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We investigate the relation between the Fermi sea (FS) of zero-field carriers in two-dimensional systems and
the FS of the corresponding composite fermions which emerge in a high magnetic field at filling ν = 1

2 , as the
kinetic energy dispersion is varied. We study cases both with and without rotational symmetry and find that
there is generally no straightforward relation between the geometric shapes and topologies of the two FSs. In
particular, we show analytically that the composite Fermi liquid (CFL) is completely insensitive to a wide range of
changes to the zero-field dispersion which preserve rotational symmetry, including ones that break the zero-field
FS into multiple disconnected pieces. In the absence of rotational symmetry, we show that the notion of “valley
pseudospin” in many-valley systems is generically not transferred to the CFL, in agreement with experimental
observations. We also discuss how a rotationally symmetric band structure can induce a reordering of the Landau
levels, opening interesting possibilities of observing higher-Landau-level physics in the high-field regime.
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I. INTRODUCTION

In recent years, the issue of geometry of quantum Hall
states has attracted significant attention. Starting with the
formulation by Haldane [1], several investigations, first numer-
ical [2–4] and then experimental [5,6] as well as theoretical
[7–9], have been exploring the role of anisotropy in fractional
quantum Hall (FQH) states [2–6] as well as the effect of metric
deformations [10]. Mass anisotropy in the zero-field electron
dispersion is naturally present in electron-doped many-valley
semiconductors such as AlAs [11], which makes the Fermi
contours at B = 0 elliptical rather than circular. Another way
to generate anisotropy in the FQH regime is application of an
in-plane magnetic field [12].

For noninteracting electrons, this problem can be made
isotropic by a rescaling of coordinates (i.e., by a shear defor-
mation). However, as emphasized by Haldane [1], anisotropy
of the mass and that of the dielectric tensor (which determines
electron-electron interactions) in electronic materials are, in
general, quite different. Thus, for fractional quantum Hall
states where electron-electron interactions are essential, the
anisotropy cannot be eliminated by simple rescaling of coordi-
nates as in the noninteracting case. The distinct anisotropies of
the electron mass and dielectric tensor lead to an extra degree
of freedom in Laughlin’s variational scheme for fractional
Hall state: the optimal coordinate rescaling parameter for
the fractional state. This was demonstrated in variational as
well as numerical studies of the anisotropic problem [2] and
later generalized to the case of tilted magnetic fields, where
rotational symmetry is also broken [4].

While the early numerical studies [2,3] concentrated on
the gapped states, in particular the primary Laughlin ν = 1/3
state, a comparison with experimental transport data was com-
plicated by two facts: first, the gaps are somewhat dependent
on anisotropy, and second, and more importantly, conductivity
involves the anisotropy of the transport relaxation time in
addition to that of the mass. However, exquisite experiments
[5,6] performed on the gapless ν = 1

2 state directly measured
the composite fermion (CF) Fermi contour anisotropy [13] and
showed that distortions of the zero-field band Fermi contour

from a circular shape resulted in a corresponding distortion of
the CF Fermi contour at magnetic fields corresponding to half
filling of the lowest Landau level. The latest measurements
on samples subject to uniaxial strain [14] show clearly that
an elliptical distortion of the Fermi contour at B = 0 leads to
an elliptical distortion of the Fermi contour for the CF Fermi
liquid state at half filling, albeit with a reduced anisotropy,
which is in excellent agreement with numerical studies of
electron systems with a parabolic dispersion but anisotropic
mass [15]. Moreover, experimental studies of hole systems
with warping of the zero-field Fermi contour from circular
symmetry to square (i.e., discrete fourfold rotational) symme-
try show transference of this warping to the CF Fermi contour
in a tilted magnetic field [16]. Numerical investigations of this
problem find a weak, but nonzero response of the composite
Fermi liquid (CFL) Fermi contour to band deformations with
fourfold rotational symmetry [17].

These observations might lead one to conclude that there is
an intimate connection between the Fermi contour of compos-
ite fermions at ν = 1

2 and the original zero-field Fermi contour.
A fundamental question of interest is thus the following:
can the B = 0 electronic band structure be used to engineer
different phases in the high-field, Landau-level regime? If this
approach proved successful in significantly altering not only
single-particle eigenvalues, but also eigenfunctions (which
often determine the phase for interacting systems), it would
in effect lead to Landau-level engineering, parallel to the
enormously successful zero-field band structure engineering
in traditional semiconductor physics.

In this paper, we show that this expectation is too optimistic
and provide examples that demonstrate how the connection
between the zero-field and high-field regimes is more subtle,
indeed tenuous in some instances. In Sec. II, we consider
dispersions with circular symmetry, a case which can be solved
exactly. We discuss a number of cases that display a wide
variety of zero-field Fermi seas, but nevertheless share the
same Fermi sea for CFs at high magnetic fields. In Sec. III,
we generalize our study to a case with anisotropy (twofold
discrete rotational symmetry) where the zero-field Fermi sea
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has two disconnected Fermi pockets, and demonstrate that the
Fermi sea of composite fermions, while retaining the twofold
rotational symmetry, remains fully connected. This suggests
that the only memory of the zero-field Fermi contour that is
retained in the high-field limit is the nature of its rotational
symmetry, while much of the other details are wiped out.

II. EXACT RESULTS FOR CIRCULARLY
SYMMETRIC DISPERSIONS

In this section, we consider the Landau-level problem
for a single, nondegenerate electron band with a circularly
symmetric, but otherwise arbitrary, electron dispersion at
B = 0. We show that the problem in the high-field limit
reduces to the canonical Landau problem with extensively
degenerate Landau bands with the same eigenfunctions as the
standard parabolic one, but with eigenvalues that generally
differ from the canonical harmonic oscillator values. As a
result, in the high magnetic field limit, the problem reduces to
that of a single Landau level; the only issue that remains is the
following: which Landau level has the lowest eigenvalue? If it
is the N = 0 Landau level, we find that the interacting problem
for fractional filling is exactly the same as that for the parabolic
case, and consequently the CF Fermi sea is completely
unchanged for a whole range of zero-field electron dispersions,
including cases where the B = 0 Fermi sea changes from
being a circle to being an annulus, and also cases where the
Fermi sea has multiple disconnected pieces. In short, while
the zero-field Fermi sea undergoes Lifshitz transitions, the
high-field problem remains unaffected. This demonstrates that
the state at high field is completely unresponsive to rotationally
symmetric distortions of the zero-field problem, showing that
the relation between the two problems can be subtle.

Specifically, we consider a zero-field Hamiltonian with an
arbitrary, but isotropic kinetic energy term in two dimensions
of the form

H0 = E0f (| �p|2/2mE0), (1)

where m is the free-electron mass and E0 is an energy
scale, which makes the argument of f dimensionless. For
nonrelativistic free fermions, one has f (x) = x. Note that the
Hamiltonian depends on �p only through | �p|2 = p2

x + p2
y . In

order for the problem to be well defined, we require that
f (x) be analytic and bounded from below, but set no other
constraints on it. In the presence of a magnetic field B in the
z direction, we have �p → �� ≡ �p − e �A, where �∇ × �A = B.

We note in passing that nonparabolic dispersions could
occur in any strongly interacting fermionic system with
continuous translational and full rotational symmetry (i.e.,
Galilean invariance). In fact, significant deviations have been
predicted and seen experimentally in Galilean invariant,
rotationally symmetric three-dimensional dilute mixtures of
3He in 4He [18,19] which depend on the effective interaction
pseudopotentials [20].

In the “usual” Landau problem with a quadratically dispers-
ing Hamiltonian, the eigenstates {|φN 〉} are clearly eigenstates
of the operator | ��|2, with eigenvalues

ε
quadratic
N = (N + 1/2)Ec = (N + 1/2)βE0. (2)

Here, N is the Landau-level index, Ec = heB/m is the
cyclotron energy, and β is the ratio of Ec to E0. Since the
Hamiltonian in Eq. (1) is a function of | ��|2 only, the {|φN 〉}
are eigenstates of Eq. (1) for any f (x), and therefore even
f (x), which dramatically change the zero-field Fermi surface,
do not affect the Fermi surface in the high-field problem (as
long as |φ0〉, the lowest Landau level in the case of quadratic
dispersion, still has the lowest energy). These energies are
given by

H0|φN 〉 = εN |φN 〉, εN = E0f ([N + 1/2]β). (3)

Before proceeding further, we establish conventions that we
follow in the rest of the paper. We use as independent variables
the Landau-level filling fraction ν and either the zero-field
Fermi energy εF or the electron density ne, depending on
convenience. For a given dispersion, fixing ν and εF (or ν and
ne) fixes the magnetic field B, and hence the cyclotron energy.
If we defineA(εF ) as the area in k space occupied by the Fermi
sea at given chemical potential εF , we find that the ratio of the
cyclotron energy to E0 is

β ≡ Ec

E0
= A(εF )k−2

0

2πν
, (4)

where

k0 ≡
√

E0m

h̄
(5)

is a characteristic wave vector.
We now discuss the simplest nontrivial example for f (x):

f (x) = −Cx + 4x2,

H0(C) = −C
| ��|2
2m

+ 1

E0

(
| ��|2
m

)2

. (6)

Here, C is a dimensionless parameter. This kinetic energy leads
to a Fermi sea which is an annulus if C > 0 and εF < 0, and a
circle otherwise. The annular case can be seen as a simplified
model for a realistic energy dispersion that has recently been
observed [21] for holes in GaAs quantum wells.

In order to demonstrate the lack of correspondence between
the zero-field and composite fermion Fermi contours at
magnetic field corresponding to a half-filled lowest Landau
level (ν = 1

2 ), it suffices to show a pair of values (C,εF ) where
the zero-field Fermi sea is annular and the N = 0 Landau
level has the lowest energy. In that case, the single-particle
orbitals in the high-field (lowest eigenvalue) limit are the
same as in the usual parabolic case (i.e., N = 0 Landau-level
wave functions). Thus the CF Fermi sea is a circle, whereas
the electron Fermi sea is an annulus.

We found such a combination of parameters to be quite
generic. Figure 1(a) shows an example of the band structure
of a system with C = 2.5 and εF = −0.34E0. The system
clearly has an annular Fermi sea and the N = 0 Landau level
is the one with the lowest energy. Figure 1(b) shows the phase
diagram as a function of C and the electron density

ne = k2
0

2π

√
(C/4)2 + εF /E0, (7)

displaying a large region of parameter space where these
conditions are met. At smaller C or larger density, the

045145-2



CONNECTION BETWEEN FERMI CONTOURS OF ZERO- . . . PHYSICAL REVIEW B 96, 045145 (2017)

FIG. 1. (a) Dispersion of Hamiltonian (6) with C = 2.5 (solid
line), Fermi energy εF = −0.34E0 (dashed line), and energies of the
lowest three Landau levels (dots). The B = 0 Fermi sea (consisting
of k states below the dashed line) is an annulus. At these values of
C and εF , the N = 0 Landau level has the lowest energy, so the
ground state is a CFL with a circular Fermi sea. (b) A plot of the
phase diagram of the system described by Eq. (6), as a function of C

and electron density ne (expressed in units of k2
0), in a magnetic field

tuned to half filling. Depending on which N minimizes εN , the system
can be in a CFL phase (N = 0), a Moore-Read phase (N = 1), or a
stripe or bubble phase (N � 2). The dashed line in the CFL phase
corresponds to εF = 0, i.e., to the transition from circular to annular
electron Fermi seas at B = 0. The star denotes the parameters used
in (a).

zero-field Fermi sea becomes a circle (though the CFL is
completely insensitive to this transition).

Figure 1(b) also contains other phases. For a general
function f (x), there are a number of different possibilities
depending on the values of N ≡ argminN ′(εN ′):

(i) If N = 0, the ground state of the interacting system will
be a composite Fermi liquid with a circular Fermi contour,
despite the fact that the zero-field noninteracting Fermi contour
may have a more complicated (albeit circularly symmetric)
shape.

(ii) If N = 1, the interacting system will be in the Moore-
Read phase, with the ground state described either by the
Pfaffian or anti-Pfaffian model wave functions [which one
is chosen depends generically on the effects of Landau-level
mixing, which is affected by the particular choice of f (x)].

(iii) If N � 2, we generically expect the ground state at
every filling 0 < ν < 1 (not just the value ν = 1

2 used in the
figure) to be in a stripe or bubble phase. This opens exciting
possibilities for studies of such phases in the high-field limit,
a regime opposite to the one in which they are normally
observed.

We can see that the latter case is realized even in the simple
example of Eq. (6) at large enough C and small enough density.
For example, we find that these phases are predicted to occur
at a realistic carrier density ∼1011 cm−2 for band parameters
C ∼ 3 and E0 ∼ 3 meV. The recently observed annular Fermi
sea for holes in GaAs quantum wells [21] would most likely not
give rise to these phases due to the fact that the annular Fermi
pocket is included in a larger Fermi sea (i.e., there is no gap
between the “interesting” band and other bands). On the other
hand, band structures that are reasonably well approximated by
Eq. (6) are expected to occur quite generically in band-inverted

semiconductors, such as HgTe, when a gap is opened, e.g., by
application of strain [22].

The above analysis is sufficient to demonstrate that there
is not necessarily a relationship between zero-field and ν = 1

2
composite fermion Fermi contours. This analysis could be
easily repeated for the case where a cubic term is added
to Eq. (6). The resulting dispersion, for appropriate values
of the coefficients, describes isotropic dispersions with a
rotonlike minimum that were conjectured by Pitaevskii for
dilute mixtures of 3He in 4He (see, e.g., Refs. [18–20]).
For appropriate values of the parameters, such dispersion
could even lead to a Fermi sea with two disconnected pieces
(a circle around k = 0 and an annulus between two larger
values of k). For electron bands in solids, such nonmonotonic
dispersions with multiple Fermi pockets in zero magnetic field
are quite common; however, because of the crystal structure,
they possess discrete rotational symmetry, unlike the con-
tinuous symmetry considered here. Numerical investigations,
however, show that this type of anisotropy has a small effect
on the resulting quantum Hall physics [17], so that the main
effect is still expected to be the reordering of Landau levels
induced by nonmonotonicity of the dispersion.

Finally, in order to show that our conclusion is completely
generic, in the Appendix we consider an example of f (x)
which allows us to generate a zero-field Fermi sea consisting
of an arbitrary number of disconnected components, while at
the same time having argminN (εN ) = 0 when the magnetic
field is such that ν = 1

2 (see Fig. 7).

III. BREAKING ROTATIONAL SYMMETRY: SYSTEMS
WITH MULTIPLE FERMI POCKETS

The previous section shows that one can have a Fermi sea
made of multiple disconnected pieces at zero field, and yet
only a single composite Fermi sea at high magnetic field. We
can observe a similar phenomenon for Fermi seas consisting
of disconnected “pockets” without rotational symmetry, such
as those shown in Fig. 2. These Fermi contours were generated
from the following zero-field Hamiltonian:

H0(α) = −
(

αp2
x

2m
+ p2

y

2mα

)
+ 1

E0

(
p2

x + p2
y

m

)2

. (8)

This is the same as Eq. (6) with C = 1, except that we have
included an anisotropy parameter α in the quadratic part which
explicitly breaks rotational symmetry [15].

Fermi contours with shapes similar to those in Fig. 2 have
been observed in GaAs systems in a parallel field [6], as well as
in the surface states of Sn1−xPbxSe [23] and bismuth [24,25]
(though in the latter case the valleys are elongated radially,
rather than tangentially). In such systems, it is tempting to
assume that multiple zero-field Fermi pockets imply that the
system can be treated as having multiple valleys. Here we
show that this assumption is not always correct; even a Fermi
sea such as that of Fig. 3, made of clearly separated pockets,
does not necessarily imply two nearly degenerate low-lying
Landau levels.

To prove this point, for the dispersion given by Eq. (8),
we choose the Fermi energy εF such that there are two
disconnected zero-field pockets (as in Fig. 3). Since we work
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FIG. 2. Examples of zero-field Fermi seas obtained from the
kinetic energy given by Eq. (8) at small values of the anisotropy
parameter, α = 1.05 (left) and α = 1.25 (right), at various Fermi
energies shown in the upper-right corner of each panel. Tuning
these parameters allows continuous interpolation between the annular
shape discussed in Sec. II and the Fermi pockets discussed in
Sec. III.

at ν = 1
2 , the Fermi energy also sets the cyclotron energy. We

solve the single-particle Schrodinger equation using Eq. (8) in
the strong magnetic field determined by the Fermi energy and
the filling fraction. Since the single-particle problem is sym-
metric upon interchanging the valleys, the orbitals will be equal
superpositions of the two valleys. Naively this seems to conflict
with the notion of having states in well-separated valleys, as
all the electrons are in both valleys at once. The resolution to
this is that if the two lowest-energy solutions are very close
in energy (compared to the interaction strength), interactions
can hybridize the states and lead to electron orbits which are
purely in one valley or the other [26]. It would be a mistake,
however, to assume that this hybridization always happens
when the zero-field Fermi surface has multiple pockets. If the

FIG. 3. Zero-field Fermi sea for the Hamiltonian in Eq. (8), using
α = 4 and the Fermi energy εF = −0.49E0. For these parameters,
the inverse magnetic length at filling ν = 1

2 is 	−1
B = 0.64k0, so the

two Fermi pockets are separated by ≈2	−1
B .

FIG. 4. The two lowest energies (in units of the cyclotron energy
Ec = βE0) of the Hamiltonian in Eq. (8) placed in a magnetic field
such that the electron density of Fig. 3 corresponds to filling ν = 1

2 .
As the α parameter changes, the chemical potential is changed so that
the electron density and magnetic field stay constant. Inset: difference
between the two energies. The dashed lines indicate α = 4, the value
used in Fig. 3. Even with a Fermi sea made of two well-separated
pockets, there is still a substantial energy gap between the lowest-
lying Landau levels (roughly half of that at the isotropic point).

splitting between the two lowest-lying single-particle solutions
is much larger than the strength of interactions, ∼e2/	Bε, then
this hybridization will not occur and there is no meaningful
notion of “valley pseudospin” in the problem; rather, only
one generalized Landau level matters. The valley-pseudospin
degree of freedom emerges only when the valleys are very
well separated in units of 	−1

B (the typical spread in momentum
space of a Landau orbital).

Figure 4 shows the energies of the two lowest solutions to
the single-particle problem as a function of α. The value α = 4,
which was used to generate the Fermi contours in Fig. 3, is
indicated by the dashed line. We see that as one turns α up
from the isotropic α = 1 point, a large splitting between the
two energies persists long after the problem has developed two
disconnected Fermi contours. This energy splitting should be
compared to the interaction energy to determine whether the
system develops valleys. In quantum Hall problems, we often
assume that the interaction energy is much smaller than the
cyclotron energy, i.e., the Landau-level mixing parameter κ

(the ratio of interaction energy to cyclotron energy) is �1.
We can see that at large α, even a small κ will be enough to
hybridize the levels and give well-defined valleys (e.g., from
the plot, we see that at α = 10, κ ≈ 10−3 would be sufficient).
But up to α ∼ 4, the energy gap is still substantial, and a value
of κ ≈ 1 would be required to effectively hybridize the Landau
orbitals.

To make this analysis concrete, we performed infinite den-
sity matrix renormalization group (DMRG) [27] calculations
on the system described by Eq. (8) placed on an infinite
cylinder of circumference L = 13	B . Our simulation contains
the lowest two Landau levels, whose single-particle energies
are shown in Fig. 4. One of the Landau levels is symmetric
under k �→ −k and the other is antisymmetric; we label them
by 0 and 1, respectively (even though their single-particle
energies are not necessarily in that order). The two Landau
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FIG. 5. Difference in orbital densities (δn ≡ 〈n̂0〉 − 〈n̂1〉) as a
function of α for the ground state of the Hamiltonian (8) with
Coulomb e-e interactions at filling ν = 1

2 (blue dots). The values are
computed via infinite DMRG on a cylinder of circumference 13	B ,
with bond dimension χ ∼ 3000. Magnetic field and electron density
are the same as in Fig. 4. The strength of e-e interactions is taken to
be e2/	B = E0 ∼ 2.4Ec. Also shown is the inter-Landau-level gap
δE in units of cyclotron energy (red line). δn = 1/2 implies that all
the electrons are in one valley-symmetric Landau level, while δn = 0
is compatible with valley polarization.

levels have different form factors which are determined by
the eigenvectors corresponding to the energies shown in the
figure. With this data, we can obtain the many-body ground
state at total filling ν = 1

2 and evaluate the difference in
single-particle orbital occupations, δn ≡ 〈n̂0〉 − 〈n̂1〉. When
the energy separation is large, we expect all electrons to
form a ν = 1

2 state in the lowest-energy Landau level, as the
interactions should not be able to significantly hybridize the
single-particle orbitals. In that case, we would have 〈n̂0〉 = 1

2
and 〈n̂1〉 = 0, or δn = 1

2 . As the energy separation gets
smaller, the system could valley polarize, i.e., pick a coherent,
equal-amplitude superposition of the Landau levels. Given
the symmetry of the problem, the exact ground state should
be a “cat state” superposition of the two states in which all
electrons are in the same valley; but such a state would require
a large entanglement to simulate effectively. Since DMRG
only allows for limited entanglement, it spontaneously breaks
the symmetry and leads to a valley-polarized ground state [28].
Such a state would have 〈n̂0〉 = 〈n̂1〉 = 1

4 , hence δn = 0.
The results of our numerical calculation of δn can be seen

in Fig. 5. They indicate that the system does not valley polarize
until the interaction strength e2/	B is several times larger
than the inter-Landau-level gap δE, viz., κ ≈ 5. Nearly all
electrons populate the “symmetric” Landau level up to α ≈ 6.
After the Landau levels cross at α � 6.45, we see that a small
energy difference (≈0.4Ec) in favor of the “antisymmetric”
Landau level is enough to make δn significantly negative.
Valley polarization is thus only possible in the immediate
vicinity of the crossing (α � 6.45) and beyond α ≈ 12. We
remark that our choice of Landau-level mixing parameter κ

at the isotropic point, κ ≈ 0.5, is conservative; the desirable
scenario often assumed in studies of quantum Hall physics is
that of negligible Landau-level mixing, κ � 1. Such a choice
of parameters would further hinder valley polarization and
reinforce our conclusion.

FIG. 6. Dependence of αcrit (value of anisotropy when the first
Landau-level crossing occurs) on the magnetic field, expressed
through the dimensionless ratio β = Ec/E0 = B(h̄e/mE0). For each
value of β, we fix the magnetic field and density (at filling ν = 1

2 ) and
increase α starting from 1 until we encounter the first crossing. For
example, Fig. 4 corresponds to β = 0.41 and has the first crossing
at α � 6.45.

By studying the density-density correlator of states with
δn � 1/2, i.e., for α < 6, we are able to map the Fermi contour
of CFs with a method that has been detailed elsewhere [15,29].
This shows that the composite Fermi contour goes from being
a circle at the isotropic point (in agreement with the analysis of
Sec. II) to an ellipse which becomes more and more elongated
as the parameter α is increased [30].

Thus, we again find a lack of correspondence between the
Fermi contours of the zero-field electrons and the CFs: while
the electron Fermi sea is made of two well-separated pockets
such as in Fig. 3, the CFL has a Fermi sea consisting of a single
connected component, generally elliptical, but adiabatically
connected to the circular one at α = 1. In the same situation,
but with total filling ν = 1 (i.e., 1/2 per Fermi pocket), the
system simply forms a ν = 1 integer quantum Hall state with
the generalized lowest-Landau-level orbitals.

If we take α to be very large, to the point that the inter-
Landau-level gap becomes much smaller than the interaction
strength, then the system is described by a bilayer with
linearly independent form factors. At total filling ν = 1, such
a system is expected to spontaneously valley polarize [26],
again forming an integer quantum Hall state. At total filling
ν = 1

2 , the system is expected to have a rich phase diagram
including potentially a Halperin 331 state, a Moore-Read
state, two ν = 1/4 CF Fermi contours (one in each valley),
or a valley-polarized ν = 1/2 CF Fermi sea (the history of
such systems is reviewed in Ref. [31]). Either way, the two
zero-field electron pockets are not mapped into two ν = 1

2 CF
pockets. This conclusion is in agreement with experimental
observations on electrons in GaAs quantum wells in parallel
magnetic fields [6], where the CF Fermi contour is found
to remain connected up to the highest achievable values of
the parallel fields, while the electron Fermi sea is split into
apparently well-separated pockets.

Finally, we comment on the dependence of our results on
magnetic field. In general, we expect two Fermi pockets to
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lead to well-defined quantum Hall valleys if the separation
between them is large compared to 	−1

B , the typical spread
of a Landau orbital in momentum space. At the same time,
following Eq. (4), we know that the inverse magnetic length is

	−1
B =

√
A(εF )

2πν
, (9)

so that the valley approximation holds well if the separation
between the pockets is large enough relative to their typical
linear size. Moreover, Eq. (9) implies that the same set
of pockets may or may not lead to quantum Hall valleys
depending on filling, with larger ν being more likely to have
well-defined valleys. For small chemical potential εF near
the bottom of the band, we have small, widely separated
pockets at zero field, and correspondingly in the high field (say,
filling ν = 1

2 ), there are well-defined quantum Hall valleys.
Increasing εF causes the Fermi pockets to get closer and
eventually merge, at which point there is no notion of valleys.
When exactly this transition occurs depends on the value of the
Landau-level mixing parameter κ , i.e., the ratio of interaction
strength to the inter-Landau-level gap. A reasonable estimator
is the value αcrit at which the two Landau levels cross for
the first time. We computed αcrit for a range of magnetic
field values B and found an approximate linear dependence
of the former on the latter. This confirms that larger electron
densities (larger εF ), which require stronger magnetic fields
to get into the lowest Landau-level quantum Hall regime, tend
to oppose the onset of a many-valley regime and instead favor
the population of a single nondegenerate, valley-symmetric,
lowest Landau level.

IV. CONCLUSIONS

We have investigated the connection between the Fermi
contours of zero-field electrons/holes and their high-field, ν =
1
2 composite fermion counterparts. We divided our analysis
into two cases of interest: that of a rotationally symmetric
zero-field dispersion, potentially giving rise to a Fermi sea
consisting of one or more annuli, and that of an explicitly
symmetry-breaking dispersion, giving rise to multiple discon-
nected pockets.

In both cases, we find that these shapes are not straight-
forwardly transferred to the composite fermions. An exact
analytical argument allows us to prove that the CFL is
completely insensitive to the rotationally symmetric distortion,
so that its Fermi contour remains a circle, regardless of whether
the system at zero field develops a disconnected Fermi sea. A
similar conclusion extends to the many-valley case, where the
CFL either has a single connected Fermi sea or transitions into
different phases, depending on the separation of the pockets
and the magnetic field.

Finally, an interesting consequence of our analysis in the
rotationally symmetric case is the possibility of using the band
structure to induce a rearranging of the Landau levels, so that
any Landau orbital can be made to have the lowest energy. This
gives rise to the interesting possibility of observing higher-
Landau-level physics, such as stripe or bubble phases, in the
high-field regime.
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APPENDIX: LACK OF CORRESPONDENCE BETWEEN
TOPOLOGY OF ELECTRON AND CF FERMI SEAS

In this Appendix, we show an example of circularly
symmetric dispersion where the electron Fermi sea can be
made to have any number of disconnected components by
tuning the Fermi energy, while the CFs always have the same
circular Fermi sea. This complements and generalizes the
result of Sec. II about the annular Fermi sea obtained from
a quartic dispersion.

Consider the function f (x) = 1 − sin(2πx)/2πx, i.e., the
one-electron isotropic dispersion

ε(�k) = E0

(
1 − sin(πk2/k2

0)

πk2/k2
0

)
. (A1)

This dispersion asymptotically approaches E0 as k → ∞, with
infinitely many minima that get progressively shallower (we
neglect effects of the finite Brillouin-zone size here). Thus, as
the Fermi energy approaches E0 from below, one gets a Fermi
sea consisting of arbitrarily many rings. Specifically, A(εF )
(the area of the Fermi sea in k space at chemical potential εF )
is a continuous, monotonically increasing function that goes
from A = 0 at εF � 0 to +∞ at εF � E0 (where the Fermi
sea would include all but a finite area of momentum space).
It diverges like |εF − E0|−1 as εF → E−

0 . Now, since A(εF )
spans all positive real numbers as εF → E−

0 , a value of εF can
be chosen such that the lowest-Landau-level energy ε0 [in the
notation of Eq. (3)] falls in a local minimum of f (x), which
occurs near each integer value of x.

Given one such minimum xn � n, f is such that f (x) >

f (xn) for all values x > xn. Therefore, all higher Landau
levels N > 0 are guaranteed to have εN > ε0, so that argmin

FIG. 7. Dispersion of the Hamiltonian (A1) (solid line) with
Fermi energy εF = 0.953E0 (dashed line) and energy eigenvalues
for the lowest three Landau levels (dots). Inset: shape of the
corresponding zero-field Fermi sea, with a circle and three rings.
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N (εN ) = 0 and the ground state is a ν = 1
2 CFL made from

the familiar N = 0 Landau orbitals; hence its Fermi sea is
circular. The (arbitrary) choice of minimum n also determines
the number of rings in the corresponding zero-field Fermi sea.

It is straightforward to prove that this number scales as O(n)
and, in particular, that it can be made arbitrarily large. An
example is illustrated in Fig. 7, where n = 1 gives rise to a
circle and three annuli.
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