,y ′)ψp′τ ′(k − q,y ′)

+
±1∑
pp′

∫
d2k

(2π )2

θ (EF − Epk)

ω + Epk − Ep′k+q + iη

× ψp′σ (k + q,y)ψ∗
pσ ′ (k,y)ψ∗

p′τ (k + q,y ′)ψpτ ′(k,y ′).

(49)

The energy eigenvalues Epk and the single-particle states
ψpσ (k,y) are defined in Eqs. (45)–(47). θ is the step function,
and the Fermi energy is given by EF = πNs − (α2 + β2),
where Ns is the electronic sheet density (the number of
electrons per unit area). We assume here that both spin-split
subbands are occupied, which is different from the situation
considered in Refs. [35–37].

In the response function (49) we only consider spin-
flip excitations within the lowest spin-split subband of
the quantum well; contributions from higher subbands are
ignored, because they will be irrelevant as long as the
Zeeman splitting is small compared to the separation between
the lowest and higher subbands, which is safely the case
here.

An interesting property of the response equation (48) is
that it is invariant under the simultaneous sign changes α →
−α, β → −β, and q → −q, as can easily be seen from the
form of the response function (49). From this we conclude
that an expansion of the coefficients E0 and E2 in Eq. (4)
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only has even orders of α,β, while only odd orders of α,β

contribute to E1.
The 4 × 4 matrix response equation (48) can be solved nu-

merically, within the ALDA, to yield the spin-wave dispersions
[14,15]. However, much physical insight can be gained by an
analytic treatment, which can be done for small wave vectors
q: the spin-wave dispersion then takes on the form of Eq. (4),
and our goal is to determine the coefficients E0 and E2 and
compare them to experiment. We have done this analytically
for E0 and numerically for E2, as discussed below.

Instead of the spin-density-matrix response (48), it is
convenient to work with the density-magnetization response
(especially for the calculations carried out in the Appendix,
where we obtain corrections to second order in SOC): we
replace the spin-density matrix nσσ ′ , defined in Eq. (12),
with the total density n ≡ m0 and the three components of
the magnetization mx,y,z as basic variables. In the following,
we replace the labels (x,y,z) with (1,2,3) to streamline the
notation.

The connection between the two sets of variables is made
via the Pauli matrices:

mi(r) = tr{σ̂in(r)}, i = 0, . . . ,3. (50)

We can also express this through a 4 × 4 transformation matrix
T , connecting the elements mi and nσσ ′ arranged as column
vectors: �m = T �n. In detail,

⎛
⎜⎝

m0

m1

m2

m3

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1

⎞
⎟⎠

⎛
⎜⎝

n↑↑
n↑↓
n↓↑
n↓↓

⎞
⎟⎠. (51)

In a similar way, one can transform the spin-density-matrix
response equation (48) into the response equation for the
density magnetization:

m
(1)
i (q,y,ω) =

3∑
k=0

∫
dy ′�ik(q,y,y ′,ω)V (1)

k (q,y ′,ω), (52)

where �=2T χ T −1 is the noninteracting density-

magnetization response function, and �V (1) = 1
2T �v(1)eff

is the effective perturbing potential.
We are only interested in the spin-flip excitations, which

are eigenmodes of the system: hence, no external perturbation
is necessary. Furthermore, the Hartree contributions drop out
in the spin channel, so the effective potential only consists of
the xc part:

V
(1)
k (q,y,ω) =

3∑
l=0

∫
dy ′hxc

kl (q,y,y ′,ω)m(1)
l (q,y ′,ω). (53)

In the ALDA, the xc kernels hxc
kl do not depend on frequency

and wave vector [14]. Once we have the density-magnetization
response, we can multiply it with the xc matrix. The xc matrix
has a simple form, because in this reference frame the spin

polarization direction is along z:

H xc =

⎛
⎜⎜⎝

hxc
00 0 0 hxc

03

0 hxc
11 0 0

0 0 hxc
22 0

hxc
30 0 0 hxc

33

⎞
⎟⎟⎠, (54)

where

hxc
00 = 2

∂exc

∂n
+ n

∂2exc

∂n2
− 2ζ

∂2exc

∂n∂ζ
+ ζ 2

n

∂2exc

∂n2
, (55)

hxc
03 = hxc

30 = ∂2exc

∂n∂ζ
− ζ

n

∂2exc

∂ζ 2
, (56)

hxc
11 = hxc

22 = 1

nζ

∂exc

∂ζ
, (57)

hxc
33 = 1

n

∂2exc

∂ζ 2
. (58)

All quantities are evaluated at the local density n(y) and spin
polarization ζ (y) and multiplied with δ(y − y ′). Here, exc is
the xc energy per particle of the 3D electron gas [38].

To find the collective modes, we can recast the response
equation (52) in such a way that the y dependence goes away;
the xc kernels hxc

kl are then replaced by their averages over
φ4(y). We need to determine those frequencies where the
matrix

M(q,ω) = H xc(q,ω)�(q,ω) (59)

has the eigenvalue 1. In other words, we solve the 4 × 4
eigenvalue problem

M(q,ω)�x = λ(q,ω)�x (60)

and find the mode frequencies by solving λ(q,ω) = 1 for ω,
where q is fixed. In general there will be 4 solutions. This is
in principle exact, provided we know the exact H xc matrix,
which, in general, depends on (q,ω). In ALDA, it is a constant
(for given density and spin polarization).

B. Beyond Larmor’s theorem: Leading SOC corrections

In the presence of SOC, the spin-wave dispersions are
modified in an interesting and subtle manner. For small values
of q, the spin-wave dispersion has the quadratic form given in
Eq. (4). Our goal is now to obtain the coefficient E0 to leading
order in the Rashba and Dresselhaus coupling strengths α

and β. To do this, we carry out a perturbative expansion of
the eigenvalue problem (60) in orders of SOC. At q = 0, the
matrix can be written as

M(0,ω) = M (0) + M (2) + · · · , (61)

where superscripts indicate the order of SOC (the linear order
vanishes at q = 0).

We first solve the zero-order eigenvalue problem M (0) �x(0) =
λ(0) �x(0). The zero-order spin-flip response function is

�(0)(0,y,y ′,ω) = Z∗φ2(y)φ2(y ′)
π (ω2 − Z∗2)

⎛
⎜⎝

0 0 0 0
0 Z∗ −iω 0
0 iω Z∗ 0
0 0 0 0

⎞
⎟⎠.

(62)
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Defining

fT =
∫

dy
φ4(y)

πn(y)ζ (y)

∂exc

∂ζ

∣∣∣∣
n(y),ζ (y)

, (63)

where fT < 0, we obtain

M (0) = Z∗fT

ω2 − Z∗2

⎛
⎜⎝

0 0 0 0
0 Z∗ −iω 0
0 iω Z∗ 0
0 0 0 0

⎞
⎟⎠. (64)

This matrix has eigenvalue 1 for

ω = Z∗ + Z∗fT = Z (65)

(we discard the negative-frequency solution) in accor-
dance with Larmor’s theorem. The associated eigenvector is
�x(0) = 2−1/2(0, − i,1,0).

To obtain the change of the collective spin precession
caused by the presence of SOC, we need to determine
λ(2). Using perturbation theory we obtain the second-order
correction of the eigenvalue as

λ(2) = [�x(0)]†M (2) �x(0). (66)

To construct M (2) we need �(2)(0,ω), the spin-flip response
matrix expanded to second order in α and β, which requires a
rather lengthy calculation (see the Appendix). We end up with

λ(2) = 2πNs

Z∗2f 2
T

[(α2 + β2)(3fT + 2) + 2αβ sin(2ϕ)(fT + 2)].

(67)

The condition 1 = λ(0) + λ(2) gives the final result for E0;
see Eq. (6).

Let us now turn to the other two coefficients in Eq. (4). The
leading contribution to the linear coefficient E1 is in first order
in α and β, see Eq. (5), and was already obtained in Ref. [20].
The quadratic coefficient E2 describes the renormalization of
the spin-wave stiffness Ssw due to SOC. We did not attempt to
derive an analytical expression for E2, as it was done without
SOC in Eq. (29), although this could in principle (and with
much effort) be done along the same lines as for E0. Instead,
we extract E2 from a fully numerical solution of the linear-
response equation for the spin waves, which includes all orders
of α and β.

V. RESULTS AND DISCUSSION

According to the theory presented above, the spin-flip
excitations in a 2DEG in the presence of SOC depend on the
direction of the applied magnetic field (direction z in Fig. 1).
Figure 3 depicts the spin-excitation spectra for ϕ = 45o and
ϕ = 135o, calculated using ALDA, for the same quantum
well as in Fig. 2. Clearly, the spin-wave dispersions and
single-particle spin-flip continua differ drastically, depending
on the direction of the in-plane momentum. In the following,
we will compare our theory with experiment.

A. Electronic Raman scattering

We use electronic Raman scattering, whereby a well-
controlled in-plane momentum q is transferred to the spin

FIG. 3. Spin-flip excitation spectra with SOC for ϕ = 45o and
ϕ = 135o, calculated using the ALDA for the same quantum well as
in Fig. 2. Solid black lines: boundaries of the single-particle spin-flip
continuum. Blue dashed lines: spin-wave dispersions.

excitations of the 2DEG. Under the quasiscattering geometry
shown in Fig. 4(a), the transferred momentum is given by
q = κ i,‖ − κ s,‖ � 4π

λ
sin θ ex , where κ i and κ s are the wave

vectors of the linearly cross-polarized incoming and scattered
photons, and λ � 769.0 nm is the incoming wavelength. Our
setup allows us to vary q both in magnitude (with θ ) and
in-plane orientation (with ϕ), while the magnetic field Bext is
applied in the plane of the well and always kept perpendicular
to q.

Cross-polarized Raman scattering measurements have been
successful in showing SOC effects on single-particle exci-
tations in the absence of external magnetic fields, like in
Ref. [39] for a 2DEG confined in highly doped GaAs quantum
wells, or in the more recent Ref. [40], where the specific
case α = β has been addressed. Here, by contrast, we focus
on the collective spin-precession mode, the spin-flip wave,
appearing when the 2DEG is spin-polarized with negligible
Landau quantization [17–20,23]. This possibility is offered in
quantum wells polarized by a magnetic field applied in the
plane [23,41].

Our sample is an asymmetrically modulation-doped,
20-nm-thick Cd1−xMnxTe (x � 0.13%) quantum well, grown
along the [001] direction by molecular beam epitaxy, and
immersed in a superfluid helium bath at temperature 2 K. The
density of the electron gas is Ns = 2.6 × 1011 cm−2 and the
mobility is 1.7 × 105 cm2 V−1 s−1. The small concentration of
Mn introduces localized magnetic moments into the quantum
well, which are polarized by the external B field, and act to
amplify it [28,42].
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FIG. 4. (a) Electronic Raman scattering geometry: κ i and κ s are
the incoming and scattered light wave vectors, respectively; q is the
transferred momentum, of in-plane orientation measured by the angle
ϕ from [100]. An external magnetic field Bext is applied in the 2DEG’s
plane and is always perpendicular to q. (b) Raman spectra of the spin
wave, obtained at Bext = 2 T and q = 0, for a series of in-plane angles
ϕ. (c) Momentum dispersion of the spin wave for different in-plane
angles.

In Refs. [41,43] we measured the dispersion of the spin-
flip wave in samples of the same type. In Refs. [17,18],
we evidenced Rashba and Dresselhaus SOC effects on this
collective mode. In these earlier works, we described these
effects by the action of an effective collective spin-orbit field
driving the spin precession, and found it to be enhanced
by interactions. In Ref. [20], we examined the microscopic
behavior of the spin wave in the presence of SOC more closely
and found that the SOC acts as a dynamical twisting of the
spins resulting in a simple momentum shift of the spin waves.

Here we focus on the zone-center spin-wave mode,
which is the one subject to Larmor’s theorem. Figure 4(b)
shows a series of spin-wave Raman lines obtained at fixed
Bext = 2 T and q = 0, and for various in-plane angles ϕ.
We observe a clear modulation of the spin-wave energy with
ϕ, evidencing the above predicted breakdown of Larmor’s
theorem. A simultaneous strong modulation of the peak height
and linewidth is also observed. Both are related to the damping
of the zone-center spin-wave mode and are beyond the scope
of this paper.

To better understand the zone-center energy modulation,
we measured the full spin-wave dispersion by varying the
transferred momentum q. Figure 4(c) shows the dispersions for
three different values of ϕ: they exhibit a quadratic dependence

with q, with a maximum shifted away from the zone center.
This shift from the zone center is well understood in the frame
of the spin-orbit twist model [20]: SOC produces a rigid shift
of the spin-wave dispersion by a momentum −q0, see Eq. (35),
which depends on ϕ. This produces the linear term in q in the
energy dispersion of Eq. (4).

We have systematically measured the spin-wave disper-
sions for angles ϕ between zero and 360o; for each angle, the
data are fitted to a parabola [as in Fig. 4(c)], which allows us
to extract the coefficients E0,1,2(ϕ). The experimental results
are shown in both Figs. 5 and 6 (dots), clearly exhibiting the
predicted sinusoidal modulations.

The modulation of E0, with a relative amplitude of about
6%, demonstrates the breakdown of Larmor’s theorem. This
effect is of second order in the SOC. By contrast, the
modulation of E1 is a first-order SOC effect. Another second-
order SOC effect is the modulation of the curvature of the
spin-wave dispersion, i.e., the spin-wave stiffness Ssw. The
bottom panels of Figs. 5 and 6 show the curvature E2 = Ssw/2
as a function of the in-plane angle ϕ. Again, a sinusoidal
variation is observed, with a relative amplitude of about 10%;
the phase of the modulation is opposite to that of E0 and E1.

B. Comparison with theory

In Figs. 5 and 6, the experimental data for E0(ϕ), E1(ϕ), and
E2(ϕ) are compared with theory (lines). In our calculations,
we consider, as before, a CdTe quantum well of width 20 nm
and density Ns = 2.6 × 1011 cm−2. The value of the bare
Zeeman splitting Z is extracted from the data as follows.
According to Eq. (6), E0 can be written in the form E0(ϕ) =
Z − a − b sin(2ϕ). For the range of input parameters α, β, Z,
and Z∗ under consideration (see below), the ratio b/a ≈ 1.5
is almost constant. We temporarily fix this ratio, and a fit with
the data from the top panel of Fig. 5 then yields Z = 0.40 meV
and b = 0.024 meV to within about 3 μeV. We can then
calculate Z∗ using the ALDA xc kernel [see Eq. (65)], where
Z∗

ALDA = Z/(1 + fT ) = 0.573 meV. Now fixing Z, Z∗ and
letting b/a = 1.5, we fit α and β from E0(ϕ) and E1(ϕ). An
optimal agreement with the experimental results for E0 and
E1 is achieved with α = 1.6 meV Å and β = 3.1 meV Å [44].

Having determined the set of parameters Z, Z∗, α, and β, we
run the fully numerical solution of the linear-response equation
(60) for the spin-flip waves, and fit the small-q dispersion to
a parabola for a given angle ϕ to extract E0, E1, and E2. As
shown in Fig. 5, both the analytical formulas of Eqs. (5) and
(6) and the numerical solutions (the dashed blue and solid
red lines, respectively) are in very good agreement with the
experimental data for E0 and E1, apart from a small shift in
the phase of the experimental modulation of E0, which is not
accounted for by the theory.

An additional observation from Fig. 5 is that the analytical
formulas and the numerical results for E0 and E1 are extremely
close to each other. This is not surprising, since the next higher-
order corrections to E0 and E1 are of fourth and third order
in α,β, respectively (as we showed in Sec. IV A), and hence
negligible.

On the other hand, the bottom panel of Fig. 5 shows that
the calculation dramatically fails to reproduce E2. Therefore,
we repeated the calculations, but now using a renormalized
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Zeeman energy Z∗ that does not follow from the ALDA, but
from a numerical fit. We fit the numerical solutions with Z∗,
α, and β and find that using α = 2.2 meV Å, β = 3.9 meV Å,
and Z∗

fit = 0.63 meV we obtain an excellent agreement with
the experimental results for all three modulation parameters,
E0, E1, and E2, as shown in Fig. 6.

The comparison between theory and experiment of the
spin-wave modulation parameters thus demonstrates that the
ALDA underestimates Z∗ by about 10%, which seems to
be a relatively minor deviation. However, E0, E1, and E2

depend very sensitively on Z∗, which suggests a need for
a more accurate description of dynamical xc effects beyond
the ALDA.

We finally mention that additional contributions to the
angular modulation of the spin-wave dispersion could arise
from an in-plane anisotropy of the g factor of the form
gxy sin(2ϕ), where gxy is the off-diagonal component of the
g tensor [45–47]. However, by slightly varying the applied
magnetic field around 2 T, we have found that this effect
contributes less than 15% of the modulation amplitude of E0,
and leads only to ∼7% changes of the parameters α and β

used to fit the data in Figs. 5 and 6; details are given in the
Supplemental Material [48].

C. Density dependence of E0

To further test our theoretical prediction for the breakdown
of Larmor’s theorem [Eq. (6)], we will now explore the
density dependence of the parameter E0. In order to vary
the electronic density in our sample, we shine an additional
continuous-wave green laser beam (514.5 nm) on the quantum
well. This illumination is above the band gap and generates
electron-hole pairs in the barrier layer: the electrons neutralize
some donor elements of the doping plane, while the holes
migrate to the quantum well where they capture free electrons.
This leads to a depopulation of the electron gas, which
can be precisely controlled by the power of the above-gap
illumination [18]. Using this technique, the density in our
sample can be reproducibly reduced by up to a factor 2.
We measured E0(ϕ) for different values of Ns , and plot in
Fig. 7 the amplitude of the q = 0 modulation (solid circles),
�E0 = (MaxE0 − MinE0)/2, as a function of the electron
density.

Again, the data are well reproduced by the analytical result
of Eq. (6) (blue line). The red circle represents the amplitude of
E0 for the reference density N ref

s = 2.6 × 1011 cm−2, obtained
from our numerical fit in the top panel of Fig. 6. To generate
the blue line, we need Z∗ as a function of Ns , which we
approximate as

Z∗(Ns) ≈ Z∗
fit

(
N ref

s

) Z∗
ALDA(Ns)

Z∗
ALDA

(
N ref

s

) = 1.10 Z∗
ALDA(Ns); (68)

i.e., we approximate the density scaling using the ALDA. We
also need the density dependence of the Rashba and Dressel-
haus parameters α,β. We approximate their density scaling
using the k · p results of Ref. [18]. Both approximations are
well justified by the excellent agreement between theory and
experiment in Fig. 7.

 0

 5

 10

 15

 20

 25

 1  1.5  2  2.5  3

M
od

ul
at

io
n 

am
pl

itu
de

 Δ
E

0 
(μ

eV
)

Electron density(1011 cm-2)

FIG. 7. Amplitude of the modulation of the q = 0 spin-wave
energy, �E0 = (MaxE0 − MinE0)/2, as a function of the sheet
density Ns of the electron gas in the quantum well. Black dots:
experimental data. Blue line: analytical results using Eq. (6).

VI. CONCLUSIONS

In this paper, we presented a detailed theoretical and
experimental study of spin-wave dispersions in a 2DEG in
the presence of Rashba and Dresselhaus SOC. In earlier work
[20] we had limited ourselves to the leading (first-order) SOC
effects, which causes a momentum-dependent shift of the
spin-wave dispersions, but leaves the spin-wave stiffness as
well as Larmor’s theorem intact. We have now discovered some
subtle corrections which arise when second-order SOC effects
are taken into account: Larmor’s theorem is broken, and the
spin-wave stiffness is modified. Both corrections are relatively
small (of order 10% or less) but experimentally detectable.

We presented a linear-response theory, based on TDDFT,
to fully account for SOC effects to first, second, and higher
orders in SOC. A detailed comparison with experimental
data, obtained using inelastic light scattering, confirmed the
accuracy of the theory and allowed us to extract the SOC
parameters α and β, as well as the renormalized Zeeman
splitting Z∗.

A major outcome of our study is that we discovered that the
ALDA does not lead to a quantitatively satisfactory description
of the second-order SOC modulation effects of the spin waves.
At present, there are only a few approaches in ground-state
DFT for noncollinear magnetism that go beyond the LDA,
such as the optimized effective potential (OEP) [49] or gradient
corrections [50–52]. This provides motivation for the search
for better xc functionals in TDDFT for noncollinear spins.
In particular, any such new xc functional should be well
behaved in the crossover between three- and two-dimensional
systems [53].

The study of spin waves in electron gases confined in
semiconductor quantum wells under the presence of SOC
is also of practical interest. Manipulation of the Rashba
and Dresselhaus coupling strengths can be used to control
the spin-wave group velocity [20]. Since spin waves can be
used as carriers of spin-based information, this may lead to
applications in spintronics. Here we have provided a suitable
theoretical framework to describe these effects.
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APPENDIX: DERIVATION OF EQ. (6)

In this appendix we provide the derivation of Eq. (6), using
the linear-response formalism described in Sec. IV.

The spin-flip response function, Eq. (49), is given by

χσσ ′,ττ ′(q,y,y ′,ω) = Fσσ ′,ττ ′(q,ω)φ2(y)φ2(y ′), (A1)

where

Fσσ ′,ττ ′(q,ω)

= −
±1∑
pp′

∫
d2k

(2π )2

f (Epk)

ω − Epk + Ep′k−q + iη

× [
δσ↑ψ

p↑
k + δσ↓ψ

p↓
k

][
δσ ′↑ψ

p′↑
k−q + δσ ′↓ψ

p′↓
k−q

]
× [

δτ↑ψ
p↑
k + δτ↓ψ

p↓
k

][
δτ ′↑ψ

p′↑
k−q + δτ ′↓ψ

p′↓
k−q

]

+
±1∑
pp′

∫
d2k

(2π )2

f (Epk)

ω + Epk − Ep′k+q + iη

× [
δσ↑ψ

p′↑
k+q + δσ↓ψ

p′↓
k+q

][
δσ ′↑ψ

p↑
k + δσ ′↓ψ

p↓
k

]
× [

δτ↑ψ
p′↑
k+q + δτ↓ψ

p′↓
k+q

][
δτ ′↑ψ

p↑
k + δτ ′↓ψ

p↓
k

]
. (A2)

To second order in SOC, the energy eigenvalues (40) are
given by

Epk = k2

2
+ ε↑ + ε↓

2
+ p

2

(
Z∗ − k · q0 + (k · q1)2

2Z∗

)
,

(A3)

where q0 and q1 are defined in Eqs. (35)–(38), which leads to

k · q0 = 2k[α cos(ϕ − ϕk) + β sin(ϕ + ϕk)], (A4)

k · q1 = −2k[α sin(ϕ − ϕk) − β cos(ϕ + ϕk)]. (A5)

The single-particle states (46) and (47) are given to second
order in SOC by

ψ+ =
⎛
⎝ 1 − (k·q1)2

8Z∗2

k·q1

2Z∗ + (k·q0)(k·q1)
2Z∗2

⎞
⎠φ(y), (A6)

ψ− =
⎛
⎝− k·q1

2Z∗ − (k·q0)(k·q1)
2Z∗2

1 − (k·q1)2

8Z∗2

⎞
⎠φ(y). (A7)

In the following, we use the abbreviation h1k = k · q1/Z
∗.

We are interested in the spin-flip waves for small q.
The response function (A2) at q = 0 can be written in the

following way:

F (0,ω) = −
∫

d2k

(2π )2

f (E+k)

ω − E+k + E−k + iη
R+

+
∫

d2k

(2π )2

f (E+k)

ω + E+k − E−k + iη
R−

−
∫

d2k

(2π )2

f (E−k)

ω − E−k + E+k + iη
R−

+
∫

d2k

(2π )2

f (E−k)

ω + E−k − E+k + iη
R+, (A8)

where the matrices R+ and R− are given by

R+ =

⎛
⎜⎜⎜⎜⎝

h2
1k −h1k 0 −h2

1k

−h1k 1 − 2h2
1k −h2

1k h1k

0 −h2
1k 0 0

−h2
1k h1k 0 h2

1k

⎞
⎟⎟⎟⎟⎠, (A9)

R− =

⎛
⎜⎜⎜⎜⎝

h2
1k 0 −h1k −h2

1k

0 0 −h2
1k 0

−h1k −h2
1k 1 − 2h2

1k h1k

−h2
1k 0 h1k h2

1k

⎞
⎟⎟⎟⎟⎠. (A10)

Now let us calculate the energy in the denominator and drop
the iη. We have

F (0,ω) =
∫

d2k

(2π )2

f (E+k) − f (E−k)

ω − Z∗ + g0 − g1
R+

+
∫

d2k

(2π )2

f (E+k) − f (E−k)

ω + Z∗ − g0 + g1
R−

= R+

ω − Z∗

∫
d2k

(2π )2

f (E−k) − f (E+k)

1 + g0−g1

ω−Z∗

+ R−

ω + Z∗

∫
d2k

(2π )2

f (E+k) − f (E−k)

1 + −g0+g1

ω+Z∗
, (A11)

where we abbreviate

g0 = 2k · q0, g1 = 2(k · q1)2

Z∗ . (A12)

Next, we expand the integrands of Fσσ ′,ττ ′(0,ω) up to second
order in SOC, and carry out the integration over k for each
element of the 4 × 4 matrices R+ and R−. We use a notation
where F±

0 , F±
1 , and F±

2 come from those terms containing
zeroth, first, and second order in h1k, respectively. After a
lengthy calculation, the result is

F (0,ω)

=

⎛
⎜⎜⎜⎜⎝

F+
2 + F−

2 −F+
1 −F−

1 −F+
2 − F−

2

−F+
1 F+

0 − 2F+
2 −F+

2 − F−
2 F+

1

−F−
1 −F+

2 − F−
2 F−

0 − 2F−
2 F−

1

−F+
2 − F−

2 F+
1 F−

1 F+
2 + F−

2

⎞
⎟⎟⎟⎟⎠,

(A13)
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where

F±
0 = ±Z∗

2π (ω ∓ Z∗)
± Ns(a − b)

Z∗(ω ∓ Z∗)
+ 2Ns(a + b)

(ω ∓ Z∗)2

+ Ns(a − b)

(ω ∓ Z∗)2
± 2NsZ

∗(a + b)

(ω ∓ Z∗)3
, (A14)

F±
1 = ∓cNs

[
1

Z∗(ω ∓ Z∗)
± 1

(ω ∓ Z∗)2

]
, (A15)

F±
2 = ±Ns(a − b)

2Z∗(ω ∓ Z∗)
, (A16)

and a = α2 + β2, b = 2αβ sin 2ϕ, and c = 2αβ cos(2ϕ).
Instead of the spin-density-matrix response, we will work

with density-magnetization response, Eq. (52). Further details
of the transformation can be found in the Appendix of
Ref. [14]. It follows that all contributions to the density
channel vanish, and the remaining nonvanishing terms of the
density-magnetization response function are

�11 = χ↑↓↑↓ + χ↑↓↓↑ + χ↓↑↑↓ + χ↓↑↓↑,

�12 = −i(χ↑↓↑↓ − χ↑↓↓↑ + χ↓↑↑↓ − χ↓↑↓↑),

�13 = χ↑↓↑↑ − χ↑↓↓↓ + χ↓↑↑↑ − χ↓↑↓↓,

�21 = i(χ↑↓↑↓ + χ↑↓↓↑ − χ↓↑↑↓ − χ↓↑↓↑),

�22 = χ↑↓↑↓ − χ↑↓↓↑ − χ↓↑↑↓ + χ↓↑↓↑,

�23 = i(χ↑↓↑↑ − χ↑↓↓↓ − χ↓↑↑↑ + χ↓↑↓↓),

�31 = χ↑↑↑↓ + χ↑↑↓↑ − χ↓↓↑↓ − χ↓↓↓↑,

�32 = −i(χ↑↑↑↓ − χ↑↑↓↑ − χ↓↓↑↓ + χ↓↓↓↑),

�33 = χ↑↑↑↑ − χ↑↑↓↓ − χ↓↓↑↑ + χ↓↓↓↓,

and �00=�01=�02=�03=�10=�20=�30 = 0. Therefore,
the total response function is a 4 × 4 matrix whose elements
are defined as follows:

�11 = F+
0 + F−

0 − 4(F−
2 + F+

2 ),

�12 = −i(F+
0 − F−

0 − 2F+
2 + 2F−

2 ),

�13 = −2(F+
1 + F−

1 ),

�21 = i(F+
0 − F−

0 − 2F+
2 + 2F−

2 ),

�22 = F+
0 + F−

0 ,

�23 = 2i(F−
1 − F+

1 ),

�31 = −2(F+
1 + F−

1 ),

�32 = −2i(F−
1 − F+

1 ),

�33 = 4(F+
2 + F−

2 ),

where each element is multiplied with φ2(y)φ2(y ′). In order
to find the collective modes, we need to determine those
frequencies where the matrix

M(q,ω) = H xc(q,ω)�(q,ω) (A17)

has the eigenvalue 1, where the xc matrix H xc is given by
Eq. (54). In other words, we solve the 4 × 4 eigenvalue
problem

M(q,ω)�x = λ(q,ω)�x (A18)

and find the mode frequencies by solving λ(q,ω) = 1 for ω,
where q is fixed. Since here our goal is to obtain the coefficient
E0 to second order in the Rashba and Dresselhaus coupling
strengths α and β, we carry out a perturbative expansion of
the eigenvalue problem (A18) in orders of SOC. At q = 0,
the matrix can be written as

M(0,ω) = M (0) + M (2) + · · · , (A19)

where superscripts indicate the order of SOC (the linear order
vanishes at q = 0).

We now write � = �(0) + �(2), where �(0) and �(2) are in
zero and second order in SOC, respectively. Let us first work
out the zero-order case and solve the zero-order eigenvalue
problem M (0) �x(0) = λ(0) �x(0). The zero-order response function
matrix is

�(0) = Z∗φ2(y)φ2(y ′)
π (ω2 − Z∗2)

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (A20)

Now we need to do the multiplication with the xc kernel matrix,
see Eq. (59):

M (0) = Z∗/π
ω2 − Z∗2

⎛
⎜⎜⎜⎜⎝

hxc
00 0 0 hxc

03

0 hxc
11 0 0

0 0 hxc
22 0

hxc
30 0 0 hxc

33

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (A21)

The elements of the xc matrix, hij
xc, are given in Eqs. (55)–(58),

averaged over φ4(y). In particular, we find hxc
11 = hxc

22 = πfT ,
see Eq. (63). When we work this out, we find

M (0) = Z∗fT

ω2 − Z∗2

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (A22)

The spin-flip wave at q = 0 is at that frequency where the 4 × 4
matrix M (0) has eigenvalue 1. Working out the determinant
leads to the following result:

ω0 = Z∗ + Z∗fT = Z (A23)

(there is also a solution with a negative frequency, which we
discard). We substitute ω0 back into Eq. (A22), and end up
with

M (0) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1
2+fT

−i
1+fT

2+fT
0

0 i
1+fT

2+fT

1
2+fT

0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (A24)
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The normalized eigenvector which makes the eigenvalue of
M (0) equal to 1 is

�x(0) = 1√
2

⎛
⎜⎝

0
−i

1
0

⎞
⎟⎠. (A25)

To obtain the change of the eigenmodes caused by the presence
of SOC, we need to determine λ(2). In perturbation theory,
we obtain the second-order correction of the eigenvalues
as

λ(2) = [�x(0)]†M (2) �x(0), (A26)

where we can construct M (2) by using �(2):

M (2) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 hxc
11�

(2)
11 hxc

11�
(2)
12 hxc

11�
(2)
13

0 hxc
22�

(2)
21 hxc

22�
(2)
22 hxc

22�
(2)
23

0 hxc
33�

(2)
31 hxc

33�
(2)
32 hxc

33�
(2)
33

⎞
⎟⎟⎟⎟⎠. (A27)

With the substitution of the terms in second order in α and β

in the spin-flip response matrix, λ(2) in Eq. (A26) becomes

λ(2) = πfT

2

(
�

(2)
11 + �

(2)
22 + i�

(2)
12 − i�

(2)
21

)
= πfT (2F+

0 − 4F+
2 )

= 4πNsfT (a + b)

(ω − Z∗)2
+ 2πNsfT (a − b)

(ω − Z∗)2

+ 4πNsfT Z∗(a + b)

(ω − Z∗)3
. (A28)

To remain within second order of SOC, we substitute ω0 in
Eq. (A23) back into λ(2), and get

λ(2) = 6πNsa

Z∗2fT

+ 2πNsb

Z∗2fT

+ 4πNsZ
∗(a + b)

Z∗3f 2
T

= 2πNs

Z∗2f 2
T

[(α2 + β2)(3fT + 2) + 2αβ sin(2ϕ)(fT + 2)].

(A29)

The condition for the spin wave at q = 0 is that the eigenvalue
is equal to 1, so to second-order perturbation theory we have

1 = λ(0) + λ(2), (A30)

where λ(0) is known, so

1 = Z∗fT

ω − Z∗ + λ(2), (A31)

which gives

ω − Z∗ = Z∗fT + λ(2)(ω − Z∗). (A32)

To lowest order in SOC, we replace ω on the right-hand side
with ω0:

ω = Z∗ + Z∗fT + λ(2)(ω0 − Z∗), (A33)

and using ω0 = Z∗ + Z∗fT we obtain

ω = ω0 + λ(2)Z∗fT . (A34)

Using expression (A29), we obtain the final result

E0 = Z + 2πNs

Z∗fT

[(α2 + β2)(3fT + 2)

+ 2αβ sin(2ϕ)(fT + 2)], (A35)

which is given as Eq. (6).
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quantum well sample with Ns = 3.5 × 1011cm−2 by fitting the
single-particle excitation spectrum.

[45] P. S. Eldridge, J. Hübner, S. Oertel, R. T. Harley, M. Henini, and
M. Oestreich, Phys. Rev. B 83, 041301(R) (2011).

[46] P. S. Alekseev, Semicond. 47, 1241 (2013).
[47] C. Rice, D. Wolverson, A. Moskalenko, S. J. Bending, G.

Karczewski, and T. Wojtowicz, Phys. Rev. B 87, 121304(R)
(2013).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.96.045301 for details of the effects of in-
plane anisotropy of the g factor.

[49] S. Sharma, J. K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N.
Helbig, S. Pittalis, S. Shallcross, L. Nordström, and E. K. U.
Gross, Phys. Rev. Lett. 98, 196405 (2007).

[50] G. Scalmani and M. J. Frisch, J. Chem. Theor. Comput. 8, 2193
(2012).

[51] F. G. Eich and E. K. U. Gross, Phys. Rev. Lett. 111, 156401
(2013).

[52] F. G. Eich, S. Pittalis, and G. Vignale, Phys. Rev. B 88, 245102
(2013).

[53] S. Karimi and C. A. Ullrich, Phys. Rev. B 90, 245304 (2014).

045301-14

https://doi.org/10.1103/PhysRevLett.88.256601
https://doi.org/10.1103/PhysRevLett.88.256601
https://doi.org/10.1103/PhysRevLett.88.256601
https://doi.org/10.1103/PhysRevLett.88.256601
https://doi.org/10.1103/PhysRevLett.99.026403
https://doi.org/10.1103/PhysRevLett.99.026403
https://doi.org/10.1103/PhysRevLett.99.026403
https://doi.org/10.1103/PhysRevLett.99.026403
https://doi.org/10.1103/PhysRevB.17.2980
https://doi.org/10.1103/PhysRevB.17.2980
https://doi.org/10.1103/PhysRevB.17.2980
https://doi.org/10.1103/PhysRevB.17.2980
https://doi.org/10.1103/PhysRevB.79.205305
https://doi.org/10.1103/PhysRevB.79.205305
https://doi.org/10.1103/PhysRevB.79.205305
https://doi.org/10.1103/PhysRevB.79.205305
https://doi.org/10.1103/PhysRevB.82.205324
https://doi.org/10.1103/PhysRevB.82.205324
https://doi.org/10.1103/PhysRevB.82.205324
https://doi.org/10.1103/PhysRevB.82.205324
https://doi.org/10.1140/epjb/e2010-00040-7
https://doi.org/10.1140/epjb/e2010-00040-7
https://doi.org/10.1140/epjb/e2010-00040-7
https://doi.org/10.1140/epjb/e2010-00040-7
https://doi.org/10.1063/1.3583651
https://doi.org/10.1063/1.3583651
https://doi.org/10.1063/1.3583651
https://doi.org/10.1063/1.3583651
https://doi.org/10.1103/PhysRevLett.109.227201
https://doi.org/10.1103/PhysRevLett.109.227201
https://doi.org/10.1103/PhysRevLett.109.227201
https://doi.org/10.1103/PhysRevLett.109.227201
https://doi.org/10.1103/PhysRevB.91.035106
https://doi.org/10.1103/PhysRevB.91.035106
https://doi.org/10.1103/PhysRevB.91.035106
https://doi.org/10.1103/PhysRevB.91.035106
https://doi.org/10.1103/PhysRevLett.114.156803
https://doi.org/10.1103/PhysRevLett.114.156803
https://doi.org/10.1103/PhysRevLett.114.156803
https://doi.org/10.1103/PhysRevLett.114.156803
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevLett.69.848
https://doi.org/10.1103/PhysRevLett.69.848
https://doi.org/10.1103/PhysRevLett.69.848
https://doi.org/10.1103/PhysRevLett.69.848
https://doi.org/10.1103/PhysRevB.89.085406
https://doi.org/10.1103/PhysRevB.89.085406
https://doi.org/10.1103/PhysRevB.89.085406
https://doi.org/10.1103/PhysRevB.89.085406
https://doi.org/10.1103/PhysRevLett.91.086802
https://doi.org/10.1103/PhysRevLett.91.086802
https://doi.org/10.1103/PhysRevLett.91.086802
https://doi.org/10.1103/PhysRevLett.91.086802
https://doi.org/10.1103/PhysRevB.83.035323
https://doi.org/10.1103/PhysRevB.83.035323
https://doi.org/10.1103/PhysRevB.83.035323
https://doi.org/10.1103/PhysRevB.83.035323
https://doi.org/10.1103/PhysRevB.83.041301
https://doi.org/10.1103/PhysRevB.83.041301
https://doi.org/10.1103/PhysRevB.83.041301
https://doi.org/10.1103/PhysRevB.83.041301
https://doi.org/10.1134/S1063782613090029
https://doi.org/10.1134/S1063782613090029
https://doi.org/10.1134/S1063782613090029
https://doi.org/10.1134/S1063782613090029
https://doi.org/10.1103/PhysRevB.87.121304
https://doi.org/10.1103/PhysRevB.87.121304
https://doi.org/10.1103/PhysRevB.87.121304
https://doi.org/10.1103/PhysRevB.87.121304
http://link.aps.org/supplemental/10.1103/PhysRevB.96.045301
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1021/ct300441z
https://doi.org/10.1021/ct300441z
https://doi.org/10.1021/ct300441z
https://doi.org/10.1021/ct300441z
https://doi.org/10.1103/PhysRevLett.111.156401
https://doi.org/10.1103/PhysRevLett.111.156401
https://doi.org/10.1103/PhysRevLett.111.156401
https://doi.org/10.1103/PhysRevLett.111.156401
https://doi.org/10.1103/PhysRevB.88.245102
https://doi.org/10.1103/PhysRevB.88.245102
https://doi.org/10.1103/PhysRevB.88.245102
https://doi.org/10.1103/PhysRevB.88.245102
https://doi.org/10.1103/PhysRevB.90.245304
https://doi.org/10.1103/PhysRevB.90.245304
https://doi.org/10.1103/PhysRevB.90.245304
https://doi.org/10.1103/PhysRevB.90.245304



