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Critical eigenstates and their properties in one- and two-dimensional quasicrystals
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We present exact solutions for some eigenstates of hopping models on one- and two-dimensional quasiperiodic
tilings and show that they are “critical” states, by explicitly computing their multifractal spectra. These eigenstates
are shown to be generically present in 1D quasiperiodic chains, of which the Fibonacci chain is a special case.
We then describe properties of the ground states for a class of tight-binding Hamiltonians on the 2D Penrose and
Ammann-Beenker tilings. Exact and numerical solutions are seen to be in good agreement.
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I. INTRODUCTION

In quasicrystals, the arrangement of atoms is nonperiodic
yet long-range ordered. This type of quasiperiodic order is
best illustrated by considering tilings. These are structures
obtained by packing a small number of basic elements, or
tiles, according to certain specified rules. Quasiperiodic tilings
can exhibit noncrystallographic symmetries: in this article we
will focus on the Ammann-Beenker tiling (Fig. 1), which has
an eightfold orientational symmetry, and on the celebrated
Penrose tiling, which has a fivefold symmetry.

The single-electron properties of 1D quasicrystals are rather
well understood: many spectral properties of quasiperiodic
chains are known, and the eigenstates are also well char-
acterized. In contrast, even the simplest models of two-
and three-dimensional quasicrystals have resisted theoretical
investigations. Consider, for example, the Ammann-Beenker
tiling (Fig. 1), and a tight-binding model for noninteracting
electrons hopping between nearest-neighbor vertices on this
tiling:

H = −t
∑
〈i,j〉

c
†
j ci + H.c. (1)

Although this Hamiltonian is simple, no solutions were known
for any of its eigenstates, apart from trivial confined eigenstates
at the middle of the spectrum [1]. Such states are not specific
to quasiperiodic systems and may be present in tight-binding
models on other bipartite lattices as, for example, the T3
(“dice”) lattice.

This situation changed recently, when Kalugin and Katz
[2], building on the work of Sutherland [3], deduced the form
of the ground state of the Hamiltonian (1) on the Penrose
and Ammann-Beenker tilings. Taking their cue from periodic
crystals, where Bloch states are given by ψk(r) = uk(r)eik.r

with u a periodic function, Kalugin and Katz [2] proposed that
the ground state of the model (1) be given by a product of two
factors, namely,

ψ(i) = C(i)eκh(i). (2)

In this expression, κ is a real constant [note that in Ref. [2]
the notation λ = exp(2κ) is used]. The pre-exponential factor
C(i) of ansatz (2) is a quasiperiodic function, a site-dependent
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amplitude that depends only on the arrangement of the atoms
around the site i. In other words, C(i) � C(j ) if the arrangement
of the atoms around site i matches the arrangement of the atoms
around site j out to a large distance. The nonlocal height field
h(i) in the exponential depends on the geometrical properties
of the tiling. We will refer to eigenstates of this form henceforth
as Sutherland-Kalugin-Katz or SKK eigenstates.

In this paper, we consider generalizations of the results of
Kalugin and Katz to other tight-binding models. We consider
first the relatively simple case of models on 1D quasiperiodic
chains, and show that they admit eigenstates of a form similar
to that given in Eq. (2). These states are found in the center
of the spectrum. On the other hand, the ground states of the
1D models we consider do not generically have this type of
structure, as we will explain at the end of Sec. II.

Considering 2D tight-binding models on the Ammann-
Beenker and Penrose tilings, we show that the ground states
continue to have the SKK structure even when the Hamiltonian
(1) is generalized to include onsite potentials. We show
that these eigenstates are critical, i.e., neither localized nor
extended, by an explicit analytical calculation of generalized
fractal dimensions. These exact results provide confirmation
of a long-held surmise based on numerical calculations [4].

This paper is organized as follows. In Sec. II, we present ex-
act solutions for the one-dimensional case and their associated
properties. In Sec. III, we consider models on two-dimensional
tilings, namely, the Ammann-Beenker and Penrose tilings.
We show that they are SKK eigenstates, whose multifractal
properties are calculated and compared with numerical data.

II. SKK STATES ON 1D CHAINS AND THEIR PROPERTIES

In this section, we will focus on one-dimensional models,
which provide a good starting point in the study of SKK-
like eigenstates. Hopping models on a number of different
aperiodic chains will be discussed. For definiteness, we begin
with the example of the Fibonacci chain.

A. The Fibonacci chain and hopping Hamiltonian

It will be useful in the following discussion to introduce
some notation, along with a reminder of basic definitions. Let
us introduce the Fibonacci substitution rule S, acting on the
two-letters alphabet A = {a,b}:

S :

{
a → ab,

b → a.
(3)
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FIG. 1. A patch of the Ammann-Beenker tiling.

Letting the substitution act repeatedly on the letter b generates
a sequence of words Cl = Sl(b) of increasing length. Note that
the lengths of the words are Fibonacci numbers. In the limit
l → ∞, one obtains an infinite Fibonacci word (see Ref. [5]
for more details on symbolic substitutions).

To the Fibonacci word, we associate a collection of hopping
amplitudes {ti}, in the following way:

ti =
{
ta if the letter i is a,

tb if the letter i is b.
(4)

The Fibonacci Hamiltonian is then built using this sequence
of hoppings:

H =
∑

i

tic
†
i+1ci + H.c. (5)

In anticipation of the two-dimensional model of Sec. III,
and at the risk of belaboring the obvious, we note that the
letters a and b play the role of 1D tiles, and that “atoms”
are located in between the tiles. Up to a global rescaling of
the energies, the only free parameter of this Hamiltonian is the
ratio of the two hopping amplitudes ρ = tA/tB . If ρ = 1, the
chain is periodic. If ρ = 0 or ρ = ∞, the chain is a collection
of decoupled molecules. We will exclude these three trivial
cases and assume ρ �= 0,1,∞ henceforth.

It is well known that the spectrum of the Fibonacci
Hamiltonian is fractal [6], as illustrated in the top panel of
Fig. 2, which shows the integrated density of states, idos(E)
defined by the fraction of states of energy smaller than E. The
fractal dimensions of the spectrum can be computed in the
limits ρ ∼ 1 [7] and ρ 	 1 [8]. The structure of the eigenstates
is also well understood in these two limits [9–12]. Away from
these limits, however, the structure of the eigenstates is not
known, with the notable exception of the E = 0 state at the
center of the spectrum shown in Fig. 2. This state is of the
SKK type, as we will discuss in the next section. In contrast,
as we mentioned in the introduction, the 1D ground state does
not have the SKK form, for reasons which will be discussed at
the end of this section.

1. The E = 0 eigenstate

The Hamiltonian (5) is particle-hole symmetric, i.e., to an
eigenstate at energy E corresponds an eigenstate at energy −E,
which is related to the former by a sign change on the
subchain of even (or odd) sites. In particular, the central state at

(a)

(b)

FIG. 2. (a)The integrated density of states of the model (5) with
ρ = 0.5. (b) Absolute value of wave-function amplitudes in the E = 0
state.

idos = 1/2, which we wish to study, has energy E = 0 and
is doubly degenerate. We recall that this state can be built
using the so-called trace-map method, used, for instance,
in Ref. [13] to obtain a description of this state and, in
particular, to compute its fractal dimensions. The fractal
dimensions of this state can also be computed exactly using
a renormalization-group approach [9]. We wish to show now
that the E = 0 state is an SKK like state (2). To do this, we
first introduce a decoration of the chain by arrows and a height
field which is the integral of the arrows.

2. Arrows and height field

The tight-binding equations (5) for the central state are

ti+1ψ(i + 2) + tiψ(i) = 0. (6)

Even and odd subchains are seen to be completely decoupled,
so that one of the two E = 0 eigenstates can be chosen to
vanish on the odd subchain, and the other state to vanish on
the even subchain. We focus on the first of these eigenstates,
designated by ψ . By symmetry all the same properties will
also hold for the state living on the odd sites.
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(a)

(b)

FIG. 3. (a) A segment of the Fibonacci chain showing a sequence
of tA (single bond) and tB (double bond) couplings. The arrow field
and the associated height field are shown for one of the subchains
(the blue line is drawn to guide the eye). (b) The height field on a
larger piece of the Fibonacci chain.

Rewriting the tight-binding equations (6), we have

ψ(2(i + 1)) = −ρA(2i→2(i+1))ψ(2i), (7)

where we have introduced the arrow function A, defined on
pairs of bonds, as follows:

A :

⎧⎪⎨
⎪⎩

A(ab) = +1,

A(ba) = −1,

A(aa) = 0,

A(bb) = 0,

(8)

where the last case of two consecutive b bonds, not present
in the Fibonacci chain, is included for future generalizations.
The name “arrow” refers to the fact that one can associate to
each pair of bonds an arrow pointing to the right (+1), or to
the left (−1) or neither (0), cf. Fig. 3.

Iterating the relation (7), one obtains the wave function in
terms of a height function, h(m)

ψ(2m) = (−1)mρh(m)ψ(0), (9)

where

h(m) =
∑

0�i<m

A(2i → 2(i + 1)). (10)

The height function is thus the integral of the arrow field (see
Fig. 3) which is itself determined by the quasiperiodic structure
of the chain. Comparing Eq. (9) with Eq. (2), one sees that
the central state itself has not the SKK form, but writes as the
product of an SKK and a periodic function:

ψ(2m) = (−1)m exp (κh(2m)) (11)

with κ = ln(ρ). In the periodic limit ρ → 1, one recovers the
Bloch state ψ(2m) = (−1)m.

Note that the reasoning leading to Eq. (9) is valid for an
arbitrary sequence of couplings, random or nonrandom. It
is instructive to consider an example of a disordered chain
for which the distribution of a and b bonds is random. We
consider the case of a and b bonds distributed randomly,
independently and in equal proportion along the chain. Then
the arrow function is randomly distributed, with zero mean
〈A〉 = 0, and the distribution of heights for the random chain
is Gaussian, by virtue of the central limit theorem. The typical
height corresponds to the standard deviation, which is

σ rand(m) ∼
m→∞

√
m (12)

to leading order in m. Equation (9) then implies that the
wave function must have a stretched exponential form, since
the typical amplitude on the 2mth site is |ψ(2m)| ∼ e−cst

√
m.

This form, first shown for off-diagonal disordered models in
Ref. [14], is particular to the zero energy state, all other states
being exponentially localized. The E = 0 state of the random
system is very different from that of the quasiperiodic chain,
where the typical height on site m scales as

√
ln m, as we will

show next.

3. Diffusion equation for the height function

In the following, we consider how to characterize the
height field for the hopping model on the Fibonacci chain.
Let us define r = ab (letter corresponding to a right arrow),
l = ba (letter corresponding to a left arrow), and u = aa (letter
corresponding to no arrow). In the case of the Fibonacci chain,
as we noted before, the group bb never occurs.

The Fibonacci substitution rule (3) iterated three times
results in an effective substitution rule S′ for the arrows:

S′ :

⎧⎨
⎩

r → rull,

l → rulr,

u → rullr.

(13)

Let v = (Nr,Nl,Nu) be a vector whose entries are respectively
the number of right, left, and null arrows on a given chain.
Upon inflation of this chain (13), it is transformed to Mv
where

M =
⎡
⎣1 2 2

2 1 2
1 1 1

⎤
⎦. (14)

The inflation matrix M provides information about the
distribution of arrows. In particular, the relative frequencies
of the arrows are given by the Perron-Frobenius eigenvector
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(i.e., the eigenvector associated with the largest eigenvalue).
Here, one finds

f (r) = τ−2,

f (l) = τ−2, (15)

f (u) = τ−3,

where τ is the golden ratio.
The substitution S′ replaces a given arrow by a block of

arrows. Notice that the effective arrow corresponding to this
superblock is reversed compared to the original one. In other
words, the substitution S′ preserves the heights of the initial and
final sites up an overall sign. Thus, under a single application
of S′, sites of large (respective, small) wave-function amplitude
switch roles. Wave-function amplitudes are left invariant when
the substitution is applied an even number of times. This
observation leads one to conclude that the wave function is
probably delocalized, since the substitution acts to “push sites
further apart.” Thus the eigenstate has nonzero amplitude on
sites that can be pushed arbitrarily far apart and hence is not a
localized state.

Consider now the sequence of regions of larger and larger
size obtained by applying the substitution S′ to an original
region R0:

R0 −→
S′

R1 −→
S′

· · · −→
S′

Rt −→
S′

Rt+1 −→
S′

· · · . (16)

Let us now focus on the height distribution function, which
gives the number of times the height h is reached inside
the region Rt , and is relevant for the computation of the
fractal dimensions of the central (E = 0) state. One can
define environment-specific distributions, N (t)

μ (h), where μ

denotes the local environment. There are three different
local environments on the Fibonacci chain, which we define
according to the nature of the arrow immediately following
the site, namely, μ = r,l,u, appearing with the frequencies
(15). The N (t)

μ (h) give the number of times height h is found
on the local environment μ in region Rt . They are the three
components of the vector N(t)(h), which evolves with each
inflation step.

We now write the recurrence formula that relates the vector
N(t) to N(t+1). Recall that, after one inflation, the new heights
are equal to the previous heights plus a shift of ±1 or 0,
and they undergo a change of sign. Introducing a generalized
inflation matrix that operates on the heights, as discussed in
Refs. [15–17], we find

N(t+1)(−h) =
1∑

h′=−1

M(h′)N(t)(h − h′), (17)

where the 3×3 M(h′) matrices are termed generalized inflation
matrices. Mμ,ν(h) counts the number of times the environment
μ corresponding to height h appears in S′(ν), the inflation
of the environment ν associated to height 0. Their explicit
expressions are given by

M(−1) =
⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦, (18)

M(0) =
⎡
⎣1 2 1

1 0 1
0 0 0

⎤
⎦, (19)

M(1) =
⎡
⎣0 0 0

1 1 1
1 1 1

⎤
⎦. (20)

Note that the sum of the generalized inflation matrices,
M = ∑

M(h′), is just the inflation matrix M of Eq. (14).
Equation (17) is a Fokker-Planck-like equation, in which

the number of inflations, t , plays the role of time, the height h

plays the role of a spatial variable, and the generalized inflation
matrices M(δh) are transition rates. As such, one expects
that the height frequency P (t)

μ (h) = N (t)
μ (h)/

∑
h N (t)

μ (h) will
converge to a Gaussian form in the large time limit. We prove
that it is indeed the case for the Fibonacci chain, as well as for
general substitutions under reasonable assumptions.

In order to do this, we introduce the generating function of
the probability distribution (the partition function):

Z(t)
μ (β) =

∑
h∈Z

N (t)
μ (h)eβh. (21)

The evolution equation (17) is recast to

Z(t+2)(β) = M̃(−β)M̃(β)Z(t)(β), (22)

where M̃(β) = ∑
h M(h) exp(−βh), and where we iterated

twice to take care of the sign change. From this recursion
relation, and since all the coefficients of M̃ are strictly positive,
the Perron-Frobenius theorem applies, and the large time
behavior of the partition function must be of the form

Z(2t)
μ (β) ∼

t→∞ ωt (β)fμ(β), (23)

where ω(β) is the largest eigenvalue of M̃(−β)M̃(β), and
fμ(β) is the associated eigenvector. Explicit calculation gives

ω(β) =
(

(1 + eβ)2 +
√

(1 + eβ)4 + 4e2β

2eβ

)2

. (24)

Thus, in the t → ∞ limit, the distributions all converge to the
Gaussian distribution:

P (t)
μ (h) ∼ fμ√

4πDt
exp

(
− h2

4Dt

)
, (25)

where D—which we call the diffusion coefficient by analogy
with a diffusion process—is given by

D = 1

4

∂2lnω

∂β2

∣∣∣∣
β=0

= 1

2
√

5
. (26)

The typical height is given by the standard deviation, and
grows like σ Fib(y) ∼ √

2Dt , while the length of the chain,
after t inflations, is L(t) ∼ τ 3tL(0). Thus, on a piece of tiling
of size L, the typical height scales as σ Fib(L) ∼ √

lnL. The
wave-function amplitudes should therefore typically decrease
more slowly than for the random case we discussed earlier.
We will show in the next section that the eigenstate is in fact a
critical state, by explicitly computing its fractal dimensions.

A few comments can be made at this point: we note that the
scaling of the partition function (C7) and the Gaussian nature
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of the height distribution are generic properties. They will
hold for any height field on any substitution tiling, provided
that the height is invariant (up to a sign) under inflation, and
provided that the entries of the corresponding inflation matrix
M̃ are strictly positive. These two properties hold for the
1D and 2D quasiperiodic substitution tilings we will discuss
below, namely, the series of metallic mean chains in 1D, and
the Penrose and Ammann-Beenker tilings in 2D. Only the
particular form of ω(β) varies, depending on the tiling and the
height field. In contrast, these properties do not hold for the b3
chain, which is not quasiperiodic (see below).

Additionally, note that although the arrows can be con-
structed from the local environments, their integral, the height
field, is distributed in an environment-independent fashion
[18]. This property implies that the fractal dimensions of the
SKK eigenstates (2) depend only on the distribution of heights,
as we will now see.

4. Fractal dimensions of the E = 0 wave function

Fractal dimensions are a way to completely and compactly
characterize fractal sets such as the eigenstates of quasiperiodic
tilings [19,20]. The fractal dimensions of a wave function
determine whether the state is localized, extended or critical
(as discussed for example in Refs. [4,13,21,22]). In the context
of Anderson models, the fractal dimensions can be related to
the scaling exponents of the critical point, see, e.g., Ref. [23].
The fractal dimensions can be related, in certain cases, to
exponents describing the wave-packet dynamics [24].

We recall for completeness the definition of the fractal
dimensions in the context of the wave functions (see [19,25]
for more detailed discussions). We first introduce the q weight
of the wave function ψ :

χq(ψ,R) =
∑

i∈R |ψ(i)|2q(∑
i∈R |ψ(i)|2)q , (27)

where the sums run over all sites in a given region R. The q

weight is a measure of the fraction of the presence probability
contained inside region R.

As previously, we consider a sequence of regions Rt whose
size grows to infinity. The qth fractal dimension dq(ψ) is the
scaling of the q weight with the volume of the region:

dq(ψ) = lim
t→∞

−1

q − 1

lnχq(ψ,Rt )

ln�
, (28)

where � is the volume (number of sites) inside region R.
The Legendre transform of the fractal dimensions is the

so-called multifractal spectrum. More precisely, one defines

αq = dτq

dq
(29)

and

f (αq) = qαq − τq, (30)

where τq = (q − 1)dq . The f (α) spectrum has a straightfor-
ward physical meaning: f (α) gives the fraction of sites around
which the wave function has scaling α. In our case, a trivial
(i.e., reduced to a point) multifractal spectrum is the signature
of an extended or localized eigenstate [26], while a nontrivial
multifractal spectrum is the signature of a critical eigenstate.

FIG. 4. The multifractal spectrum of the central state of the
Fibonacci chain, for different value of the coupling ratio ρ.

The computation of the fractal dimensions can be carried
out for a state of the SKK form. We find (see Appendix for the
details)

dq(ψ) = 1

q − 1
ln

(
ω(2κ)q

ω(2κq)

)/
ln(ω(0)). (31)

The f (α) spectrum can be computed exactly for the E = 0
states. Letting x = 2κ , we have

αq = ln(ω(x)) − x
ω′(qx)

ω(qx)
(32)

and

f (αq) = ln(ω(qx)) − qx
ω′(qx)

ω(qx)
. (33)

Figure 4 shows the multifractal spectrum of the central
state of the Fibonacci chain, for different values of the ratio
of the couplings, ρ. The spectrum is clearly multifractal (not
reduced to a single point), meaning that the E = 0 state is
critical, as we expected. Note that as ρ → 1, the support
of the spectrum becomes narrower, meaning that the state
approaches the limiting Bloch wave form in the periodic limit.
We also remark that the multifractal spectra are symmetric
around their maximum, a consequence of the shape of the
height distribution, which is symmetric around its maximum.
The symmetry of the f (α) spectrum, explicitly, is

αq + α−q = 2αq=0. (34)

This relation is distinct from the symmetry relation obeyed
by the multifractal spectrum of a disordered system at the
Anderson transition [27]: in the present case, the symmetry
relates q to −q, whereas the symmetry at the Anderson
transition connects q to 1 − q. However, in both cases, the
scaling of the small wave-function components (given by
q → ∞) is related to the scaling of the large wave-function
components (given by q → −∞). As we remarked earlier,
under the substitution S ′ (13) the heights on the “old” sites i

change sign, and ψ(i) is transformed to ψ(i)−1. In other words,
large components are transformed to small components and
vice versa.
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B. Generalization to other aperiodic chains

One may ask to what extent the results of the preceding
section are generically true for quasiperiodic chains. To
investigate this question, we consider models on a series of
quasiperiodic chains: the so-called metallic mean substitutions
(based on the golden mean τ and its generalizations to silver,
bronze, etc., irrationals) [28]. They are generalization of the
Fibonacci substitution:

Sn :

{
a → anb,

b → a,
(35)

where an is a shorthand notation for a repeated n times. n = 1
yields the Fibonacci chain, n = 2 the silver-mean chain, n = 3
the bronze-mean chain, etc.

In this case, it is easy to show by direct inspection of the
inflation rule for the arrows that the evolution of the height
statistics still obeys the Fokker-Planck-like equation (17).
Thus the same conclusions hold as in the Fibonacci case: the
partition function has the scaling behavior

Z(2t)
μ (β) ∼

t→∞ ωn(β)t fμ(β), (36)

the height distribution converges to a normal distribution, and
the central state is multifractal with the fractal dimensions

dq(κ,n) = 1

q − 1
ln

(
ωn(2κ)q

ωn(2κq)

)/
ln(ωn(0)). (37)

For n even, n = 2k, we can compute the ω function
explicitly:

ω2k(β) = 2eβ + k2(1 + eβ )2 + k(1 + eβ)
√

4eβ + k2(1 + eβ)2

2eβ
,

(38)

and thus find the explicit expression of the fractal dimensions
of all the central states in the series n = 2k. For n odd, the
substitution rule for the arrows is more involved and we were
not able to compute explicitly the ω function.

Going back to the even case, one can readily check that,
as n grows, the central state behaves more and more like an
extended state: dq(κ,n → ∞) = 1. This is to be expected since
the aperiodic chain locally looks more and more periodic as n

grows. Figure 5 shows the multifractal spectrum for different
values of k. We see that the support of the spectrum decreases
as k is increased, which is yet another signature that the state
becomes less critical as k is increased.

To conclude this section, we consider an aperiodic substi-
tution, which is not quasiperiodic:

S :

{
a → abbb,

b → a.
(39)

This substitution, which we will call the b3 substitution, is
aperiodic—but not quasiperiodic. Indeed, as the eigenvalues
of the substitution matrix do not satisfy the Pisot condition
[29], the structure does not have Bragg peaks in its diffraction
spectrum [30]. The b3 substitution has been thoroughly studied
from the geometrical point of view, see, e.g., Ref. [31].

FIG. 5. The multifractal spectrum of the central state of three
metallic mean chains (k = 1,2,3), for ρ = 1/2.

One can show that under the b3 substitution, the heights are
multiplied by 3, along with a sign change, giving

N(t+1)(−3h) =
3∑

h′=−3

M(h′)N(t)(h − h′). (40)

This equation implies that the height on this tiling (Fig. 6)
grow much faster than in the quasiperiodic case: in par-
ticular, the maximum of the height grows as a power law
hmax(L) = maxi�L h(i) ∼ Lα , whereas in the quasiperiodic
case it grows much slower—logarithmically. The power-law
exponent can be computed explicitly: α = ln3/lnω3

b3, where
ωb3 = (1 + √

13)/2 is the largest eigenvalue of the b3 inflation
matrix. Since hmax(L) behaves as a power law, we conjectured
and verified numerically that the typical height htyp(L) also
behaves as a power law, implying that the state has a stretched
exponential form, and is therefore localized, as in the random
case [14].

C. Transmission coefficient

We now present some results for the transmission co-
efficient, as an example of the special properties of these

FIG. 6. The field of heights for the aperiodic and nonquasiperi-
odic b3 substitution. The central state is localized, like in the case of
a random chain, although this chain is deterministic.
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critical states. Consider an approximant of the Fibonacci chain
consisting of 2n atoms, attached to translationally invariant
left and right leads. The transmission coefficient is the fraction
of the incident electronic probability that goes through the
system. Creating a plane wave at energy E = 0 (i.e., of wave
vector k = ±π/2) on the periodic lead excites the E = 0 state
of the chain. The transmission coefficient Tn is then [32]

Tn = 4(
xn + 1

xn

)2 (41)

with xn = |ψ(2n)/ψ(0)|. Note that this transmission coeffi-
cient is proportional to the zero-temperature dc conductance
of the system at Fermi energy E = 0 [33].

Exploiting the SKK form of the E = 0 state, |ψ(2n)| =
eκh(n), the transmission can be recast as

Tn = 1

cosh2 [κ(h(n) − h(0))]
, (42)

so that the transmission between two sites depends only on
the height difference of these two sites. The transmission is
maximal when the height difference is zero, in other words,
one can have perfect transmission between two sites of the
chain which are arbitrarily far apart.

Another useful quantity, which is easy to compute is the
harmonic mean of T defined by

〈T 〉(L) =
(

1

L

∑
i�L

1

Ti

)−1

. (43)

To estimate the typical transmission, the harmonic mean
is preferred over the arithmetic mean in cases when the
distribution is very wide leading to domination of the latter
by rare events. This was pointed out for random systems [33],
where it is the logarithm of T , which is distributed normally.
Here too, the distribution of lnT is expected to be Gaussian, as
can be inferred from Eq. (43). The scaling of 〈T 〉(L) with
system size can be calculated using the properties of the
distribution of heights. The mean transmission of this chain
after t inflations is given by

〈T〉(L) ∼ 2
(
1 + (L/L0)ln ω(2κ)

ω(0) /lnτ 6)−1
. (44)

Since ω(κ) � ω(0), the mean transmission goes to zero at large
distance as a power law, in good accord with numerical data as
seen in (7). Remark that the analytical calculation is performed
for chains of even length, i.e., every third approximant of the
Fibonacci series, whose lengths are given by Lt = F3t ∼ τ 3t .
This explains why the analytical calculation only captures
the overall power-law behavior of the transmission, but not
the superimposed log-periodic oscillations observed in the
numerical study, which was carried out for all lengths L

(Fig. 7).

D. Discussion and conclusions for 1D chains

Having described these properties of the central states in
1D quasiperiodic models, we now address the question of the
ground state in these models. We now explain why it is not
expected to have the SKK form, as mentioned earlier. The
ground state is known to be multifractal like the other states,
as has been discussed in the literature [9,21]. However, the

FIG. 7. Mean (harmonic) transmission of a finite-size piece of
length L of the Fibonacci chain. Dashed line: analytical prediction
(44), continuous line: numerical calculation (average was performed
on subchains of a system of F27 = 196418 atoms).

following argument indicates that it should not be factorizable
into a local part and an exponential height-dependent part.
On the one hand, since the ground state is nondegenerate,
the arrow field used in construction of the SKK ansatz must
respect the symmetry of the chain [in contrast to the arrow
field (8), which depends not only on the local environment but
also on the parity of the site]. On the other hand, in the case
of the metallic mean chains, any such arrow field will yield a
height function which either (i) grows linearly with distance
(corresponding to an evanescent wave) or (ii) depends on the
local environment only (corresponding to an extended state)
[34].

This argument was confirmed by explicit calculation in
Appendix B, where we compute the form of the ground state
in perturbation theory. Specifically, we compute the spatial
dependence of the prefactor term and show that it is nonlocal,
contrarily to the ansatz.

To conclude, we have seen that the central state of a tight-
binding Hamiltonian on aperiodic chains can be described
in terms of a height field, which is the integral of a field
of arrows drawn on the chain. The structure of the central
state (as read from its fractal dimensions) is directly related to
the geometrical properties of the height field. In the metallic
mean case, the height field grows slowly with the distance
h(L) ∼ √

lnL, which results in the state being critical. We
believe that this behavior is likely to generalize to canonical
cut-and-project chains, of which the metallic mean chains are
particular cases. Next, we considered an aperiodic chain which
is not quasiperiodic, the b3 chain, whose behavior is seen to
be radically different. The typical height now grows much
faster, h(L) ∼ Lα , and this results in the central state being
localized. Note that, although this state has the same scaling
characteristics as that on the random chain, this chain is purely
deterministic.

III. SKK STATES ON 2D TILINGS
AND THEIR PROPERTIES

This section deals with the extension of the preceding
calculations to two-dimensional models. We will focus on the
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FIG. 8. Tile substitution rules and some of the arrow decorations
corresponding to matching rules (see text) for (a) Penrose and
(b) Ammann-Beenker tilings.

two most studied tilings: the Penrose rhombus tiling and the
Ammann-Beenker tiling.

Both tilings are built using two tiles: these are the fat
and thin rhombuses in the case of the Penrose tiling, and
the square and 45◦ rhombus for the Ammann-Beenker tiling.
These tilings can be constructed by successive transformation
of the two tiles using well-known substitution rules, as shown
in Fig. 8. It is known, moreover, that substitution tilings possess
matching rules [35], which allow to distinguish “allowed” from
“forbidden” configurations of adjacent tiles [5]. In the case of
Penrose and Ammann-Beenker tilings, the matching rules can
be implemented by decorating the tiles and by requiring that
the decorations on adjacent tiles match. These decorations
consist in adding arrows to the tile edges (in the case of
Ammann-Beenker tiling additional decorations of vertices is
also needed to enforce the eightfold rotational symmetry). It
turns out, interestingly, that a subset of these decorations can
be used in the construction of SKK states on these two tilings.
Figure 8 shows the arrows, which will enter in the construction
of the SKK ground state. They are illustrated for the two basic
tiles and their inflations on the two tilings we consider here.

As can be checked by inspection, these arrows form an
irrotational field. This implies that they can be written as a
gradient of a scalar function, the height function h(i), taken up
in Sec. III B. As in the case of 1D chains, the height functions
will enter in the construction of SKK states on 2D tilings.

A. Tight-binding models on 2D tilings

We can now ask the question whether tight-binding models
for electrons hopping along vertices of these 2D tilings admit
eigenstates, which can be defined in terms of the arrow field.

Sutherland was the first to answer positively to this question,
furnishing in Ref. [3] a tight-binding Hamiltonian in which
on-site potentials are tuned to have specific values, so that
its ground state is given by ψ(i) = exp(κh(i)), where κ is a
constant. Note that this expression is not yet the form (2), as it
lacks the pre-exponential factor. Similar eigenstates have been
found by other authors for more complicated Hamiltonians
[15,17]. In those works, a functional form is proposed, and
used to reverse engineer the Hamiltonian for which it is
an eigenstate. These Sutherland-type solutions correspond to
artificially “fine-tuned” Hamiltonians and do not apply in the
standard tight-binding case (1). The solution for the ground
state of the pure hopping Hamiltonian proposed by Kalugin
and Katz [2] was thus an important advance.

In this paper, we consider quasiperiodic tight-binding
Hamiltonians in 2D with off-diagonal as well as diagonal
(on-site) terms, given by

H (t,V ) = −t
∑
〈i,j〉

c
†
j ci + H.c. + V

∑
i

zic
†
i ci (45)

where zi is the coordination of site i, and where the hopping
occurs between nearest-neighbor sites. The parameter V

allows to go continuously from the pure hopping model
(V = 0) to the discrete Laplacian model (V = t) and eventually
to the limit of decoupled atoms (V/t → ∞). We will show
that the ground-state wave function has the SKK form for any
choice of V , namely,

ψGS(i) = C(i)eκh(i), (46)

where h(i) is a height field defined on the vertices of the tiling,
and κ is a constant. The pre-exponential factor C(i) is, as we
stated in Introduction, a quasiperiodic function which depends
on the local environment of the site i. This form of the wave
function allows to compute exactly, as in 1D, the multifractal
spectrum of the ground state of this family of models. To do
this, it is necessary to know the properties of the height field,
studied in the next section.

B. Properties of the 2D height field. Fractal dimensions
of the ground state

As for the one-dimensional case, the height on a given
site is the integral of an arrow field. The arrows correspond
to decorations of edges of the basic tiles, as illustrated in
Fig. 8 for the Penrose and Ammann-Beenker tilings. Figure 8
also indicates how the distribution of heights evolves under
inflation. By repeated inflations, one thus generates the set of
height fields for larger and larger pieces of tiling.

To understand the spatial dependence of the height field,
it is instructive to start by examining the variations of h(i)
along some specific directions in the tiling. Figure 9(a) shows
the height field along the slice of the Ammann-Beenker tiling
shown in blue in Fig. 9(b). The similitude of behavior with the
1D height function of the Fibonacci chain (Fig. 3) is evident.
Let us now explain the reasons for this similarity.

Consider a line which runs parallel to one of the eight
possible orientations of the edges (in our figures these occur at
angles which are multiples of π/4). In Fig. 9(b), the blue line
is shown as an example. The distance between a pair of nodes
along such a line is nl′ + mL′, where l′ and L′ are respectively
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FIG. 9. (a) The height field along a slice of the Ammann-Beenker
tiling. (b) In blue, the slice taken in (a), and in orange another slice,
along which the height is constant.

the length of an edge and of the diagonal of a square, and where
n and m are integers. Upon substitution (8), the lengths are
transformed according to l′ → l′ + L′, L′ → l′ + L′ + l′. The
lengths A = l′ + L′ and B = L′ are transformed according to
the silver mean substitution: A → A + A + B and B → A.
Reasoning along the same lines as in Sec. II A 3, the heights
along any such line oriented at angles nπ/4 also transform
according to the silver mean substitution, meaning that the
height plot along such a line [Fig. 9(a)] should have the same
structure as in the 1D case.

On the tiling, there are also paths along which the height is
constant, as illustrated by the orange line shown in Fig. 9(b),
corresponding to directions lying in-between the axes of the
edges [in our figures these occur at angles (n + 1/2)π/4]. For
the orange path, the distance between two nodes is of the
form nl + mL, where l and L are respectively the length of
the small and large diagonals of lozenges. Therefore any two
nodes along such a line are connected by a path going only
through large and small diagonals of lozenges, a path along

which, as can be seen from Fig. 8, the height is a constant.
This implies that the exponential factor of the wave function
remains constant along these paths and any variations are due
only to the prefactor C. If one looks at the variation of the
SKK eigenstate along such a path, the state will appear to be
extended, with no evidence of fractality.

As in 1D, the scale invariance of the height field implies
multifractality of the corresponding SKK state. We present
here the main results for the statistics of the heights, leaving the
details for Appendix C. The height statistics on the Ammann-
Beenker and Penrose tilings obey the master equation

N(t+1)(−h) =
∑
h′

M(h′)N(t)(h − h′). (47)

The same conclusions hold as for the 1D case, namely, the
height grows slowly—h(L) ∼ √

lnL, and the height distri-
bution on a large tiling piece is Gaussian. Moreover, the ω

function—which governs the large-scale behavior of the par-
tition function—can be computed exactly (see Appendix C).
One finds for the Ammann-Beenker tiling

ω(β) = a(β) +
√

a(β)2 − e2β

eβ
(48)

with a(β) = 4 exp(2β) + 9 exp(β) + 4. In the case of the
Penrose tiling, we find

ω(β) = b(β) +
√

b(β)2 − 4e2β

2
(49)

with b(β) = exp(2β) + 5 exp(β) + 1.
As in the 1D case, this ω function determines the multi-

fractal spectrum of the SKK state ψ through the equations

αq = ln(ω(2κ)) − 2κ
ω′(2qκ)

ω(2qκ)
(50)

and

f (αq) = ln(ω(2qκ)) − 2qκ
ω′(2qκ)

ω(2qκ)
. (51)

These theoretical predictions will be compared with results
from numerical computations, as described in the next
sections.

C. Results for the AB tiling

The tight-binding matrix was diagonalized numerically for
a fixed value of the onsite potential V and for a range of
system sizes. In numerical computations, it is rather common
to consider “canonical approximants”: periodic tilings with
arbitrarily large unit cells approximating the quasiperiodic
tiling (see, e.g., Ref. [36]). However, on these canonical
approximants, the height field is not single-valued. We there-
fore use the modified approximants—with mirror boundary
conditions instead of periodic boundary conditions—proposed
in Ref. [2], which do not have this drawback. We shall label
approximants of increasing size with an integer, n, which is
equal to the number of inflations (8) performed to build it.
Using these approximants, the values of the constant κ and the
pre-exponential factors of the expression Eq. (2) can then be
determined.
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TABLE I. κ for different values of N (the number of sites) in
Penrose and Ammann-Beenker approximants for V = −0.5.

Penrose tiling

N 9045 23490 61191
κ 0.02125888 0.02163468 0.02148895

Ammann-Beenker tiling

N 4180 23950 138601
κ 0.61215 0.61252 0.61249

1. The constant κ

The first step of the analysis consists of determining the
unknown constant κ in the expression for the ground state ψGS

from the numerical solution of ψ . This is done by the method
used in Ref. [2], which relies on the following observation:
if two sites i1, i2 of the approximant have nearly identical
local environments, then their wave-function amplitudes will
have almost identical prefactors. The ratio of wave-function
amplitudes on these two sites is then

ψGS(i1)

ψGS(i2)
= C(i1)

C(i2)
eκ(h(i1)−h(i2)) � eκ(h(i1)−h(i2)). (52)

This relation allows us to calculate a value of κ from the
numerical solution, since the height field is known exactly
for the approximant. One expects this value to become
progressively more accurate as larger and larger approximants
are considered, since the numerical solution approaches the
exact one, and since one can find sites i1 and i2 whose
environments are similar out to a greater distance. As can be
seen in Table I, the κ value determined in this fashion indeed
converges.

Figure 10 shows the evolution of κ when the strength of the
on-site potential V is varied in the model. The shift of the two
curves in going from the n = 5 to n = 6 approximant is too
small to be visible on the graph, indicating that the results are
converged.

FIG. 10. Plot of κ vs V for the ground state of the Ammann-
Beenker tiling computed by numerical diagonalization for approxi-
mants n = 5 and 6.

2. The prefactors C

The second step of the analysis consists of determining the
set of prefactors C(i) by plugging in the value of κ already
found. Once these have been been determined, we need to
check whether C(i) is local, that is, dependent only on the local
arrangement of atoms. A first indication that this is indeed the
case is provided by Fig. 11(a), which shows the numerically
computed prefactors in a small region of the Ammann-
Beenker tiling. The colors reflect the wave function amplitudes
computed for the pure hopping Hamiltonian (V = 0), and sites
have been labeled by A, B, C, D1, D2, E, and F, to indicate
the seven different nearest-neighbor configurations on this
tiling. A represents sites with eight neighbors, B represents
sites with seven neighbors, and so on. The subscripts allow to
differentiate between sites of the same coordination number
(5), but which transform differently under substitutions. Upon
inspection of the figure, the colors and labels are seen to
correlate, providing a visual check that the pre-exponential
factor depends primarily on the local arrangement of the atoms.

A more quantitative demonstration of the local character
of the C(i) consists of plotting them in the perpendicular (or
internal) space representation of the tiling. This representation
allows us to classify sites according to their environments
on the tiling. As detailed explanations can be found in the
literature, it suffices here to give the general idea. Recall
that the Ammann-Beenker tiling, as many other quasiperiodic
tilings, can be constructed from a periodic tiling in higher
dimension: the so-called cut-and-project construction method
(see Refs. [5,37–39] for a general introduction and Ref. [36]
for a description in the particular case of the Ammann-Beenker
tiling). In the case of the Ammann-Beenker tiling, the higher-
dimensional space is four-dimensional, and decomposes into
the 2D physical plane, and the 2D orthogonal plane called the
perpendicular (or internal) space. The closer the projections
of two vertices are in internal space the more similar their local
environments in physical space [40]. Internal space represen-
tation is thus well-suited to check the local character of the
pre-exponential factor, as was already pointed out in Ref. [2].

Figure 11(b) shows the C(i) represented by a colorscale in
perpendicular space. The seven families of nearest neighbor
configurations A, B, etc., correspond to seven nonoverlapping
domains as shown by the labels in the Fig. 11(b). The colors
and the domain labels are seen to be in good correspondence,
showing thereby that the prefactors are determined by the local
environment.

Within each family of environments, one can distinguish
subfamilies according to the next nearest neighbor configura-
tions. These in turn can be subdivided and so on. The prefactors
C(i), in consequence, exhibit a fine structure due to these
differences of environments at the level of nth near neighbors.
This can be seen in Fig. 11(c), which shows the variation of
the prefactor along a horizontal cut passing through the origin
in internal space.

3. Multifractal spectra

Figure 12 shows the multifractal spectrum, f (α), of the
ground state calculated numerically for κ(V = 0) � 0.153,
on the Ammann-Beenker tiling. Dots indicate the numerical
values obtained from system-size scaling (see, e.g., Ref. [12]
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(a)

(b)

(c)

FIG. 11. (a) The numerically computed prefactors on a small
patch of the approximant n = 7 (138601 atoms). (b) The numerically
computed prefactor in perpendicular space, for approximant n = 7.
White lines outline the zones corresponding to different first neighbor
environments. (c) “Wedding cake” plot showing the variation of
the prefactor along a horizontal cut passing through the origin in
perpendicular space.

for a description of the method) for approximants up to n = 7
(138 601 atoms). One can see that the theoretical prediction and
the numerical computations are in perfect agreement, showing
that Eq. (50) correctly captures the multifractal properties of

FIG. 12. Dots: the numerically computed f (α) of the GS on
the Ammann-Beenker tiling (V = −0.5). Solid line: the analytical
solution (50), using the numerically determined κ (see text).

the ground state on the Ammann-Beenker tiling, for the family
of models (45).

The multifractality of a wave function can be measured by
the width (or support) of the bell-shaped curve (see Fig. 12)
formed by its multifractal spectrum:

�f = lim
q→∞(α−q − αq). (53)

For the SKK states on the Penrose and Ammann-Beenker
tilings we find

�f (κ) = 4|κ|
lnω(0)

. (54)

Interestingly, this expression is valid not only for the Penrose
and Ammann-Beenker but also for the Fibonacci chain, and
for every chain of the metallic mean series, with n even
(see Sec. III). For the metallic mean with n = 3 however,
the expression is different. To our knowledge, there is no
explanation for the surprising universality of the support of
the multifractal spectrum of the SKK states. The value of
κ , as shown on Fig. 10 is proportional to the support of the
multifractal spectrum, and thus tells us to which extent the
groundstate is multifractal. To give a specific example, the
figure shows that for V = 1, κ = 0, and the ground state is
not multifractal at all—it is extended. This is, of course, to
be expected since for V = 1 the model is just the discrete
Laplacian, whose ground state is uniform over the tiling. As V

is increased or decreased with respect to V = 1, κ increases,
and the support of the ground state likewise. This state is thus
becoming increasingly multifractal.

D. A variational calculation for the ground state

It is interesting to ask at this point whether an analytical
calculation could reproduce, even approximately, the SKK
solution just presented. In this section, we describe a varia-
tional calculation for the ground state on the Ammann-Beenker
tiling. This method allows us to obtain an approximate
theoretical solution for the ground state wave function and
energy, and we will see that the results compare well with the
numerical solutions.
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FIG. 13. κ for the model (45). Blue: numerical result. Orange:
prediction obtained using the variational method. Green: prediction
of the variational method, for a variational state with no local term.

Consider a variational ansatz which includes the exponen-
tial nonlocal term, and with a truncated set of local envi-
ronments, namely the seven nearest neighbor environments
present on this tiling. This approximation is expected to be
reasonable, as can be seen from the numerical results shown
in (Fig. 11). The following form was thus chosen for the
variational ansatz:

ψvar(i; Cvar,κ) = Cvar(i)e
κh(i), (55)

where Cvar is a function that takes seven values according to the
seven possible first neighbor configurations of the Ammann-
Beenker tiling [see Fig. 11(a)]. The seven values of the function
Cvar and the parameter κ , are determined using a variational
approach: Cvar and κ are chosen such that the functional

E(Cvar,κ) = 〈ψvar| H |ψvar〉
〈ψvar| |ψvar〉 (56)

is minimized. Details of this calculation are given in
Appendix D.

Figure 13 shows the value of κ predicted by the variational
method, together with its numerically determined value, as a
function of the parameter V . To investigate the importance of
the two factors entering the variational ansatz (55), we have
given in Table II the results for variants as follows: ansatz 1 (all
prefactors replaced by a constant), ansatz 2 (exponential terms
replaced by a constant), and ansatz 3 (both factors allowed to
vary). One sees that the agreement between the variational and
the numerical values are quite good for ansatz 3. Increasing the
number of environments considered in the variational ansatz
would, of course, improve the quality of the agreement at the
price of increasing the number of variables for minimization.

TABLE II. Predictions for the ground-state energy of the pure
hopping model by the variational method.

ansatz 1 ansatz 2 ansatz 3 Numerics

−EGS 4.16143 4.21936 4.22091 4.221697
κ −0.265337 ∅ 0.097175 0.153035

FIG. 14. κ vs V for the Penrose tiling calculated for two
approximants (61 191 and 159 705 sites).

It is interesting to compare the result of the variational
method for ansatz 1 in which all prefactors are taken to be equal
(the green curve in Fig. 13) with the ansatz 3, where prefactors
are allowed to vary (the orange curve in Fig. 13), and with the
numerical results. One can see that, in the absence of the local
prefactors, the κ value is not predicted accurately. To conclude,
the variational method gives satisfactory values for κ already at
first-neighbor level of the approximation. We see that although
the local term has no influence on the multifractal spectrum of
the state—whose shape is determined by κ alone—it must be
included in the expression of the ground state in order to get a
good value of κ .

E. Results for the Penrose tiling

In the case of the Penrose tiling, we proceed in the same
way as described above for the Ammann-Beenker tiling. For
arbitrary V , we verify that its ground state is of the SKK type
by computing the values of κ and the pre-exponential factors.

The evolution of κ with V is plotted in Fig. 14, where one
sees a significant difference between the two tilings. While the
κ(V ) function for the Ammann-Beenker ground state reaches 0
only at the trivial V = 1 point—meaning that the ground state
is critical and multifractal for all other values of V , the κ(V )
function for the Penrose ground state has a zero at V0 � 3, a
second nontrivial point at which the ground state is extended.
For V = V0, the ground-state amplitude depends only on the
local environment, and therefore should be well approximated
by a piecewise constant function over the (finitely many) kth

nearest neighbor environments.
The pre-exponential factors are shown to be environment

dependent by plotting them in internal space (Fig. 15),
as we did in the Ammann-Beenker case. For this tiling,
the projections of vertices fall into four distinct pentagonal
domains (corresponding to different planes of the 3D internal
space), as are illustrated in Fig. 15.

The fractal dimensions of the ground state computed
numerically are shown in Fig. 16. The curves corresponding
to the two approximant sizes overlap, showing convergence of
the results. The agreement with the analytical prediction (50)
is likewise good.
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FIG. 15. The prefactors of the ground state of (45) on the Penrose
tiling represented in the four parallel planes of internal space. Here
the approximant used is n = 12 (61 191 atoms).

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have examined a family of tight-binding
models on 1D and 2D quasiperiodic tilings and shown that
they admit solutions of the SKK form: ψ(i) = C(i) exp(κh(i)).
The prefactor C depends only on the local arrangement of
the atoms, while the exponential factor contains the height
field h, which is nonlocal. It is this latter term that results in the
multifractality of these states. We thus provide the theoretical
demonstration of a property that had been numerically ob-
served in the literature for eigenstates of quasiperiodic tilings.

In 1D, by considering the Fibonacci chain, we show that
the states in the middle of the spectrum can be written in
terms of an exponential of a height function. We described the
properties of the height field and shown how it is linked to
the geometry of the underlying quasiperiodic tiling. Extending
the arguments to the metallic-mean family of quasiperiodic 1D
chains, we show that the E = 0 state is always multifractal.
The multifractal spectrum for the E = 0 state on the quasiperi-
odic chains is seen to have a reflection symmetry around its

FIG. 16. Dots: f (α) for the GS on the Penrose tiling (V = −0.5).
Solid line: analytical curve (50) using numerically determined κ

(see text).

maximum for any value of the ratio of hopping amplitudes.
In contrast, we find that the E = 0 state is localized for the
case of the aperiodic b3 chain, which is not quasiperiodic. We
stress that the ground state of these quasiperiodic 1D chains
is not of the SKK form, not being expressible as a product of
an exponential function of a nonlocal heights function and a
local prefactor.

For the SKK 1D eigenstates, we give the expression for the
exact transmission coefficient of a finite piece of the Fibonacci
1D chain when connected to perfect leads. The scaling of the
typical transmission for a given length is also given.

For the 2D Penrose and Ammann-Beenker tilings, we have
studied a family of tight-binding models where the strength
of the diagonal terms of H can be continuously varied. We
showed that the form of the ground state is preserved, while
the constant κ and the local prefactors vary. We computed
analytically the properties of the height fields and fractal
dimensions of the eigenstates, and compared the predictions to
numerical results. We have discussed a variational calculation
which allows to compute the 2D ground-state wave functions
to good approximation.

We conclude with some open questions. In the 1D case, we
have constructed a height field by interpreting groups of two
letters as arrows. One could do the same thing with groups
of 3, 4, etc. letters. Whether the corresponding height fields
describe eigenstates remains an open question. Another point
concerns extensions to other models and finding other 2D
quasiperiodic tilings that host SKK eigenstates. An interesting
model to study in this context would be the Socolar tiling [41]
with similarities to Penrose and Ammann-Beenker tiling and
having 12-fold symmetry. The nature of E = 0 extended states
in 2D tilings, if any, is another open question. The robustness of
the SKK state under disorder and different types of symmetry
breaking of the tight-binding Hamiltonian is also an interesting
problem. These questions remain for future study.

ACKNOWLEDGMENTS

We are grateful to J.-N. Fuchs, J.-M. Luck, and J. Vidal
for many fruitful discussions. We thank the referee for useful
comments, which helped us improve the presentation of our
results.

APPENDIX A: FRACTAL DIMENSIONS

In the following, we consider an eigenstate of the form
ψi = C(i)eκh(i), on a quasiperiodic tiling that can be any of the
examples considered previously: a substitution quasiperiodic
chain, the Penrose tiling or the Ammann-Beenker tiling. We
are going to prove that this state has a nontrivial multifractal
spectrum, and is therefore critical.

We consider the sequence of regions constructed by
repetitively applying the tiling inflation rule σ on a initial
region R0: Rt = σ tR0. After a few algebraic manipulations
of the above definitions, we arrive at

dq(ψ) = 1

q − 1
lim
t→∞ ln

(
Z(t)(2κ)q

Z(t)(2qκ)

)/
lnZ(t)(0), (A1)

where Z is the partition function already introduced in the
specific case of the Fibonacci chain (21). Here we have used
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the important property that the height field is uncorrelated with
the local configuration of the atoms.

Furthermore, in all the cases considered here, the partition
function has the scaling

Z(t)(β) ∼ ωt (β). (A2)

Therefore we arrive at the—almost—explicit expression of the
fractal dimensions:

dq(ψ) = 1

q − 1
ln

(
ω(2κ)q

ω(2κq)

)
/ln(ω(0)). (A3)

For the expression to be fully explicit, we need to compute ω

for the specific tiling at hand, as we already did in the Fibonacci
case (24).

We can also compute the f (α) spectrum. Letting x = 2κ ,
we have

αq = ln(ω(x)) − x
ω′(qx)

ω(qx)
(A4)

and

f (αq) = ln(ω(qx)) − qx
ω′(qx)

ω(qx)
. (A5)

Remark that whenever the function ω is such that

ω(x) = eAxω(−x), (A6)

the function f (α) is symmetric around its maximum. More-
over, one can easily prove that the above condition (A6) is
equivalent to having a height distribution, which is asymp-
totically symmetric around its maximum. One can moreover
express the maximum hM in terms of A: hM (t) = At/2

APPENDIX B: IS THE GROUNDSTATE
OF 1D CHAINS AN SKK STATE?

In this section, we consider the simple tight-binding model
introduced in Sec. II:

H = −
∑

i

tic
†
i+1ci + H.c.. (B1)

We recall that the hopping amplitude ti takes the value ta or tb
if the letter i in the quasiperiodic chain we consider is an a or
a b. In part 1 we considered in details the case of the Fibonacci
chain (5), and we also considered more generally chains of the
metallic mean sequence. We showed that the E = 0 state on
these chains is an SKK state. It is natural to wonder whether
the ground state on these chains is also an SKK state. We show
in this Appendix that it is not the case.

We introduce the discrete logarithmic derivative

dlnψ(i) = ψ(i) − ψ(i − 1)

ψ(i)
, (B2)

where ψ is the ground-state wave function. We can always
write the ground state as ψ(i) = C(i) exp(κh(i)), with h

an unknown height field, and C a pre-exponential factor.
Assuming that we are close to the periodic chain (i.e. ta � tb),
we then have κ 	 1 and we can write

dlnψ(i) = κA(i − 1 → i) + dlnC(i), (B3)

where A(i − 1 → i) = h(i) − h(i − 1) is the arrow function
associated to the height field (see Part 1). The arrow function

FIG. 17. Discrete logarithmic derivative of the ground state of the
Fibonacci chain, as a function of the perpendicular space coordinate.
Here, tb/ta = 0.999. Line: analytical prediction (B4), dots: numerical
computation on a chain of 34 sites.

is local (i.e., the arrow only depends on the local arrangement
of the atoms), and if the ground state if of the SKK type, the
pre-exponential factor is local as well, by definition. Thus, if
the ground state is of the SKK type, its logarithmic derivative
dlnψ must be local. That is to say, in perpendicular space,
dlnψ must exhibit plateaus, just like the pre-exponential factor
of the ground state for 2D tilings, see, e.g., (11). dlnψ is thus a
tool to determine whether the ground state is of the SKK type
or not.

Figure 17 shows the logarithmic derivative computed
numerically, for a chain close to the periodic chain (tb/ta =
0.999 � 1). Instead of the plateaus expected if the ground state
were of the SKK type, the logarithmic derivative is piecewise
linear. We thus conclude that the ground state cannot be of the
SKK type. If we move further away from the periodic chain,
the lines observed on Fig. 17 become irregular, showing a
devil’s staircase structure.

We can go further and compute the exact logarithmic
derivative in perturbation theory, finding

dlnψ(x⊥) = (1 − ρ)(τ−1 − 2x⊥ + �(x⊥ − τ−1)), (B4)

where � is the Heaviside function, and τ the golden ratio.
The analytical formula shows the observed piecewise linear
behavior and is in perfect agreement with numerical data, as
shown again on Fig. 17.

APPENDIX C: HEIGHT DISTRIBUTION FOR 2D TILINGS

In this Appendix, we compute the distribution of heights
N (t)(h) on a region Rt = St R0 inflated t times, when t → ∞.
For Penrose tiling, this distribution was first calculated by
Sutherland in the saddle-point approximation in Ref. [3],
while the exact results were later obtained in Ref. [15].
We present here the detailed computation for the case of
Ammann-Beenker tiling.

The Ammann-Beenker tiling can be built using a substitu-
tion rule (see Fig. 18), which acts on the two tiles (lozenge
and square). Let v = (NL,NS) be a vector whose entries are,
respectively, the number of lozenge and square tiles in a given
region R0. Then the number of tiles in the inflated region
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FIG. 18. The two tiles of the Ammann-Beenker tiling, and the
supertiles obtained upon substitution. Reference vertices (see text for
details) are marked by open circles. The height associated to each
tile, i.e., the height on its reference site, is marked inside the tile.

R1 = SR0 is given by Mv, where M is the inflation matrix

M =
[

3 4
2 3

]
. (C1)

As in 1D, we now make use of the substitution to compute
the distribution of heights. Following Sutherland [3], we
associate to each tile the height on one of its four vertices,
taken as reference. Here we choose the reference vertex to be
the one which has arrows pointing in (see Fig. 18). We now
compute N (t)

μ (h), the number of times height h is reached on
the reference site of the tiles of type μ = L,S. As in 1D, the
substitution reverses the effective arrows on the supertiles (see
Fig. 18), meaning that height changes sign on the reference
sites of the supertiles after a substitution. As will be checked
a posteriori, the heights are distributed in an environment-
independent fashion, meaning the arbitrariness in the choice
of reference sites does not affect the result of the computation.
Introducing the vector N(t)(h) = (N (t)

L (h),N (t)
S (h)), one has

N(t+1)(−h) =
2∑

h′=0

M(h′)N(t)(h − h′), (C2)

where the generalized inflation matrices are given by

M(0) =
[

2 2
0 0

]
, (C3)

M(1) =
[

1 2
2 2

]
, (C4)

M(2) =
[

0 0
0 1

]
. (C5)

Note that the sum of the generalized inflation matrices,
M = ∑

M(h′), is just the inflation matrix M of Eq. (C1).
As 1D, Eq. (C2) is a Fokker-Planck-like equation, and
we expect the environment-specific height distributions to
converge to Gaussian distributions in the large time limit.
Introducing partition function Z(t)

μ (β) = ∑
h N (t)

μ (h) exp(βh),
the evolution equation (C2) is recast to

Z(t+2)(β) = M̃(−β)M̃(β)Z(t)(β), (C6)

where M̃(β) = ∑
h M(h) exp(−βh). From this recursion re-

lation, and since all the coefficients of M̃ are strictly positive,
the Perron-Frobenius theorem applies, we deduce that the large
time behavior of the partition function must be of the form

Z(2t)
μ (β) ∼

t→∞ ωt (β)fμ(β), (C7)

where ω(β) is the largest eigenvalue of M̃(−β)M̃(β), and
fμ(β) is the associated eigenvector. Explicit calculation gives

ω(β) = a(β) +
√

a(β)2 − e2β

eβ
(C8)

with a(β) = 4 exp(2β) + 9 exp(β) + 4. Thus, in the t → ∞
limit, the distributions all converge to the Gaussian distribu-
tion:

P (t)
μ (h) ∼ fμ√

4πDt
exp

(
− h2

4Dt

)
, (C9)

where D is given by

D = 1

6
√

2
. (C10)

To obtain the fractal dimensions of the Penrose SKK
eigenstate, we need a formula for ω(β), which was not
explicitly calculated in Refs. [3,15]. We give this formula
without derivation since the computation is straightforward
and most of it was already done in Ref. [15]:

ω(β) = b(β) +
√

b(β)2 − 4e2β

2
(C11)

with b(β) = exp(2β) + 5 exp(β) + 1.

APPENDIX D: VARIATIONAL METHOD

In this Appendix, we derive the variational equations used
in Sec. III D for approximation of the 2D ground state.

We recall that the Hamiltonian writes

H (t,V ) = −tH0 + V H1, (D1)

with

H0 =
∑
〈i,j〉

c
†
j ci + H.c. (D2)

and

H1 =
∑

i

zic
†
i ci . (D3)

We work with the following variational wave function:

ψ(i) = Cμ(i)e
κh(i), (D4)

where μ(i) is the nearest neighbors configuration of the site i:
μ = A, B, C, D1, D2, E, and F (see Sec. III C 2 for details).

045138-15



NICOLAS MACÉ et al. PHYSICAL REVIEW B 96, 045138 (2017)

1. The variational energy

We recall that variational method consists in minimizing
the energy E({C},κ) = 〈ψ |H |ψ〉/〈ψ |ψ〉 with respect to vari-
ational parameters of |ψ〉, namely, here the constant κ and the
seven pre-exponential factors Cμ, μ = A, B, C, D1, D2, E, and
F. We thus have eight variational equations, the solution of
which gives an approximation to the exact ground-state wave
function of our Hamiltonian.

a. Evaluation of the norm 〈ψ|ψ〉
In the following, we work on a finite-size sample Rt , and

we then let the size of the sample go to infinity (Rt → R∞).
In the same lines as in Sec. II A 3 and in Appendix C, we first
compute N (t)

μ (h), the number of times we have height h on
sites of type μ inside region Rt . For that, we introduce the
generalized inflation matrix

M(β) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 eβ

0 0 0 0 2eβ 3eβ 2eβ

8eβ 8eβ 8eβ 8eβ 5eβ 2eβ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(D5)

This matrix has the same physical interpretation as the
generalized inflation matrices introduced in Sec. II A 3 and
in Appendix C. In particular, M(0) is the geometrical inflation
matrix relating the number of sites of type μ = A, B, . . . after
t inflations to the number of sites after t + 1 inflations. Let
f (β) is the eigenvector associated to the largest eigenvalue of
M(−β)M(β). We have

〈ψ |ψ〉 =
∑

μ

C2
μ

∑
h

e2κhN (t)
μ (h) (D6)

=
∑

μ

C2
μZ(t)

μ (2κ) (D7)

= ωt (2κ)
∑

μ

C2
μfμ(2κ). (D8)

b. Evaluation of the average 〈ψ|H0|ψ〉

〈ψ |H0|ψ〉 =
∑
μ,ν

CμCν

∑
h

eκ(2h+ε(μ→ν))Nν(μ,h) (D9)

Nν(μ,h) is the number of bonds (μ,ν) with μ having height h.
ε(μ → ν) = ±1, respectively, if the arrow goes from μ to ν

or the reverse. We can write Nν(μ,h) = z(ν|μ,h)Nμ(h) with
z(ν|μ,h) the average number of type ν sites around type μ sites
that have height h. If the number of ν sites around μ is always
the same, then z(ν|μ,h) = z(ν|μ). This is the case for μ < ν

(here we use lexicographic order: 1 = A, 2 = B, 3 = C, 4 =
D1, 5 = D2, 6 = E, and 7 = F ). Assuming μ < ν, we have∑

h

e2κhNν(μ,h) = z(ν|μ)
∑

h

e2κhNμ(h) (D10)

= z(ν|μ)Zμ(2κ). (D11)

Because the Hamiltonian is real symmetric, eκε(μ→ν)Nν(μ,m)
is symmetric under the exchange of μ and ν. So, finally

〈ψ |H0|ψ〉 = ωt (2κ)
∑
μ,ν

Cμhμ,ν(2κ)Cν, (D12)

where h is the symmetric 7×7 matrix

hμ,ν(2κ) = eκε(μ→ν)z(ν|μ)fμ(2κ) if μ < ν (D13)

= eκε(ν→μ)z(μ|ν)fν(2κ) if μ > ν. (D14)

c. Evaluation of 〈ψ|H|ψ〉
This straightforwardly amounts to replacing hμ,ν by

−thμ,ν(2κ) + V zμfμ(2κ)δμ,ν (D15)

with zμ the coordination of type μ sites.

2. The variational equations

If the energy has an extrema with respect to p, it obeys the
equation

∂p〈ψ |H |ψ〉 = E(p)∂p〈ψ |ψ〉. (D16)

Here we have two kinds of parameters: the pre-exponential
factors C and κ . Let us consider each in turn.

a. Extremization with respect to C

Let us first extremize for H0. Since h is symmetric, we have∑
ν

hμ,νCν = EfμCμ. (D17)

So, C(κ) is an eigenvector of the matrix Mμ,ν =
hμ,ν(κ)/fμ(κ2), with eigenvalue E. There are thus seven
independent solutions for C(κ), for each value of κ . The
extension to H is simple: Mμ,ν becomes

Mμ,ν = −thμ,ν(2κ)/fμ(2κ) + V zμδμ,ν. (D18)

Finding the extrema with respect to the C parameters amounts
to diagonalizing the matrix M . Although it is possible to
diagonalize M exactly, we do not reproduce the solution here
as it is too long.

b. Extremization with respect to κ

Since h is symmetric, we can write

〈ψ |H0|ψ〉 = 2
∑
μ<ν

Cνz(ν|μ)fμ(2κ)eκε(μ→ν)Cμ. (D19)

Then, extremization yields∑
μ<ν

Cνz(ν|μ)∂κ (fμ(2κ)eκε(μ→ν))Cμ = E
∑

μ

C2
μf ′

μ(2κ).

(D20)
The extension to H is, again, straightforward. We were not
able to solve this last equation analytically. We instead solved
it numerically.
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