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Gauge-including projector augmented-wave NMR chemical shift calculations with DFT+U
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We adapt the DFT+U method in the gauge-including projector augmented-wave NMR chemical shift
calculations within the plane wave pseudopotential implementation. The nonlocal Hubbard correction potential
has been reexamined in order to comply with the gauge-including projector augmented-wave transformation under
an external uniform magnetic field. The resulting expression is suitable for chemical shift calculations using both
norm-conserving and ultrasoft pseudopotentials in the proector augmented-wave scheme. The implementation
is applied to the 17O solid-state NMR chemical shift calculations for transition-metal and rare-earth oxides,
including TiO2, ZnO, Ti2O3, La2O3, and CeO2. A comparison between the DFT and DFT+U NMR chemical
shifts for the selected materials is presented.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy has been
one of the most powerful tools in determining and analyzing
structural properties of materials in the atomic or molecular
scale. Particularly, in the past two decades, the advances of
solid-state NMR techniques, e.g., ultrahigh magnetic field and
fast magic angle spinning frequency, have broadened the scope
of studied materials and also prompted the research in this
field. Besides, innovated NMR methodologies have also been
devised which not only further enhance the power but also
broaden the range and capacity of NMR spectroscopy. More
comprehensive details of these experimental developments can
be found in many review articles [1–6].

Despite the availability of unprecedented accuracy and
resolution in NMR spectroscopy techniques having greatly
improved and advanced the NMR measurements, the interpre-
tation of NMR spectral data often resorts to the theoretical
modeling calculations, particularly for solid-state systems.
Early NMR experiments were usually analyzed by empirical
methods and traditional quantum chemistry calculations;
nevertheless, these approaches were only suitable or limited
to simple or finite systems. Although it is possible to simulate
solid-state NMR properties using the cluster approach, the cal-
culations are usually inefficient for the large size of modeling
systems and the results are insufficient for discounting the
long range interactions in periodic systems. The introduction
of gauge-including projector augmented-wave (GIPAW) NMR
method [7] in this century has provided an effective theoretical
approach to including the periodic effects in the solid-state
NMR calculations.

The GIPAW NMR method [7] was first implemented based
on the density functional theory [8,9] (DFT) in the plane
wave norm-conserving pseudopotential scheme. The method
provides all-electron level accuracy and has quickly become
popular in the solid-state NMR field both in theoretical and ex-
perimental groups for predicting NMR parameters. Practically,
it has been applied to a broad range of interested materials
covering a majority of nuclei on the Periodic Table [5,10].
In terms of popularity, this method and its variants can be
found in several computational packages (e.g., CASTEP [11],
PARATEC [12], WIEN2K [13,14], GIPAW module in QUANTUM

ESPRESSO [15] and VASP [16], etc.) Other frameworks of

chemical shift calculations, e.g., the full potential method
[17–19], the localized orbital method [20], and the converse
approach [21], have also been implementated and documented.
Methodologically, the functionality of the GIPAW method has
also kept evolving and extending to evaluating other NMR
parameters, such as hyperfine couplings [22,23], electric field
gradients [24,25], and indirect couplings [26,27], etc.

Pragmatically, both the underlying DFT and the pseudopo-
tential scheme pave the way to the success of the GIPAW
NMR method. A later improved version adapted with more
efficient ultrasoft pseudopotentials [28] has greatly relieved
the computational limitations in the norm-conserving version,
allowing us to study larger systems or systems containing
heavier nuclei. However, there are several well known defects
beneath the approximations for the exchange-correlation
energy functionals, e.g., the local density approximation [9]
(LDA) and generalized gradient approximation [29] (GGA),
in the DFT. The resulting problems, for instance, the band gap
problem [30,31] and self-interaction error [32], are particularly
serious in systems containing strongly localized 3d and 4f

electrons. A comprehensive understanding of the influence
of these problems on GIPAW NMR calculations is uncharted
yet. In addition, it is an inevitable problem of the prospect
of the GIPAW method for covering the NMR calculations
towards all nuclei on the Periodic Table. A variety of advanced
exchange-correction functionals, such as hybrid functionals,
have been devised to overcome these problems in DFT. There
have been attempts of using hybrid functionals to calculate
chemical shifts implemented in the all-electron augmented
plane-wave scheme [33]. Unfortunately, the calculation is
computationally expensive and the result shows no favorable
improvement compared to standard functionals.

The DFT+U method [34,35], an inexpensive but effec-
tive alternative, is commonly applied to studying strongly
correlated materials containing localized electrons. It has
been generally recognized that the mean-field-like property
of LDA/GGA is more suitable to describe itinerant electrons
than localized ones. A prominent example is the electronic
description of insulating band gap for Mott-Hubbard insulators
when comparing results between LDA/GGA and DFT+U : by
replacing the correlation interactions among localized elec-
trons with a Hubbard-type potential from those in LDA/GGA,
the DFT+U prompts the separations between the upper
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and lower Hubbard bands and hence significantly raises the
energy gap [34]. The strength of the Hubbard potential is
conveniently described by a parameter, Hubbard U (sometimes
also exchange J , depending on their formulations). Most often,
the Hubbard U is treated as an adjustable parameter, though it
can also be determined from first principles calculations, e.g.,
the constrained-LDA [36–39], constrained-RPA [40–49], and
linear response [50] methods. Due to its feature, in electronic
calculations, DFT+U have been popularly utilized to improve
the DFT band gap or obtain better description of the ground
states. The DFT+U NMR chemical shift calculation has been
presented before [33]; however, the implementation is based
on all-electron scheme and there are no detailed derivations of
related formulations.

In this work, we extend the GIPAW chemical shift method
to including the DFT+U energy functional. We deliberately
adapt the Hubbard correction potential in the GIPAW Hamil-
tonian and response current formalism for chemical shift
calculations: similar to the nonlocal part of pseudopotentials, a
gauge dependent phase has to be included in the formulation of
the nonlocal Hubbard correction potential due to the presence
of a constant external magnetic field. A brief review of the
GIPAW method is first presented followed by the required
modifications for including the DFT+U in the GIPAW Hamil-
tonian and response current formulations. The implementation
is demonstrated by studying the 17O NMR chemical shifts
in TiO2 polymorphs, ZnO, Ti2O3, La2O3, and CeO2. Some
supplemental numerical validations for the GIPAW DFT+U

implementation are provided in the Appendixes.

II. THEORY AND IMPLEMENTATION

In DFT electronic structure calculations, the inclusion of
the Hubbard correction potential usually introduces dramatic
changes on the electronic structures and sometimes also on
the geometric structures when comparing them with those
calculated using standard exchange-correlation potentials. It
is expected that this correction potential shall have significant
effects on the corresponding calculated NMR chemical shifts.
In this section, we first recapitulate the key elements of the
GIPAW chemical shift formulation within the LDA/GGA
and then derive the corresponding adjustments required for
DFT+U chemical shift calculations. The modifications of
including the Hubbard term in the NMR formulations are
alike between the norm-conserving and ultrasoft versions.
Therefore, for simplicity, the following discussions will be
demonstrated in the norm-conserving fashion only. However,
wherever applicable, we will point out the crucial differences
between the norm-conserving and ultrasoft formulations along
the discussions.

A. Review of the GIPAW method

The original GIPAW NMR chemical shift calculation [7,28]
for solids is implemented in the plane wave pseudopotential
scheme based on the DFT. By calculating the induced current
of the orbital electrons, the induced magnetic field can be
conveniently evaluated according to the Biot-Savart law. The
commonly defined chemical shielding can be obtained from
the negative ratio between the induced and the external uniform

magnetic fields, i.e., ←→σ = −B(1)
(in)/B, which is a second-rank

tensor. The relationship between the chemical shift and the
chemical shielding will be described later. The calculation
of induced currents requires the knowledge of the first order
perturbed states which are calculated using density functional
perturbation theory [51] (DFPT). There are two important
ingredients in the GIPAW formulations of induction current
calculations: (i) compensating the augmentation error due to
the use of pseudopotentials and (ii) ensuring the Hamiltonian
and other observable operators preserving the translational
symmetry in a uniform external magnetic field. Upon the
introduction of the GIPAW method, first by Pickard and
Mauri [7], these requirements can be achieved simultaneously
by imposing a translational invariant condition in the presence
of a uniform magnetic field upon the projector augmented-
wave (PAW) method [52].

It has been generally accepted that the PAW method bridges
the pseudopotential method and augmented plane wave
method [52]. While not only providing a scheme to restore the
core-region wave functions, the PAW method also supplies a
prescription for generating the pseudopotentials [52], which
are separated into a local and a nonlocal part representing
the ion-electron interaction potential, in the corresponding
pseudo Hamiltonian. Fundamentally, these are achieved by
the devised PAW transformation operator T PAW mapping
softening pseudostates to their realistic all-electron states (near
the core region), usually denoted as |ψ〉 = T PAW|ψ̃〉.

Although the PAW operator is able to serve as a candidate
for restoring the wave functions in the core region, it does not
preserve the translational symmetry when the system is in a
uniform magnetic field. The cause of translational symmetry
breaking in the PAW formulation originates from the so called
gauge origin problem. However, it can be rectified by attaching
a field dependent phase to the translated waves, as suggested
in the GIPAW method. A similar idea can also be found in the
gauge invariant atomic orbital (GIAO) approach [53] in the
traditional quantum chemistry. Following the notations used
in previous GIPAW papers [7,28], the GIPAW transformation
operator is written as

T GIPAW = 1 +
∑
R,n

e(i/c)A(r)·R[|φR,n〉 − |φ̃R,n〉]

×〈p̃R,n|e(−i/c)A(r)·R, (1)

where A(r) is vector potential, R is the position of nuclei,
n is the orbital quantum number of electrons, φ/φ̃ is the
atomic/pseudoatomic orbital, and p̃ is the PAW projector.
Now the GIPAW operator maps the magnetic pseudostates
(GIPAW pseudostates) to the magnetic all-electron states
by |ψ〉B = T GIPAW|ψ̃〉B. For a local operator under GIPAW
transformation, its GIPAW expression (Ō) is related to its
all-electron counterpart (O) by

Ō = O +
∑

R,n,m

e(i/c)A(r)·R|p̃R,n〉

× [〈φR,n|e(−i/c)A(r)·RO e(i/c)A(r)·R|φR,m〉
− 〈φ̃R,n|e(−i/c)A(r)·RO e(i/c)A(r)·R|φ̃R,m〉]
×〈p̃R,m|e(−i/c)A(r)·R. (2)
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An alternative approach to elaborating the relationship be-
tween this extra phase and the translation symmetry is
presented in Appendix A. Using the gauge-phase included
PAW formulations, one can derive the GIPAW Hamiltonian
and the GIPAW current density operator for the chemical shift
calculation. For the details of the GIPAW induced current and
chemical shift derivations and formulations, we refer readers
to the literature [7,28] where either a norm-conserving or
ultrasoft pseudopotential scheme is developed, suitable for
the most commonly used local exchange-correlated potentials
(e.g., the LDA or the GGA). At present, the core region
is reconstructed to the all-electron atomic accuracy without
considering the self-consistency.

B. GIPAW DFT+U Hamiltonian

Before properly including the Hubbard term in the NMR
chemical shift calculations, we need to carefully examine the
two issues described in the previous subsection for deriving
the GIPAW DFT+U Hamiltonian. In regular DFT+U scheme
without the presence of a magnetic field, the Hubbard potential
can be concisely expressed in terms of the (all-electron) orbital
projector operator [50]

VHUB =
∑

I

V I
HUB =

∑
Iσmm′

U
I,σ
m,m′ |ϕRI ,m〉〈ϕRI ,m′ |, (3)

where m (or m′) denotes the atomic orbital quantum numbers
of electrons, I is the index of targeted nuclei, σ is the
spin index, and |ϕRI ,m〉 indicates the (all-electron) d- or
f -orbital functions centered at position RI of a nucleus. The
matrix elements U

I,σ
m,m′ are composed of occupation density

matrix elements of a set of localized d or f orbitals and
the screened Coulomb and exchange interaction parameters
(usually denoted as U and J , respectively). Its explicit form
depends on the specific DFT+U implementation and can be
found in the literature [34,38,50,54,55]. It should be noted that
the expression in Eq. (3) has included both a Hubbard-like
interaction term and a double counting term. The orbital
projector has to be properly revised when using pseudoatomic
orbitals. Using the PAW transformation, we can express the
pseudoversion of the PAW Hubbard potential

ṼHUB = (T PAW)†VHUBT PAW

=
∑

Iσmm′
U

I,σ
m,m′S

(0)|ϕ̃RI ,m〉〈ϕ̃RI ,m′ |S(0), (4)

where the overlap operator S(0) is defined as

S(0) = (T PAW)†T PAW

= 1 +
∑

R,n,m

|p̃R,n〉[〈φR,n|φR,m〉 − 〈φ̃R,n|φ̃R,m〉]〈p̃R,m|.

(5)

For the norm-conserving version, the charge augmentation
term in the square brackets is zero and the overlap operator
returns to an identity operator. The derivations in Eq. (4) above
have utilized the definitions of the PAW transformation |ϕ〉 =
T PAW|ϕ̃〉 and the overlap operator literally. It should be noted
that, unlike some PAW LDA+U formulations [56,57] where
approximations have been used in deriving the pseudoversion

of the projector operator, the expression of the PAW Hubbard
potential in this article, which can also be seen in Ref. [58],
doesn’t resort to any approximation and is analytically exact.

In an environment with an external uniform magnetic field,
both the PAW transformation operator and the Hubbard poten-
tial should have the forms which preserve the translational
invariance property. In that case, the PAW transformation
operator is replaced by the GIPAW operator and an additional
phase has to be attached to the projector operator in the
Hubbard potential. In short, the GIPAW Hubbard potential,
expanded in powers of B, can be written as

V̄HUB = (T GIPAW)†VHUB,BT GIPAW

≈ ṼHUB + 1

2c

∑
I

RI × 1

i

[
r,Ṽ I

HUB

] · B,

≡ V̄
(0)

HUB + V̄
(1)

HUB, (6)

where the subscription B indicates the presence of the
external magnetic field. Detailed derivations are presented in
Appendix A.

With the Hubbard potential complying with the GIPAW
scheme, the GIPAW transformed DFT+U Hamiltonian can
be summarized as an unperturbed term

H̄ (0) = 1

2
p2 + V loc +

∑
R

V nl
R +

∑
I

Ṽ I
HUB, (7)

and a first-order perturbed term

H̄ (1) = 1

2c

(
L +

∑
R

R × 1

i

[
r,V nl

R

]

+
∑

I

RI × 1

i
[r,Ṽ I

HUB]

)
· B, (8)

for the norm-conserving version [7]. An additional augmen-
tation term from the angular momentum operator, which is
not related to the Hubbard term, arises in the perturbed
Hamiltonian in Eq. (8) for the ultrasoft case [28]. Compared to
the standard (LDA/GGA) GIPAW Hamiltonian, the DFT+U

GIPAW Hamiltonian includes an additional Hubbard potential
in the unperturbed part and an extra term in the perturbed
Hamiltonian contributed from the gauge phase, which pre-
serves the transitional symmetry in the presence of a uniform
magnetic field.

C. GIPAW DFT+U induced current

In this subsection, we discuss the required modifications
of the induced current formulation when accommodating a
GIPAW DFT+U calculation. From the DFT+U Hamiltonian
developed in the previous subsection, a Hubbard correction
term is required to be appended in both the unperturbed
and the perturbed DFT Hamiltonian. These changes will
also be contained in the DFT+U induced current expression
implicitly.

To illustrate the changes in the calculation of the induced
current with a DFT+U calculation, it is helpful to review
the original GIPAW induced current formulations [7,28].
In the standard GIPAW NMR chemical shift method, the
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gauge invariant kinematic momentum has been adopted in
the definition of the orbital current density operator, J(r′) =
−(p + A(r′)

c
), which includes a paramagnetic term and a

diamagnetic term. This definition ensures the invariance of
its expectation value regardless of the choice of gauge origin.
The induced current in the GIPAW method is composed of a
bare, a paramagnetic correction, and a diamagnetic correction
term [7],

j(1)(r′) = j(1)
bare(r′) + j(1)

�p(r′) + j(1)
�d(r′). (9)

Three approaches have been developed for calculating the
orbital induced current, including the molecular, molecular
sum rule, and crystal approaches. The first two approaches are
only suitable for finite systems such as molecules and the last
approach has to be adopted for crystalline systems where the
periodic conditions have been imposed on the formulation. We
refer readers to the literature [7,28] for the detailed derivations
and expressions of the three approaches.

For the norm-conserving version, as an example, the
induced current in the molecular sum-rule approach is written
as

j(1)
bare(r′) = 4

∑
o

Re
[〈
�̄(0)

o

∣∣Jp(r′)G
(
ε(0)
o

)
H̄ (1)

∣∣�̄(0)
o

〉

− 〈
�̄(0)

o

∣∣Jp(r′)G
(
ε(0)
o

)B × r′

2c
· v

∣∣�̄(0)
o

〉]
, (10)

j(1)
�p(r′) = 4

∑
R′,o

Re
[〈
�̄(0)

o

∣∣�Jp
R′ (r′)G

(
ε(0)
o

)
H̄ (1)

∣∣�̄(0)
o

〉

− 〈
�̄(0)

o

∣∣�Jp
R′ (r′)G

(
ε(0)
o

)B × R′

2c
· v

(
ε(0)
o

)∣∣�̄(0)
o

〉]
,

(11)

and

j(1)
�d(r′) = 2

∑
R,o

〈
�̄(0)

o

∣∣�Jd
R(r′)

∣∣�̄(0)
o

〉
, (12)

where v = [r,H̄ (0) − ε(0)]/i is the (norm-conserving) velocity
operator [7].

For the DFT+U formulation, by observing the operators in
Eqs. (10)–(12), only the first-order perturbed Hamiltonian and
the unperturbed Hamiltonian in the velocity operator appear
in the bare and paramagnetic correction induced currents, i.e.,
Eqs. (10) and (11), which are required to be updated to the
corresponding DFT+U version. The same conclusion can
be made for the molecular and crystal approaches. For the
ultrasoft case, the necessary steps of adapting the Hubbard
potential to the induced current formula is exactly the same
way as those in the norm-conserving case discussed above.
A numerical validation for the DFT+U implementation is
presented in Appendix B.

D. Implementation

Because of the resemblance of the formulations between
the Hubbard correction potential and the PAW nonlocal
pseudopotential, it is convenient to incorporate the Hubbard
potential into the nonlocal pseudopotential, i.e., V nl → V

′nl =
V nl + VHUB, in which the Hubbard potential is rewritten as
VHUB = ∑

R V R
HUB with nonzero terms only at a subset of ion

sites RI in mind. In this way, the DFT+U GIPAW NMR
formulations are exactly the same as the original ones, except
for an updated nonlocal potential term which includes the
Hubbard correction term.

In practical implementations, we have adopted the Hubbard
correction potential in the simplified rotational invariant
version [50,55] with the double counting term in the form of
the fully localized limit [59]. The potential strength in Eq. (3)
is written as

U
I,σ
m,m′ = UI

[
δmm′

2
− nIσ

mm′

]
, (13)

where nIσ
mm′ is the occupation density matrix. In this expression,

the effective Hubbard parameter UI is related to the spheri-
cally averaged screened Coulomb interaction and screened
exchange interaction by UI = U − J [55]. For the Hubbard
potential, the basis functions of the projector operator are a
set of pseudoatomic orbitals, while, for the nonlocal potential,
they are a set of PAW projectors.

In the evaluation of the induced current, the velocity
operator v is another essential operator required to be updated
to the DFT+U version since it implicitly includes the Hubbard
potential in the unperturbed Hamiltonian in the commutator.
The position operator in the commutator is ill defined in
the crystal method because of the periodic condition and
can be conveniently transformed to a solvable modulation
formalism [60]. An augmented version of the velocity operator
should be used for the ultrasoft case [28]. A numerical
validation of evaluating the DFT+U velocity operator and
the equivalence of chemical shift calculations among three
induced current approaches are presented in Appendix B.

Using the updated DFT+U induced current, the induced
magnetic field at each nuclear site can be evaluated in the
same way as described in previous GIPAW papers [7,28]
and will not be repeated here. However, when evaluating the
macroscopic susceptibility χ , which approximates (apart from
a factor) the G = 0 component of the bare induced field in the
reciprocal space, the formulation involves a velocity operator
and should be updated with the DFT+U version as well.
Finally, the total chemical shift includes contributions from
the induced field due to valence electrons plus the contribution
from the core electrons which is treated as a nucleus-dependent
constant [61].

III. CALCULATIONS AND RESULTS

The DFT+U is generally applied to strongly correlated
materials for better electronic structures than those calculated
with standard exchange-correlation functionals. Hence it is
instructive to apply the newly implemented DFT+U GIPAW
chemical shift calculations to materials containing localized
3d or 4f electrons. As the first test run of our implementation,
it is instructive to target the relatively simple transition metal or
rare-earth metal oxides where their experimental 17O chemical
shifts are available and reliable.

Early studies on 17O chemical shieldings (or shifts) in
silicates [25] and alkaline-earth metal oxides [62] have shown
that the GIPAW (with the LDA or PBE [63] correlation
functional) chemical shieldings are generally in good agree-
ment with experimental measurements. The experimentally
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FIG. 1. Calculated 17O NMR chemical shieldings in selected
transition-metal and rare-earth oxides compared with experimental
chemical shifts [65–68] and previous results (brown cross symbols
for silicates [25] and black crosses for alkaline-earth oxides [62]).
Present results are marked with the triangular symbols, colored in
blue and red for PBE and PBE+U calculations, respectively. The
dotted and dashed lines are linear regressions explained in the context.

measured chemical shift, δ, is related to the calculated isotropic
chemical shielding, σiso = tr(σ )/3, by δ = σref − σiso, where
σref is the isotropic chemical shielding for a reference material.
Because of the definition, it is straightforward to compare
the experimental chemical shifts to the calculated chemical
shieldings together with a linear regression analysis. In this
way, the quality of GIPAW calculations can be measured by
the slope of a regression line and corresponding deviations
(e.g., the root mean square error). In practice, we expect that
the DFT 17O chemical shift for strongly correlated oxides
might be deviated from the regression lines and a DFT+U

calculation, with suitable material dependent U value, could
bring the results back to the regression lines.

Based on the reasonings above, we study the 17O NMR
chemical shifts within the DFT/DFT+U for several 3d- or
4f -electron contained oxides, including TiO2 polymorphs,
ZnO, Ti2O3, La2O3, and CeO2. The previously problematic
case [64], CaO, is also revisited. The calculated isotropic
chemical shieldings are compared with experimental chemical
shifts as shown in Fig. 1. In the following context, we refer
the term, chemical shielding, to the theoretically calculated
quantities and chemical shift to experimental measurements
in general. However, in some cases, where it is difficult to
distinguish theoretical results or experimental data, only the
chemical shift will be mentioned.

The DFT+U formulation for the GIPAW NMR chemical
shielding calculation described in this work is implemented
in CASTEP [11]. The 17O NMR chemical shieldings in the
aforementioned oxides are calculated with the PBE/PBE+U

using the on-the-fly ultrasoft pseudopotential defined in
CASTEP [11]. Particularly, for metallic ions, (3d, 4s) electrons
in Zn, (3s, 3p, 3d, 4s) electrons in Ti, and (4f , 5s, 5p, 5d,
6s) electrons in La and Ce are treated as valence electrons.
The chemical shieldings are calculated using the crystal
approach with geometric structures optimized with respect to
the PBE/PBE+U . The core contribution to the chemical shift

is treated as rigid and is evaluated in the atomic code [61]. The
plane wave cutoff energy and Monkhorst-Pack [69] k-point
grids are chosen case by case so that the calculated shieldings
are converged within 1 ppm for each oxide. Previous 17O
chemical shift results of silicates [25] and alkaline-earth
oxides [62] are also reproduced in Fig. 1. Two regression lines
are fitted as the reference for the presently studied materials.
The regression line (a global fit) with a slope of −1.15 is
obtained from results including all silicates and alkaline-earth
metal oxides. Meanwhile, a second regression line (a local
fit) with a slope of −1.04 is obtained from the data with
experimental chemical shifts within 300 and 700 ppm. The
slope of the second regression line indicates that, around the
aforementioned range, earlier DFT GIPAW results agree with
the experimental results very well and can be used as a standard
reference for the present study.

We first revisit the problematic case of GIPAW calcu-
lated PBE 17O chemical shielding for CaO. In the previous
study [64] where the norm-conserving pseudopotential was
used, it has shown that the large deviation (124 ppm) of the
17O chemical shift for CaO is due to the improper description
of the unoccupied Ca-3d level. A tentative correction method
has been proposed by imposing an upward shift on the Ca-3d

atomic energies without resorting to advanced exchange-
correction potentials. We have reproduced the deviation,
using the ultrasoft pseudopotentials instead, with the value of
−150 ppm for the 17O chemical shielding in CaO, compared to
the previous −156.5 ppm using norm-conserving pseudopoet-
ntails. As shown in Fig. 1, our value is 53–77 ppm below
the two regression lines. Since the DFT+U can generally shift
upward the unoccupied local orbital energies, it is expected that
the DFT+U can be used to fix the overestimated 17O chemical
shift for CaO. Indeed, we have found that the chemical shift
can be corrected within the two regression lines with the values
of U between 1.14 and 1.62 eV for the Ca-3d orbitals. When
using the level shift method [64], a rigid shift on the Ca-3d

orbital energy between 1.08 and 1.88 eV is required instead.
In the next, we discuss 17O chemical shielding results

in transition-metal oxides. Among the selected materials,
PBE produces reasonable 17O chemical shieldings for ZnO
(wurtzite phase) and TiO2 polymorphs (rutile, anatase, and
brookite phases) when compared to the global fit. For
TiO2 polymorphs, although the PBE+U has been commonly
adopted for obtaining better energy gaps and optical spectra,
their PBE ground states are generally considered reasonable
in the standard DFT level due to their less localized and
weaker correlated Ti 3d electrons. The latter argument is
consistent with the present chemical shielding calculations
where PBE results are in good agreement with the regression
lines. For comparison, the PBE+U chemical shieldings
calculated with U = 4 eV, which significantly deviate from
the regression line, are also presented in the figure. The PBE
chemical shift in ZnO, which locates closely at one of the
regressions, is unexpected at first. In ZnO, it has been generally
recognized that PBE severely underestimates the energy gap
and the binding energies for Zn-3d bands and overestimates
the hybridization between O-2p and Zn-3d bands [70]. A
PBE+U calculation with U = 7 eV applied to Zn-3d orbitals
is generally considered to be a better approach for obtaining
a reasonable electronic ground state. The corresponding
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chemical shielding moves away from the global fit by around
only 8 ppm. The tiny shift after applying the Hubbard U

is due to the forbidden linear response coupling between
O-2p and Zn-3d bands where a similar mechanism has been
explained in earlier chemical shift studies for sulfides [71]. As
for Ti2O3 (corundum phase), a PBE shielding calculation is
prohibitive since the PBE wrongly predicts a metallic phase in
contradiction to an experimentally observed small energy gap
of about 0.1 eV [72]. Although it is possible to open the band
gap using the PBE+U with U = 3 eV, the resulting chemical
shift strongly deviates from the regression, indicating that the
Hubbard correction approach is not suitable for this material.
The inadequacy of a pure DFT+U calculation for Ti2O3 can
be related to its band gap formation [73–77]. For instance, a
cluster LDA+DMFT study by Poteryaev et al. [75] indicates
that the small energy gap is a result of the interplay of the
strong bonding between the Ti-Ti pair and the correlations of
the Hubbard potential.

For the rare-earth oxides, La2O3 (hexagonal phase) and
CeO2 (fluorite phase), the PBE+U method is required to
attain results in line with the regressions. In La2O3, there are
two inequivalent oxygen sites, one octahedrally coordinated
(O1) and the other tetrahedrally coordinated (O2). Based on
the relative values of the chemical shieldings either with the
PBE or the PBE+U method, the experimental and theoretical
assignments of the two inequivalent oxygen sites agree with
each other. Relative to the local fit, the deviations of chemical
shifts, −21 (O1) and 4 (O2) ppm, obtained from the PBE+U

with U = 2 eV, are greatly improved from those of PBE’s,
−85 (O1) and −47 (O2) ppm. For CeO2, the PBE result
severely deviates from the reference line by −315 ppm, which
can be significantly reduced to around only −5 ppm using the
PBE+U with U = 5 eV. For readers’ reference, a value of
around 5 eV for the Hubbard U is commonly used in DFT+U

electronic structure studies for rare-earth oxides [78–84]. We
further investigate the reason for such dramatic changes on the
PBE+U chemical shifts for these two materials. In Tables I
and II, we tabulate the calculated shieldings decomposed
into groups of isolated valence bands characterized by their
atomic orbital signatures for La2O3 and CeO2, respectively.
Both tables indicate that the chemical shieldings, as well as
the corresponding changes upon the Hubbard corrections, are
dominated by the O-2p bands. More insightful information
can be obtained by comparing the dominant component to

TABLE I. Calculated PBE/PBE+U 17O chemical shielding
(in ppm) for La2O3. Contributions are decomposed into groups of
isolated bands indicated by their atomic characters. Values in the
parentheses are the changes relative to the PBE result.

La2O3 (O1) La2O3 (O2)

Bands PBE PBE+U PBE PBE+U

O-1s (core) 271.08 271.08 271.08 271.08
La-5s −0.83 −0.81 (0.02) −0.78 −0.77 (0.01)
O-2s −5.88 −5.29 (0.59) −5.07 −4.43 (0.64)
La-5p 20.01 17.46 (−2.55) 48.67 44.96 (−3.71)
O-2p −646.73 −580.47 (66.26) −760.82 −705.08 (55.74)

All −362.35 −298.03 (64.32) −446.92 −394.24 (52.68)

TABLE II. Calculated PBE/PBE+U 17O chemical shielding
(in ppm) for CeO2. Contributions are decomposed into groups of
isolated bands indicated by their atomic characters. Values in the
parentheses are the changes relative to the PBE result.

CeO2

Bands PBE PBE+U

O-1s (core) 271.08 271.08
Ce-5s −1.10 −1.08 (0.02)
O-2s/Ce-5p 22.86 18.07 (−4.79)
O-2p −1310.90 −997.62 (313.28)

All −1018.06 −709.55 (308.51)

their PBE/PBE+U density of states, as shown in Fig. 2.
The figure tells us that the changes of the PBE+U chemical
shifts originate from the coupling between O-2p and metallic
4f bands, due to the linear response. For La2O3, the La-5d

bands are inert to the Hubbard term; however, a slightly
downward shift can be found for Ce-5d bands which might
result in noticeable contributions to the change of chemical
shift through O-2p and Ce-5d couplings. Nevertheless, the
large separations in energy between O-2p and Ce-5d bands
has reduced the strength of the linear response coupling.
This is verified by applying Hubbard U to Ce-5d orbitals
instead and we found that, with U = 5 eV, it only results
in 30 ppm changes in the chemical shift, about one-tenth of
Ce-4f orbitals.

Finally, we would like to address the values of Hubbard
U adopted in the selected materials. In the present study,
unless otherwise mentioned above, the values of Hubbard
U we adopted in our calculations can be found in literature
[48,78–85], including calculated or empirical values. A par-
ticular case is the U value of La-4f , where we have used a
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FIG. 2. Comparison of PBE and PBE+U total density of states
for (a) La2O3 and (b) CeO2. The major atomic characteristics are
indicated near the spikes.
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value of 2 eV fitting better to the regression lines. A value of
5 eV suggested by Ref. [78] will overshoot the corrections for
the chemical shift in La2O3. In addition, we also found that,
for each material, the changes of the chemical shifts due to the
Hubbard term are incrementally correlated to the amount of
the U values.

IV. CONCLUSIONS

In conclusion, we have adapted the DFT+U method into
the GIPAW NMR chemical shift calculation. In order to
incorporate the nonlocal Hubbard correction potential into the
GIPAW Hamiltonian, the Hubbard potential has to comply
with the GIPAW transformation. Before transforming the
Hubbard potential, an extra phase is explicitly appended to
the projector basis of the Hubbard potential which ensures the
translational symmetry under an external uniform magnetic
field. The induced current formulations for the chemical shift
calculation have to be adjusted according to the DFT+U

GIPAW Hamiltonian. Both the plane wave norm-conserving
and ultrasoft versions of the DFT+U NMR calculation have
been implemented. Since the Hubbard correction potential is
nonlocal and orbital dependent, the derivations could provide
some insights for further development of the GIPAW NMR
method (e.g., with orbital dependent or nonlocal potentials).

The implementation has been applied to the 17O chemical
shift calculation for a selection of technically interesting
materials, including transition-metal oxides and rare-earth
oxides. For most of the studied oxides, the electronic structures
are inappropriately determined by the LDA/PBE due to the
presence of 3d or 4f localized electrons. A comparison of the
calculated 17O chemical shifts for these materials between the
PBE and PBE+U is presented and discussed. For La2O3 and
CeO2, with physically reasonable U values, the implemented
PBE+U approach is able to obtain more appropriate chemical
shifts than the PBE approach, while for ZnO and TiO2

polymorphs, the PBE chemical shift is sufficiently accurate.
However, neither the PBE nor the PBE+U is able to provide
a good description for Ti2O3. The present study also suggests
that the GIPAW NMR chemical shift calculation provides an
additional degree of freedom for validating the problematic
exchange-correlation potentials used in DFT calculations.
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APPENDIX A: GIPAW METHOD
AND THE HUBBARD POTENTIAL

In order to include the Hubbard correction potential in
the GIPAW Hamiltonian, we need to ensure the translational
invariance of Hubbard potential in the presence of a uniform
magnetic field. In addition, the expression of the nonlocal Hub-
bard potential has to comply with the GIPAW transformation.

As an alternative view of understanding the additional phase
in the GIPAW formulation, it is convenient to consider the
translation of some atomic states. Without the presence of the
magnetic field, the atomic states centering at position RI are
related to those at origin Ro by a translation operator so that
we have

|ϕRI ,m〉 = e−ip·RI |ϕRo,m〉. (A1)

However, the expression of the translation operator is no longer
accurate in the presence of an external uniform magnetic field.
Instead, we can use the magnetic translation operator proposed
by Brown [86] to obtain the correct expression. With the gauge
origin at Ro, the translation becomes

|ϕRI ,m〉B = e−i(p− 1
c

A(r))·RI |ϕRo,m〉 = e
i
c

A(r)·RI |ϕRI ,m〉, (A2)

where the subscript B indicates the presence of the magnetic
field. It should be noticed that we have noted |ϕRo,m〉B =
|ϕRo,m〉 at the gauge origin, and the translation generator is
different from the familiar kinematic momentum [p + 1

c
A(r)].

Equation (A2) shows that the magnetic atomic states are related
to their nonmagnetic ones with a position and vector potential
dependent phase under a chosen gauge. Hence, consistent
with the symmetric gauge used in previous GIPAW NMR
articles where A(r) = 1/2(B × r), the Hubbard potential in
the presence of the magnetic field is written as

VHUB,B =
∑

I

e
i

2c
r·RI×BV I

HUBe
−i
2c

r·RI×B. (A3)

Applying the GIPAWtransformation to obtain the pseudover-
sion Hubbard potential, we can derive the GIPAW Hubbard
potential as follows:

V̄HUB = T GIPAW†
VHUB,BT GIPAW

= T GIPAW†T GIPAW
∑

Iσmm′
e

i
2c

r·RI×BU
I,σ
m,m′

× |ϕ̃RI ,m〉〈ϕ̃RI ,m′ |e −i
2c

r·RI×BT GIPAW†T GIPAW

=
∑

Iσmm′
e

i
2c

r·RI×B(
U

I,σ
m,m′S

(0)|ϕ̃RI ,m〉〈ϕ̃RI ,m′ |S(0)
)

× e
−i
2c

r·RI×B

≈ ṼHUB + 1

2c

∑
I

RI × 1

i

[
r,Ṽ I

HUB

] · B, (A4)

where the gauge phases between operators can be canceled
out and S0 = (T PAW)†T PAW is the overlap operator. The
second and third GIPAW operators in the second equality of
Eq. (A4) are responsible for transforming the pseudoatomic
basis into the corresponding all-electron orbital basis of the
Hubbard potential. In the last line, the exponential operators
are expanded and approximated up to the first order of the
magnetic field.

APPENDIX B: NUMERICAL VALIDATION

The commute of the position operator and the Hubbard
potential (for short, the Hubbard commutator), [r,Ṽ I

HUB]/i,
appearing both in the velocity operator and the first-order
perturbed Hamiltonian, is the major modification required for
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TABLE III. Band gradients (in eV Å) calculated at k = (0.48,0.23,0.38) using numerical derivative (�εn��k) and velocity operator (v̂DFT

and v̂DFT+U ) for zb-ZnO with PBE+U . The absolute calculated values are shown for the numerical derivative approach and only the relative and
percentage (in the parentheses) errors are shown for the velocity operator approaches. Values calculated with velocity operator v̂DFT exclude
the contribution from the Hubbard commutator term.

Method Band NCPP USPP
x̂ ŷ ẑ x̂ ŷ ẑ

�εn��k 1 0.3491 0.0755 −0.0135 0.3777 0.0835 −0.0120
2 −0.1135 0.2826 −0.1691 −0.1506 0.4132 −0.1196
3 0.4362 −0.2511 0.2546 0.4872 −0.3036 0.2581
4 0.4267 0.5702 −0.0930 0.5487 0.6218 −0.0890
5 0.2981 −0.2296 0.3752 0.3236 −0.2251 0.3907
6 1.0204 0.9129 0.1170 0.9979 0.8949 0.1065
7 −1.1630 −2.0859 −2.2374 −1.3426 −2.2404 −2.3345
8 −2.2029 −1.3656 1.8543 −2.2910 −1.4156 1.9278
9 −2.3795 0.6793 0.0730 −2.4755 0.7058 0.0595

v̂DFT 1 0.0885 (25.34) 0.0654 (87.19) 0.0253 (−187.10) 0.0768 (20.34) 0.0614 (73.55) 0.0247 (−197.23)
2 0.0957 (−84.25) −0.0928 (−32.84) 0.0335 (−19.78) 0.1139 (−75.64) −0.1027 (−24.82) 0.0115 (−9.60)
3 −0.0815 (−18.68) 0.0624 (−24.84) −0.0535 (−21.01) −0.0676 (−13.89) 0.0647 (−21.30) −0.0442 (−17.13)
4 −0.0451 (−10.58) −0.0878 (−15.37) 0.0266 (−28.58) −0.0407 (−7.42) −0.0722 (−11.60) 0.0217 (−24.36)
5 −0.0725 (−24.31) 0.0956 (−41.62) −0.1024 (−27.30) −0.0607 (−18.74) 0.0821 (−36.46) −0.0828 (−21.19)
6 −0.1609 (−15.76) −0.1825 (−19.99) 0.0119 (10.15) −0.1203 (−12.05) −0.1398 (−15.62) 0.0178 (16.69)
7 0.0274 (−2.35) 0.1212 (−5.81) 0.0836 (−3.73) 0.0116 (−0.86) 0.0965 (−4.30) 0.0625 (−2.67)
8 0.0776 (−3.52) 0.0233 (−1.70) −0.0182 (−0.98) 0.0606 (−2.64) 0.0170 (−1.19) −0.0071 (−0.36)
9 0.0980 (−4.11) 0.0110 (1.61) −0.0077 (−10.56) 0.0748 (−3.02) 0.0145 (2.04) −0.0057 (−9.65)

v̂DFT + U 1 −0.0002 (−0.06) −0.0002 (−0.21) −0.0002 (1.18) −0.0041 (−1.08) −0.0022 (−2.59) −0.0012 (10.08)
2 0.0000 (0.03) 0.0004 (0.14) 0.0005 (−0.27) −0.0062 (4.11) 0.0065 (1.58) −0.0011 (0.92)
3 0.0004 (0.09) −0.0001 (0.02) −0.0001 (−0.02) 0.0047 (0.96) −0.0054 (1.76) 0.0013 (0.50)
4 −0.0002 (−0.03) 0.0002 (0.02) 0.0005 (−0.48) 0.0055 (1.00) 0.0019 (0.30) −0.0036 (4.06)
5 −0.0001 (−0.04) 0.0002 (−0.10) 0.0002 (0.04) 0.0034 (1.06) −0.0018 (0.81) 0.0041 (1.04)
6 −0.0001 (−0.01) 0.0005 (0.05) 0.0001 (0.10) −0.0023 (−0.23) 0.0017 (0.19) −0.0003 (−0.24)
7 0.0000 (−0.00) 0.0000 (0.00) 0.0002 (−0.00) 0.0024 (−0.18) 0.0026 (−0.11) 0.0009 (−0.03)
8 0.0001 (−0.00) 0.0001 (−0.00) 0.0000 (0.00) 0.0012 (−0.05) 0.0000 (0.00) −0.0007 (−0.03)
9 0.0002 (−0.00) −0.0001 (−0.01) 0.0002 (0.20) 0.0013 (−0.05) 0.0002 (0.03) −0.0003 (−0.57)

the DFT+U induced current calculation. We have carefully
examined the numerical accuracy for our DFT+U NMR
chemical shift calculation by verifying the DFT+U band
gradient and the numerical consistency among three chemical
shift formulations as presented below.

1. Velocity operator

The augmented velocity operator, or equivalently the
derivative of the Hamiltonian with respect to crystal mo-
mentum k, introduced in Sec. II C is one of the important
operators in evaluating induced currents. The operator is also
closely related to the calculation of the absorption spectrum
in the electric dipole approximation. In the DFT+U version,
extra contribution from the the Hubbard commutator has to be
accounted for. In practical implementation, the expectation
value is evaluated by using a modulation approach [60],
which overcomes the ill-defined position operator in a periodic
system. For the purpose of verifying the accuracy of the
chemical shift calculation, we can examine the calculated band
gradient.

Table III shows the calculated band gradients for the nine
highest valence bands at k = (0.48,0.23,0.38) for zinc-blende
phase ZnO (zb-ZnO). A nonspecial k point is chosen to
avoid band crossings and U = 7 eV for the PBE+U . The

band gradients are calculated by three approaches. First, the
numerical approach calculates the band gradient directly by the
change of the band energy with respect to a small shift in the k
point, i.e., �εn/�k. Second, the band gradients are calculated
using the velocity operator without the Hubbard commutator,
v̂DFT. And third, the calculation is carried out using the
velocity operator in the DFT+U formulation, v̂DFT+U . The
results evaluated from the latter two approaches are compared
with the first one whose values are supposed to be exact. In
summary, the velocity operator results are most accurate, with
the error less than 0.1%, in the case of the DFT+U velocity
operator approach with norm-conserving pseudopotentials. A
slight increase of error (up to a few percent) can be found
when using the ultrasoft pseudopotentials. The source of errors
has been identified originating from the deviations of the
direct product of the PAW projector functions (in the overlap
matrix) and the atomic orbital functions (in the Hubbard
potential) in which both functions have been conveniently
interpolated in the reciprocal space. In the next subsection, we
further verified that the error in the ultrasoft pseudopotential
plays only insignificant variations in the chemical shift
results. Nevertheless, the error can increase substantially to
several tens of percent if the contributions from the Hubbard
commutator is ignored, as shown in the v̂DFT section in
Table III.
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TABLE IV. PBE and PBE+U chemical shieldings for nuclei in
TiO2 and TiCl4 molecules. For comparison, results are calculated
with norm-conserving and ultrasoft pseudopotentials using various
induced current formulations.

System Site Approach PBE PBE+U

NCPP USPP NCPP USPP

TiO2 Crystal −383.48 −379.00 −338.28 −329.13
47Ti Molecular −383.67 −379.38 −338.46 −329.62

Sum rule −383.66 −379.46 −338.45 −329.64

Crystal −843.49 −838.86 −753.66 −750.49
17O Molecular −843.81 −839.12 −753.96 −750.71

Sum rule −843.72 −838.80 −753.87 −750.39

TiCl4 Crystal −971.57 −930.20 −973.78 −936.64
47Ti Molecular −971.60 −930.85 −973.84 −937.33

Sum rule −971.60 −930.94 −973.84 −937.41

Crystal −958.46 −988.17 −905.44 −936.27
35Cl Molecular −958.87 −988.53 −905.89 −936.57

Sum rule −958.87 −988.53 −905.89 −936.57

2. Molecular and crystal approaches

In the GIPAW NMR chemical shift calculation, the response
currents are formulated into three approaches: molecular,
molecular with sum rule, and crystal approaches [7,28].
Calculations for periodic systems are restricted to the crystal
approach; however, molecular calculations can be simulated
with crystal approach using the supercell technique. For both

molecular approaches, the position operator in the induced
current calculation has been replaced by a sawtooth function
antisymmetrically at the geometric center of a molecule. A
generalized f -sum rule [7,28] has been utilized to convert
the molecular approach into the molecular sum rule approach.
During the conversion, a commutator term in both bare and
paramagnetic correction currents has been converted into the
velocity operator. We use this property to justify the negligence
band-gradient error in the ultrasoft potential case for chemical
shift calculations. While in the crystal approach, which is
extended from the molecular sum rule formulation, auxiliary
functions have been devised to replace the ill-defined position
operator. Detailed derivations can be found in the original
GIPAW papers [7,28].

For completeness, the DFT+U induced current has been
adapted in the aforementioned three approaches. We have
verified the implementation by examining the consistency of
chemical shieldings among three approaches. The calculations
are performed on the TiO2 and TiCl4 molecules using
PBE/PBE+U (U = 3 eV) and geometrically optimized in a
large cubic cell (volume = 1000 Å3). The calculated isotropic
chemical shieldings, σiso, for all types of nuclei are tabulated in
Table IV. It shows that the calculated chemical shieldings are
consistent among the three approaches, with the errors within
1 ppm either using the DFT or DFT+U . The consistency
has verified the gauge invariant criterion for the formulations.
In addition, the extreme agreements between the molecular
and the molecular sum-rule approaches suggest the negligible
error arising from the Hubbard commutator evaluated with the
ultrasoft pseudopotentials.
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