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Strongly interacting phases of metallic wires in strong magnetic field
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We investigate theoretically an interacting metallic wire with a strong magnetic field directed along its length
and show that it is a highly tunable one-dimensional system. By considering a suitable change in spatial
geometry, we build an analogy between the problem in the zeroth Landau level with Landau level degeneracy
N to one-dimensional fermions with an N -component pseudospin degree of freedom and SU (2)-symmetric
interactions. This analogy allows us to establish the phase diagram as a function of the interactions for small
N (and make conjectures for large N ) using renormalization group and bosonization techniques. We find
pseudospin-charge separation with a gapless U (1) charge sector and several possible strong-coupling phases in
the pseudospin sector. For odd N , we find a fluctuating pseudospin-singlet charge density wave phase and a
fluctuating pseudospin-singlet superconducting phase which are topologically distinct. For even N > 2, similar
phases exist, although they are not topologically distinct, and an additional novel pseudospin-gapless phase
appears. We discuss experimental conditions for observing our proposals.
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I. INTRODUCTION

Interacting quantum systems in one spatial dimension
exhibit many exotic behaviors, such as Luttinger liquid
phases and other phases with quasi-long-range order [1].
Remarkably, these behaviors are often tractable theoretically
thanks to powerful tools special to one dimension (1D), such
as bosonization [2] and 1 + 1D conformal field theory (CFT)
techniques [3]. There are a wide range of systems which can be
treated with such tools, including spin chains [4], 1D metals
[1], and coupled wires [5–7], but the underlying degrees of
freedom in the 1D problem are typically not possible to tune,
in the sense that spin chains are always (after fermionization)
built from a fixed number of colors of spin-1/2 fermions, and
1D metals are always built from spin-1/2 fermions.

In this paper, we consider a spinless, interacting metallic
wire with strong magnetic field directed along its length and
relate it to a new class of 1D systems: interacting metals
whose electrons have a large (pseudo)spin. This is particularly
interesting because the fact that the magnetic field changes the
Landau level degeneracy in the first problem will map onto
a tunable number of (degenerate) spin states in the second
problem.

For the simplest intuition about how to treat the problem
of the wire in field, consider semiclassical electrons traveling
in three dimensions in a magnetic field B. They move freely
along the direction of the field, but in the plane perpendicular
to the field, they move in cyclotron orbits whose radius goes as
1/B. At strong field, the motion thus becomes increasingly one
dimensional, similar to the plasma physics concept of magnetic
confinement, and the number of nonoverlapping orbits that fit
into a wire scales as B. In more quantum language, consider
a metal in a magnetic field strong enough that only the zeroth
Landau level (ZLL) is occupied at every momentum along the
field. Kinetic energy is quenched in directions perpendicular to
the field, so naively the degenerate Landau level states are like
one-dimensional wires which are coupled only by electronic
interactions, and the degeneracy scales with B.

However, in the quantum case there is a key difference
between the ZLL problem and coupled wires. As a conse-
quence of the nontrivial topological invariant of the Landau
level [8], no orthogonal basis for the ZLL can have wave
functions which are local in both directions perpendicular to
the field. Since electron-electron interactions are local in real
space, this means that there is no natural choice of basis in
which the interaction between basis states is local. Another
problem is that the choice of basis makes magnetic translation
symmetry implicit, making it difficult to make approximations
while preserving the symmetry.

Motivated by the problems of the coupled wire picture, in
this paper we propose an alternative approach to this problem
which explicitly preserves symmetry. We build an analogy
between a metallic wire in the quantum limit with an N -fold
degenerate ZLL and a large-pseudospin one-dimensional wire
with N degenerate spin states. Magnetic translation symmetry
corresponds to an SU (2) symmetry of the pseudospin. (The
boundary of the wire, which breaks magnetic translation
symmetry, corresponds to an SU (2)-breaking external field.)
Although this correspondence is a small modification of one
already known [9] at the level of noninteracting electrons,
our main insight is that the resulting one-dimensionality and
symmetry make the interacting problem tractable. We are
able to apply the powerful machinery of both Abelian and
non-Abelian bosonization, along with conformal field theory
techniques, to elucidate the phase diagram as a function of
generic interaction parameters.

There has been considerable previous work on interacting
bulk metals in the zeroth Landau level. On the theory side,
many approaches of varying sophistication have been used,
resulting in predictions of density waves [10,11], exciton
insulators [12], superconductors [13] (SC), and marginal
Fermi liquids [14]. Experimentally, there is evidence for
field-induced transitions to an insulating state in bulk bismuth
[15,16] and graphite [17], which have been understood as
charge density wave (CDW) transitions [18] but are still being
studied. In contrast, our interest is in using a wire geometry in
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TABLE I. Comparison of the Landau level problem for a wire with a disk cross section (R × D2 spatial geometry) and a wire with a
spherical cross section (R × S2 spatial geometry).

Property

Spatial geometry R × D2 R × S2

Magnetic field direction Along x̂ Monopole inside every S2

Number nφ of flux quanta piercing wire cross section eBR2/2 2eBR2

Landau level label n (eigenvalue of a†a) l (labels eigenvalue of L2 on sphere)
ZLL degeneracy N ≡ 2S0 + 1 nφ (degeneracy broken by boundary) nφ + 1
Quantum numbers in ZLL kx , m (eigenvalues of px , Lx) kx , m (eigenvalues of px , L3)
Magnetic translation symmetry Broken to O(2) SU (2)

order to more clearly bring out the quasi-one-dimensionality
induced by the magnetic field and to more easily apply 1D
tools. The famed field-induced spin density wave (SDW) state
in organic materials has also been well studied [19–21] but
fundamentally requires the bulk material to have a quasi-one-
dimensional Fermi surface in the absence of magnetic field;
we make no such assumption here.

A major technical strength of our approach is that the
correspondence with pseudospins accounts for interactions
with range longer than the magnetic length, in contrast to
previous work and any naive coupled-wire treatment. Before
proceeding, we summarize our phase diagram, which depends
strongly on the parity of the Landau level degeneracy N . For
odd N , we have identified three phases. One is a Luttinger
liquid, having a gapless charge sector and a free pseudospin
sector. The other two have a gapless charge sector and fully
gapped pseudospin sector, and we argue that they are separated
by a first-order transition. One has power-law correlations
of the CDW order parameter and the other has power-law
correlations of p-wave SC order; these phases are unusual
because the power is tuned by N (that is, by the magnetic field).
For even N > 2, we have identified four different phases, all
of which have a gapless charge sector. One is again a Luttinger
liquid. Two have a fully gapped pseudospin sector, with either
power-law correlations of CDW order or s-wave SC order,
and the transition between them can be second order. Again
the power laws can be tuned by N . The final phase is: It has
a gapless pseudospin sector, and we provide evidence that it
has coexisting power-law correlations of pseudospin-density
wave order and p-wave, pseudospin-triplet SC order.

The structure of this paper is as follows. In Sec. II, we
discuss the noninteracting part of the model and construct the
analogy between fermions in a wire and fermions on the spatial
manifold R × S2. In Sec. III, we write down the interacting
Hamiltonian and cast it into a convenient form which makes its
symmetry explicit. Sections IV through VI contain our main
results. In Sec. IV, for small N , we explicitly analyze our model
through a perturbative renormalization group (RG) procedure
and establish a phase diagram using non-Abelian bosonization.
We identify the nature of the phases more explicitly using
Abelian bosonization in Sec. V. In Sec. VI, we generalize

the results of the previous two sections to conjectures about
the phase diagram for all N . In Sec. VII, we discuss the
effect of symmetry-breaking perturbations in order to bring
our results to bear on the experimentally relevant geometry.
Section VIII relates our results to previously known ones in
the bulk (large-N ) limit. Finally, Sec. IX consists of prospects
for experimentally realizing these phases, open questions, and
further discussion.

II. NONINTERACTING MODEL

In this section, we review the Landau level problem of
spinless fermions on the wire R × D2, where D2 is the two-
dimensional disk of radius R, and on the manifold R × S2. We
will build an analogy between the two problems and review
the mapping from the lowest Landau level of the latter onto
itinerant spinful 1D electrons. We will then use the latter model
as the basis for much of the rest of the paper.

To establish conventions, we call the direction along the
length of the wire x. The geometries are pictured in Table I,
along with a summary of the results of this section. We set
units with h̄ = 1.

A. Landau levels on the disk and sphere

We start by considering Schrodinger particles in a strong
magnetic field of strength B along the x direction, i.e., with
Hamiltonian

H = (p − eA)2

2m∗ , (1)

where m∗ is the effective mass and A is the electromagnetic
vector potential. We can always choose a gauge such that the
eigenvalue kx of px is a good quantum number. In the limit
R → ∞, this problem is simple; the spectrum forms Landau
levels of energy

E(n,m,kx) = ωc(n + 1/2) + k2
x

2m∗ , (2)

where n is a non-negative integer, ωc = eB/m∗ is the cyclotron
frequency, and m will be defined shortly. At fixed kx , each
Landau level has degeneracy approximately equal to the
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FIG. 1. (a) Energy spectrum of noninteracting electrons in a wire
(R × D2) geometry and strong magnetic field. (b) Energy spectrum of
noninteracting electrons in an R × S2 geometry and strong magnetic
field. The dark curve is (nφ + 1)-fold degenerate and the light one
is (nφ + 3)-fold degenerate. In both cases, the dark levels are in the
n = 0 Landau level and the light ones are in n = 1.

number of flux quanta nφ = eBR2/2 penetrating a fixed-x
cross section of the system, where in our units the flux quantum
is 2π/e. Working in symmetric gauge, as appropriate for the
R × D2 geometry, these degenerate states are localized in
the radial direction and labeled by the integer eigenvalue m

of the angular momentum operator Lx .
In the zeroth Landau level, the states have a spatial width

of order lB = √
1/eB. At finite R, the degeneracy is broken

due to the presence of the potential Vedge associated with the
boundary; those states which are radially localized close to
the boundary have higher energy. The spectrum is shown
schematically in Fig. 1(a).

This broken degeneracy arises from the boundary-induced
loss of magnetic translation symmetry in the radial direction.
The remaining symmetries are translations along x and an
O(2) rotation symmetry. We would like more symmetry in
order to better constrain the interacting problem. The reason, as
discussed in the introduction, is that the nontrivial topological
invariant [8] of a Landau level makes it impossible to form
an orthogonal basis for the ZLL with wave functions local
in both directions perpendicular to x. Therefore, interactions,
projected to the ZLL, cannot be well constrained by locality
in any basis; with no locality and not much symmetry, there is
no reason to expect the interacting problem to be tractable.

In order to enrich the symmetry, we change the spatial
manifold to R × S2. In this case, the wire has the spherical
version of magnetic translation symmetry, which is an SU (2)
rotation symmetry. To see this, consider now Schrodinger
electrons on a wire with a spherical cross section and suppose
that every cross section has a uniform, fixed flux piercing it.
This requires a monopole inside the sphere, so the flux will be

quantized to nφ ∈ Z flux quanta. The Hamiltonian is

H = �2

2m∗R2
+ p2

x

2m∗ , (3)

where � = r × (p − eA) is the canonical momentum on the
sphere and A is a monopole vector potential. The radial
component of r is not related to x; it arises because writing
� in this form requires embedding the S2 in a fictitious extra
spatial dimension [22].

Again, px commutes with H , so we fix its eigenvalue kx to
reduce to the Landau level problem in a spherical geometry.
We briefly review standard facts about this problem [9]. The
operator L = � + nφ r̂/2 commutes with the Hamiltonian
and obeys the angular momentum algebra [Li,Lj ] = iεijkLk ,
where i,j,k run over the three dimensions in which the S2

is embedded and ε is the Levi-Civita symbol. The good
quantum numbers in the problem are the eigenvalues kx ,
l(l + 1), and m of the operators px,L2, and L3, respectively,
with m = −l, − l + 1, . . . ,l. Single valuedness of the wave
function only requires 2m − nφ to be an integer; hence m can
be a half-integer if nφ is odd. The energy spectrum, shown in
Fig. 1(b), is

E(l,m,kz) = l(l + 1) − (nφ/2)2

nφ

ωc + k2
x

2m∗ , (4)

where ωc = eB/m∗ is the cyclotron frequency. There is also
a restriction l(l + 1) � (nφ/2)2; therefore the lowest Landau
level has l = nφ/2 and has degeneracy N = nφ + 1.

Given that the angular momentum quantum numbers can be
half-integers, the symmetry group corresponding to rotations
of the spherical cross section of the wire, that is, the magnetic
translation symmetry group, is SU (2). Projecting to the lowest
Landau level reduces all of the degrees of freedom on the S2

to N degenerate levels which transform as a pseudospin-S0

representation of the SU (2) symmetry, where

S0 = N − 1

2
. (5)

This projected problem is therefore equivalent to purely one-
dimensional itinerant fermions with a (possibly very large)
pseudospin.

The analogy we have built between the two geometries is
summarized in Table I. We expect that for large N , the lowest
Landau level of the sphere problem and the disk (wire) problem
should behave very similarly. In both cases, there is free
propagation along the wire, and the finite-size directions are
characterized by a large Landau level degeneracy. On the disk,
at every kx , all states which are localized far from the edge of
the disk are nearly degenerate. The presence of the boundary
breaks this degeneracy, but that effect is only strong near the
edge. In the spherical case, the way to lift the Landau level
degeneracy is by breaking SU (2) symmetry. The main idea
of this paper is therefore to exploit the SU (2) symmetry to
understand the R × S2 problem and then add SU (2)-breaking
perturbations to understand the physics of a wire.

B. Low-energy noninteracting theory

The rest of this paper will be devoted to finding instabilities
of the noninteracting theory to interactions that are much
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weaker than the Landau level splitting and the bandwidth in kx .
To do the analysis, we need only consider the low-energy part
of the noninteracting theory in the R × S2 geometry, obtained
by linearizing the dispersion of Fig. 1(b) about the Fermi level.
Define left- and right-moving fermions in the standard way

ψm(x) ∼
∑
±

∫ �

−�

dk

2π
ei(k±kF )xψm(k ± kF ) (6)

≡ eikF xψm,R(x) + e−ikF xψm,L(x), (7)

where � 	 kF is a momentum cutoff.
The low-energy Hamiltonian is then

H0 =
S0∑

m=−S0

∫
dx ivF (ψ†

m,L∂xψm,L − ψ
†
m,R∂xψm,R), (8)

where vF is the Fermi velocity, which we set to 1. This
Hamiltonian has an enormous U (N ) ⊗ U (N ) symmetry; the
left and right movers may be transformed separately at the level
of the low-energy theory. Interactions will break this symmetry
to a nonchiral SU (2) magnetic translation symmetry.

C. Schrodinger vs Weyl

In order to reach the zeroth Landau level, the carrier density
needs to be low. In a standard metal or semiconductor, zero
carrier density means the system is an insulator, and the above
physics is not an appropriate description. In (type-I) Weyl
semimetals [23–25], the Landau level at the Fermi energy still
disperses linearly even at zero density. Such materials may
be a promising system for realizing our proposal. To evaluate
their suitability, we briefly compare and contrast Schrodinger
and Weyl fermions as they pertain to our construction.

In either geometry, Schrodinger and Weyl fermions look
very similar at low energies. The dispersion along z is linear,
and there is Landau level degeneracy; the Landau levels
either have SU (2) symmetry in the spherical case or magnetic
translation symmetry in the bulk of the wire. There are three
main differences. First, in the spherical case, the Landau
level degeneracy N for a given nφ is nφ + 1 for Schrodinger
fermions and nφ for Weyl fermions. Second, at fixed electron
number kF is strongly dependent on the magnetic field in the
Schrodinger case (since the Landau level degeneracy changes
with field) but is set primarily by the Weyl point splitting
in the Weyl case, with weak field-dependent corrections at
finite doping above the Weyl points. Finally, the Landau
level spacing is slightly different (at small momentum, it is
proportional to B for Schrodinger electrons and

√
B for Weyl

electrons).
These differences are inessential for the rest of our analysis;

we abstract them away by fixing N and kF . Of course, these
differences matter in a real experiment, as the difficulty of
reaching the quantum limit with a given N will depend on
such factors; we will discuss this further in Sec. IX.

For the rest of this paper, we use the R × S2 geometry.
We assume SU (2) symmetry until Sec. VII, when we will
make more contact with the wire geometry by investigating
SU (2)-breaking perturbations.

FIG. 2. Nonchiral interactions which are marginal at the free
fermion fixed point. The labels S0 and m,m′,n,n′ indicate the L2

and the L3 eigenvalue, respectively. The interaction is decomposed
according to the angular momentum transfer (L2,L3) = (S,p) from
the left mover to the right mover.

III. STRUCTURE OF THE INTERACTIONS

Starting from the free fermion fixed point, we now wish
to write down the most relevant (in the RG sense) symmetry-
respecting interaction terms. Four-fermion contact interactions
are marginal at tree level; all other momentum-conserving
interactions are irrelevant. Moreover, in the absence of fine
tuning to kF = π , Umklapp scattering is forbidden. Finally, the
interactions that we care about are nonchiral ones; fully chiral
terms are exactly marginal and only renormalize velocities.
As such the most relevant operators are left-right products of
fermion bilinears, i.e., ψ

†
L,mAmm′ψL,m′ψ

†
R,nBnn′ψR,n′ , where

A and B are Hermitian N × N matrices. We now need to
constrain A and B by symmetry.

The interactions we want are shown in Fig. 2. The
interaction can be decomposed according to the angular
momentum (S,p) transferred from the left mover to the right
mover, where S(S + 1) and p are the eigenvalues of of L2

and L3, respectively. Here S can range from 0 to N − 1. The
SU (2) symmetry completely fixes the p dependence of the
coupling constants for each S, that is, there should only be N

independent coupling constants.
An explicit decomposition of the interaction in this form,

where p labels a component of the angular momentum transfer,
is given in Appendix A, but it is slightly inconvenient for
our purposes. The most convenient way to implement the
symmetry is to use a special basis {MS,α} (we suppress the
label N ) for the set of Hermitian N × N matrices which has
the following properties:

(1) S takes integer values from 0 to N − 1 and α takes
values from −S to S.

(2) For fixed S, under the action MS,α → U †MS,αU for
U valued in the spin-S0 representation of SU (2), the MS,α

transform as a spin-S representation of SU (2).
(3) The matrices are orthogonal under the trace norm, that

is tr(MS,αMS ′,β) = kδS,S ′δαβ for an S-independent constant k.
For some intuition about the MS,α basis, we see that

property (2) implies that M0,0 is
√

k/N times the N × N

identity matrix and that M1,α can be chosen to be the usual
spin-S0 spin matrices with α = x,y,z. The decomposition in
Fig. 2 is inconvenient because it violates property (3); in this
decomposition, the S = 1 basis matrices would be Sz and
S±, which have less convenient orthogonality properties. We
choose an unusual normalization convention where the com-
mutation relations of SU (2) are [M1,α,M1,β] = √

2iεαβγ M1,γ
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with ε the Levi-Civita symbol; this implies that

k = 1
6N (N2 − 1). (9)

See Appendix A for an explicit construction of this basis; the
matrices MS,α are particular linear combinations of Clebsch-
Gordan coefficients for fusing two spin-S0 objects into a spin-S
object. This normalization convention is chosen because the
currents ψ†

χM1,αψχ (χ = L,R and we suppress pseudospin
indices) form a representation of su(2)k , giving k a physical
meaning. See Sec. IV B for a justification of this fact.

With this basis choice, the most general marginal interaction
which is symmetric under nonchiral SU (2) transformations is
of the form

Hint =
∫

dx

N−1∑
S=0

gS

S∑
α=−S

: ψ
†
L,mM

S,α
mm′ψL,m′

: (x) : ψ
†
R,nM

S,α
nn′ ψR,n′ : (x), (10)

where we have suppressed the sums over the fermion pseu-
dospin states. The S = 0 and S = 1 terms have simple physical
interpretations stemming from the aforementioned explicit
forms of M0,0 and M1,α . The S = 0 term is just a Hubbard-like
contact density-density interaction nLnR , where nL/R are the
chiral fermion densities, while the S = 1 term is a contact
Heisenberg-type interaction SL · SR , where SL/R are the chiral
SU (2) pseudospin densities. See Appendix A for the explicit
construction and proof of SU (2) invariance. The Hamiltonian
for the full system is then

H = H0 + Hint (11)

with H0 the noninteracting Hamiltonian defined in Eq. (8).
Interestingly, this problem has been previously studied for
half-integer pseudospins (even N ) in the context of cold atoms
under the assumption that the spins have an emergent symplec-
tic symmetry [26,27]. Although we make no assumption about
the parity of N or any emergent symmetries, our results should
reduce to these previously known ones when we impose these
additional assumptions.

Before proceeding, we wish to give some intuition translat-
ing these interactions to the language of the original Landau
level problem. Recall that the pseudospin degree of freedom
is a re-encoding of the fermions’ motion perpendicular to
the long axis of the wire. In particular, it is readily checked
[28] that a gauge can be chosen such that m = S0 (m = −S0)
corresponds to a state localized within a magnetic length of
the north (south) pole of the sphere, and decreasing m moving
steadily towards the south pole. Therefore, roughly speaking,
interactions which transfer larger m are longer range; for ex-
ample, an interaction of the form ψ

†
L(S+)2S0ψLψ

†
R(S−)2S0ψR ,

where S± = Sx ± iS−, involves backscattering between elec-
trons on opposite poles of the sphere, and thus is an interaction
whose range is of the order of the radius of the sphere.
Since the pseudospin-S interaction term can transfer at most
m = S angular momentum, there is a sense in which larger-S
interactions are longer-range interactions. This interpretation
can only be viewed heuristically, however, because ZLL wave
functions cannot be localized in both angular directions on the
sphere.

IV. PHASE DIAGRAM FOR SMALL N

A. RG procedure

We assume that all of the |gS | are small and perform
perturbative RG to second order (one loop). In the free theory,
all fermion bilinears have scaling dimension 1, so all of
the interactions are marginal at tree level. Using standard
machinery, the perturbative RG equations for many marginal
operators are known to be [29]

dgS

dl
= −π

∑
S ′,S ′′

βS
S ′,S ′′gS ′gS ′′ , (12)

where the cutoff in real space is a0e
l (here a0 is the lattice-scale

cutoff of the low-energy theory at which the bare couplings
are defined) and βS

S ′,S ′′ is the operator product expansion (OPE)
coefficient given by the short-distance identification (written
in complex coordinates)

Oi(z,z̄)Oj (w,w̄) ∼
∑

k

βk
ijOk(w,w̄)

|z − w|2 (13)

within correlation functions. Here, we are using a specific form
of OPE where all the operators {Oi} involved are marginal,
which is immediately applicable to our discussion. For our
interactions, the OPE coefficients can be computed by Wick’s
theorem to be

βS
S ′,S ′′ =

∑
α,β

1

k2
tr([MS ′,α,MS ′′,β]MS,γ )2. (14)

A tedious calculation, outlined in Appendix B, using the
explicit forms of the M matrices and sum-of-product identities
for the Clebsch-Gordan coefficients [30] shows that

βS
S ′,S ′′ = −k(2S ′ + 1)(2S ′′ + 1)

({
S S ′ S ′′
S0 S0 S0

})2

× (1 − (−1)S+S ′+S ′′
)2, (15)

where the { S S ′ S ′′
S0 S0 S0

} is the Wigner 6j symbol. This form
makes explicit a selection rule resulting from the symmetry
properties of products of the Ms: βS

S ′,S ′′ is zero if S + S ′ + S ′′
is even. See Appendix C for an explanation of this selection
rule in terms of Young tableaux.

Since the identity matrix commutes with all the other
Ms, β0

S ′,S ′′ and βS ′
0,S ′′ = βS ′

S ′′,0 are zero unless S ′ = S ′′ = 0. As
such, to this order in perturbation theory, the U (1) charge
sector of the theory decouples from the pseudospin sector and,
since Umklapp scattering is generally forbidden thanks to the
incommensurate filling, the charge sector remains a gapless
Luttinger liquid. The coupling constant g0 simply changes the
Luttinger parameter. We will therefore ignore the U (1) sector
and g0 unless otherwise stated.

B. Non-Abelian bosonization

1. Basics of non-Abelian bosonization

We will use non-Abelian bosonization [31] to find the
strong-coupling fixed points and to determine the low-energy
theories. A full review of non-Abelian bosonization is beyond
the scope of this paper; we will simply define notation and
briefly review the basics.
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The main result of non-Abelian bosonization is that a theory
of N free fermions with the same Fermi velocity are equivalent
to the Wess-Zumino-Witten (WZW) model u(N )1 = u(1) ⊗
su(N )1. The chiral SU (N ) symmetry currents J a

χ , where a

labels a generator ta of SU (N ) and χ = L,R labels left and
right movers, correspond to chiral fermion bilinears

J a
χ (x) ∼: ψ†

m,χ tamnψn,χ : (x). (16)

The colons indicate normal ordering and the ta generate the
fundamental representation of su(N ). The conserved chiral
currents of the U (1) part of the theory are identified with the
chiral total fermion density. A heuristic way to understand
this identification from the CFT point of view follows from
comparing operator product expansions (OPEs). Suppressing
matrix indices, Wick’s theorem implies that if A and B are
matrices, then the corresponding fermion bilinears have the
OPE (in complex coordinates)

: ψ
†
LAψL : (z) : ψ

†
LBψL : (w)

∼ : ψ
†
L[A,B]ψL : (w)

z − w
+ tr(AB)

(z − w)2
(17)

with an analogous equation for the right movers. With
the normalization f ab

c f ab
d = 2Nδcd , with f ab

c the structure
constants of u(N ), plugging in A = ta and B = tb yields the
correct u(N )1 OPEs

J a
L(z)J b

L(w) ∼ if ab
c J c

L(w)

z − w
+ δab

(z − w)2
. (18)

More generally, Eq. (17) means that for any Lie subgroup
G ⊂ U (N ) with generators t̃ a , the fermion bilinears ψ

†
Lt̃aψL

will have the same OPEs as the symmetry currents of a WZW
theory with Lie group G and level k equal to the embedding
index xe of G in U (N ).

We will frequently make use of such embeddings. In order
to explicitly distinguish between the currents in different
subgroups G, define the dim(G)-component object JG

χ whose
ath component is the current J a

χ , where a labels a generator
of G. In this notation the Sugawara Hamiltonian for a level-k
WZW theory with symmetry group G is

H = 1

2(k + g)

(
: JG

L · JG
L : + : JG

R · JG
R :

)
, (19)

where g is the dual Coxeter number of G.

2. Coset construction

Embeddings of the previously mentioned sort naturally
lead to consideration of coset models; we briefly review the
construction [32]. Consider a unitary WZW theory at level k

over a Lie group G with a subgroup H , with corresponding
Lie algebras h ⊂ g. Then the generators of h can be written
as linear combinations of generators of g, so there exist
currents JH

χ which are linear combinations of the currents JG
χ

of the same chirality. These currents also satisfy a Kac-Moody
algebra for h at the level k′ = xek where xe is the embedding
index of H in G. We define the energy-momentum tensor for
the coset theory gk/hk′ by

Tcoset = Tgk
− Thk′ , (20)

where Tgk
and Thk′ are the energy-momentum tensors for the

gk and hk′ WZW theories, respectively. The coset theory is
another unitary CFT with central charge

ccoset = cgk
− chk′ . (21)

Importantly, the Hilbert space for the gk theory decomposes
into a tensor product of the Hilbert space of the hk′ theory and
the coset theory, that is, any operator O in the gk theory can
be written as a linear combination

O =
∑
ij

Oh

i ⊗ O(coset)
j , (22)

where Oh

i and O(coset)
j are operators in the hk′ and coset

theories, respectively. IfO is a scaling operator, then its scaling
dimension (conformal spin) is the sum of the dimensions
(spins) of Oh

i and O(coset)
j .

A special case will be helpful later. Suppose that gk =
su(N )1, hk′ = su(2)k with k defined in Eq. (9), and OL,m

is a chiral spin-S fermion bilinear (m = −S, . . . ,S labels
a component), which has scaling dimension 1. Then if we
decompose OL,m as in Eq. (22), its Osu(2)

i part must have a
scaling dimension less than 1 and furthermore has to transform
as a spin-S field under the su(2)k algebra. This means that
the Osu(2)

i part of OL,m can only be the left-moving spin-S
primary φS

L,m in su(2)k , i.e.,

OL,mOR,m = φS
L,mφS

R,m ⊗ O(coset) (23)

for some coset operator O(coset) with scaling dimension

�O = 2 − 2S(S + 1)

k + 2
(24)

because S(S + 1)/(k + 2) is the scaling dimension of φS
L,m.

Before determining the phase diagram, one more notational
convention is needed. A symplectic group will sometimes
appear as an emergent symmetry, but the term “symplectic
group” and the notation Sp(N ) are used in multiple in-
compatible ways in the literature. In this paper, the term
“symplectic group” will always refer to the group USp(2M),
which is the set of 2M × 2M matrices which are both unitary
and preserve the symplectic form. Our notation for the Lie
algebra of USp(2M) is sp(2M). For example, in this notation
sp(4) ≈ so(5).

Before discussing general N , we analyze the cases of N =
2,3, and 4 in detail. Each case will add new structure and
features to the problem, but N is small enough to demonstrate
all of our reasoning very explicitly.

C. N = 2: Luther-Emery phase diagram

The N = 2 interaction Hamiltonian is simply

Hint =
∫

dx

(
g0

2
nL(x)nR(x) + g1JSU (2)

L (x) · JSU (2)
R (x)

)
(25)

with g0 exactly marginal and RG equation

dg1

dl
= 4πg2

1 (26)

for g1. Its flow is shown in Fig. 3.
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g10

Free Pseudospin gap

FIG. 3. RG flow for N = 2.

When g1 < 0 this coupling is marginally irrelevant and
provides logarithmic corrections to the free-pseudospin fixed
point. When g1 > 0 it is marginally relevant and JSU (2)

L · JSU (2)
R

flows to strong coupling. The latter phase is the well-known
Luther-Emery phase [33] of the 1D spin-1/2 fermion chain
(note that under our sign conventions, g0 < 0 and g1 > 0
when on-site interactions are attractive); strong backscattering
causes the pseudospin sector to become gapped while the
charge sector remains gapless. Both pseudospin-singlet CDW
order at wave vector 2kF and pseudospin-singlet SC have
power-law correlations in this phase.

A comment on terminology: Since we are studying one-
dimensional physics, there is no true long-range order, only
power-law correlations. We will use the terminology “fluctu-
ating order parameter” to describe objects which acquire such
correlations since such objects can be thought of as mean-field
order whose long-range order has been destroyed by quantum
fluctuations.

One way to qualitatively understand this phase is as follows.
Since the pseudospin sector becomes gapped, any possible
fluctuating order parameters must be SU (2) singlets. There
are two ways to make a two-particle SU (2) singlet order
parameter: one in the particle-hole channel and one in the
particle-particle channel. The fact that this is possible is special
to SU (2); particles and holes transform in conjugate repre-
sentations, but representations of SU (2) are self-conjugate.
This means that both the singlet CDW and the singlet SC
order parameters can fluctuate, and it is known that they do
both fluctuate. Such arguments will be useful sanity checks in
higher-N cases.

D. N = 3: Two nontrivial phases

The N = 3 RG equations are

dg1

dl
= 4π

(
g2

1 + 5g2
2

)
(27)

dg2

dl
= 24πg1g2. (28)

The flows in Fig. 4(a) show that g1 flows to strong coupling
unless g1 < 0 and |g2| < |g1|; if the latter occurs, both g1 and
g2 flow to zero, and the free pseudospin fixed point is stable. In
the strong-coupling case, it will be useful to define g̃2 = g2/g1

to obtain the equation

1

g1

dg̃2

dl
= 5g̃2

(
1 − g̃2

2

)
. (29)

Clearly g̃2 = ±1 and g2 = 0 are “fixed rays” of the RG flow,
in the sense that the ratio of the coupling constants remains
fixed but g1 flows to strong coupling. It is easy to check by
linearizing Eq. (29) that the fixed rays g2 = ±g1 are stable to
small changes in g̃2 and the g2 = 0 fixed ray is unstable; flow

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

g1

g2

(a)

(b)

C BA
g2/g10 1−1

(c)

FIG. 4. RG flows for N = 3. (a) The full RG flow; the only
finite-coupling fixed point is at the origin. (b) Corresponding phase
diagram. (c) RG for g̃2 = g2/g1 with g1 > 0. Points B and C are
stable fixed “rays” corresponding to 45-degree lines in (a).

of this ratio is shown in Fig. 4(c) for g1 > 0. The properties of
the fixed points are summarized in Table II.

What is the nature of the strong-coupling phases? By
non-Abelian bosonization, the free theory is the u(3)1 =
u(1) ⊗ su(3)1 WZW theory. Since the u(1) charge sector has
decoupled, the pseudospin sector of the free theory is just
su(3)1. When g1 = g2, the interaction is actually fully SU (3)
symmetric; in the language of non-Abelian bosonization, the
interaction is backscattering of the form gJSU (3)

L · JSU (3)
R . That

is, there is an emergent SU (3) symmetry. When g flows to
strong coupling, we expect the su(3) sector to be gapped; the
pseudospin sector drops out of the low-energy theory entirely.

Physically, since there is a pseudospin gap, we expect any
fluctuating order parameter to be a singlet under the emergent
SU (3) symmetry. Since ψm transforms under the fundamen-
tal representation of SU (3), which is not self-conjugate,
no particle-particle order parameter can be such a singlet.
However, there is a particle-hole singlet ψ

†
L,mψR,m, which is,
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TABLE II. List of fixed rays and their properties for N = 3 with g1 > 1. The “label” refers to Fig. 4(c).

Label g̃2 Stability Symmetry of H Low-energy theory Mean-field order

A 0 Unstable SU (2) pseudospin gap singlet CDW/SC
B 1 Stable SU (3) pseudospin gap singlet CDW
C −1 Stable SO(3) pseudospin gap singlet p-wave SC

physically, the CDW order parameter. We therefore expect this
phase to have fluctuating pseudospin-singlet CDW order.

Let us next consider the g2 = −g1 fixed ray, which for
future purposes we will refer to as the SO(3)-invariant fixed
ray. [The spin-1 representation of SU (2) is, of course, also a
representation of SO(3), hence the name. Although SO(3) is
not an emergent symmetry, we will see that at larger odd N

there will be an emergent SO(N ) symmetry, so we choose
this name to agree with the generalization.] To understand
this phase, define the second-quantized operator Ĉ, which is
unitary at the level of the low-energy theory and acts as

ĈψR,mĈ−1 = (−1)m−S0ψ
†
R,−m

Ĉψ
†
R,mĈ−1 = (−1)m−S0ψR,−m, (30)

where m = −S0, − S0 + 1, . . . ,S0 and acts as the identity
on the left-moving sector. Using Clebsch-Gordan coefficient
identities detailed in Appendix A, it can be checked that

Ĉψ
†
R,mMS,α

mn ψR,nĈ
−1 = (−1)S+1ψ

†
R,mMS,α

mn ψR,n. (31)

That is, Ĉ transforms the Hamiltonian at the SU (3)-invariant
fixed ray to the Hamiltonian at the SO(3)-invariant fixed ray.
Naively, Ĉ looks unitary, which would mean that there is an
energy gap and a full SU (3) symmetry at the SO(3)-invariant
fixed ray. However, Ĉ is chiral, so this SU (3) symmetry may
be anomalous. As the low-energy theory suffers from the chiral
anomaly, we expect any chiral symmetry to be broken in the
UV, but there is no reason to expect a large perturbation to
the low-energy theory. Therefore, the conclusion that there is
a pseudospin gap should be robust, but the SU (3) symmetry
need not be.

To see what symmetry could remain in the UV, note that the
MS,α are N × N Hermitian matrices and therefore generate the
chiral action of the SU (3) symmetry. At the SU (3) fixed ray,
the nonchiral symmetry is generated by acting with the same
MS,α on both the left- and right-moving fermions. Therefore,
the action of any nonchiral symmetry at the SU (3) fixed ray
becomes chiral at the SO(3) fixed point if and only if it is
generated by an MS,α which transforms nontrivially under Ĉ.
Equation (31) thus shows that the transformations generated
by the odd-S generators remain exact symmetries but those
generated by the even-S generators are broken by the quantum
anomaly. For N = 3 this leaves only the S = 1 generators,
which generate SO(3); therefore, the true symmetry at the
fixed point should be SO(3).

To get a physical understanding of the SO(3) fixed point,
note that Ĉ transforms density-wave order parameters into
superconducting ones and vice versa. In particular, it is easy to
check that it turns the SU (2)-singlet CDW order parameter into
the SU (2)-singlet SC order parameter and vice versa. Since
the CDW order parameter fluctuates in the SU (3)-invariant

phase, the SC order parameter must fluctuate in this SO(3)-
invariant phase while the CDW order parameter should have
exponentially decaying correlations. Our analysis so far has
yielded the phase diagram of Fig. 4(b).

We next turn to the unstable g2 = 0 fixed ray, which
represents a phase transition between the CDW and the SC
phases. We analyze this in a way which is slightly laborious
for this particular case but will be extremely useful in more
general cases.

We know that the generators of the SU (2) symmetry
form a representation of su(2)4. Moreover, the interaction
g1 is exactly a product of those generators. As such, it
is useful to decompose su(3)1 = su(2)4 ⊗ (su(3)1/su(2)4),
where su(3)1/su(2)4 is a coset theory. It so happens that there
is a conformal embedding of su(2)4 into su(3)1 [3]; this means
that this coset theory has zero central charge and is thus trivial.
But we have added a term g1JSU (2)

L · JSU (2)
R which is flowing to

strong coupling; we thus expect the su(2)4 theory to be gapped
out. Thus we expect the strongly coupled fixed point to also
have a pseudospin gap.

The fact that the phase transition appears to be gapped
leaves two possibilities: Either there is a first-order transition,
or there is some reason that the su(2)4 theory is not gapped out.
In Sec. V, we will see that our simple arguments identifying
the physical character of these phases can be put on more
solid ground using Abelian bosonization, and we will use
those techniques to argue why one should expect a first-order
transition. We defer further discussion of this phase transition
to that section.

Before moving to N = 4, a comment on the interpretation
of the superconducting order parameter is in order. For N = 3
(pseudospin-1), the two-particle singlet has a symmetric
pseudospin wave function. Therefore, no pseudospin-singlet
s-wave superconducting order parameter can exist by Pauli
statistics. However, a p-wave order parameter can exist and
fluctuate.

E. N = 4: Three Nontrivial Phases

So far we have seen quasi-one-dimensional physics appear,
although the main difference between N = 2 and N = 3 was
whether or not the singlet CDW and SC order parameters
fluctuated simultaneously. However, a new structure will
clearly appear at N = 4, where the noninteracting pseudospin
sector is su(4)1, and the level of the su(2) subalgebra is k = 10.

The RG equations are
dg1

dl
= 4π

(
g2

1 + 5g2
2 + 14g2

3

)
(32)

dg2

dl
= 4π (6g1g2 + 14g2g3) (33)

dg3

dl
= 4π

(
12g1g3 + 5g2

2 + 3g2
3

)
. (34)
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FIG. 5. (a) Two cuts, at g2 = 0 and a schematic cut as g1 → +∞,
of the RG flow as a function of g1, g2/g1, and g3/g1 for N = 4.
The sphere at the origin is the free pseudospin fixed point. (b) RG
flows for the ratios of coupling constants for N = 4 and g1 > 0. The
labeled gray circles are fixed rays where the ratio of the couplings
remains fixed but all couplings become strong. (b) Phase diagram
corresponding to the flows in (a).

Cuts of the flow diagram as a function of g1 and the g2,3/g1 are
shown in Fig. 5(a), in analogy to Fig. 4(a) for N = 3. Focusing
first on g1 < 0, we see that there is a region with g3 small where
the free pseudospin fixed point is stable. (It is easy to check

numerically that this region is stable to adding a small nonzero
g2). Otherwise, g1 passes through zero. Although this causes
g3/g1 to blow up in finite RG time, g3 can still remain small
and our perturbative expansion remains valid as g1 changes
sign; we are then reduced to studying the g1 > 0 case.

When g1 > 0, it is again useful to re-analyze the equations
in terms of g̃S = gS/g1:

1

g1

dg̃2

dl
= 5g̃2 + 14g̃2g̃3 − g̃2

(
5g̃2

2 + 14g̃2
3

)
(35)

1

g1

dg̃3

dl
= 11g̃3 + 5g̃2

2 + 3g̃2
3 − g̃3

(
5g̃2

2 + 14g̃2
3

)
. (36)

The flow diagram for the g̃S with g1 > 0 is shown both in
Fig. 5(b) and in Fig. 5(a) schematically located at the g1 →
+∞ plane. The “fixed points” in this diagram are, just like in
Fig. 4(c), actually “fixed rays” on which the couplings grow
large but have a fixed ratio.

We see clearly from the flows that there are three stable fixed
rays and four unstable ones, resulting in the phase diagram in
Fig. 5(c). It is possible to find the fixed ray couplings explicitly.
The fixed rays and their properties are summarized for g1 > 0
in Table III.

1. SU(4)-invariant phase

The simplest stable fixed ray is at g̃2 = 1 and g̃3 = 1
[point B in Fig. 5(b)]. As in the N = 3 case, such a fixed
ray with g1 = g2 = g3 has an emergent nonchiral version
of the SU (4) symmetry of the noninteracting problem. As
such, under bosonization, the interaction Hamiltonian is of the
form gJSU (4)

L · JSU (4)
R . Hence the pseudospin sector will gap out

completely upon flowing to strong coupling. As in the N = 3
case, any fluctuating order parameter should be an SU (4)
singlet, which means that it should be pseudospin-singlet CDW
order.

2. U Sp(4)-invariant phase

The (stable) gS/g1 = (−1)S+1 fixed ray [point C in
Fig. 5(b)] also has emergent symmetry beyond SU (2). In
Appendix A, we prove that the ten matrices M1,a and M3,a ,
taken together, generate USp(4) ≈ SO(5) [it will turn out
that the language USp(4) is the correct generalization], and
that M2,a transform as a five-dimensional representation of
USp(4), which is the fundamental representation of SO(5).
Therefore the Hamiltonian is USp(4)-symmetric on this fixed
ray, but the coupling is not simple in this language.

We can, however, understand this USp(4)-symmetric phase
via the same chiral particle-hole transformation that we used
for N = 3. In fact, the transformation Ĉ defined in Eq. (30)
behaves exactly the same in the N = 4 case (with S0 = 3/2)
as it does for N = 3 (S0 = 1); it switches the signs of even-
pseudospin couplings, thus transforming the Hamiltonian at
the SU (4)-invariant fixed ray to that of the USp(4)-invariant
fixed ray. Again, Eq. (31) tells us that the even-S generators
of SU (4) become anomalous, so the SU (4) symmetry is
broken to USp(4) in the UV. We therefore expect that, like
the SU (4)-invariant phase, the USp(4)-invariant fixed point is
fully gapped but has power-law singlet SC correlations rather
than power-law CDW correlations.
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TABLE III. List of fixed rays and their properties for N = 4 with g1 > 0. “Label” refers to a point in Fig. 5(b), and we have suppressed the
massless U (1) charge sector of the low-energy theory.

Label (g̃2,g̃3) Stability Symmetry of H Low-energy theory Mean-field order

A (0,0) Unstable SU (2) Ising singlet CDW/SC
B (1,1) Stable SU (4) pseudospin gap singlet CDW
C (−1,1) Stable USp(4) pseudospin gap singlet SC
D (0,1) Saddle USp(4) Ising singlet CDW/SC
E (0, −11/14) Stable SU (2) Unknown, gapless triplet SDW/SC
F (

√
41/125, −1/5) Saddle SU (2) Unknown, gapless singlet CDW, triplet SC/CDW

G (−√
41/125, −1/5) Saddle SU (2) Unknown, gapless singlet SC, triplet SC/CDW

3. CDW/SC phase transition

The above two phases appeared at N = 3, but the transition
between them seemed to be first order. However, we will now
show that a second-order transition is allowed (though, of
course, not required) for N = 4 by analyzing the nontrivial
saddle point fixed ray with g2 = 0 and g̃3 = 1 [point D in
Fig. 5(b)]. As mentioned previously, M1,a and M3,a , taken
together, generate USp(4); in Appendix A, we show that the
fermion bilinears that they define generate a representation of
sp(4)1. As such, the fixed ray coupling is actually of the form
gJUSp(4)

L · JUSp(4)
R .

In the coset construction, the free theory decomposes
as su(4)1 = sp(4)1 ⊗ (su(4)1/sp(4)1), and the fixed point
interaction should cause the sp(4)1 sector to gap out. This
time, however, the remaining coset theory su(4)1/sp(4)1 has
central charge 1/2, that is, it is the Ising CFT. Hence the strong
coupling fixed point describes a second-order, Ising-type phase
transition between two pseudospin-gapped phases, one with
power-law correlations of pseudospin-singlet CDW order and
the other with power-law correlations of pseudospin-singlet
s-wave SC order. In fact, the entire g̃3 = 1 line is USp(4)
invariant; all of the results above are in agreement with
previous analytical [26,27] and numerical [34,35] work on
this special line.

4. SU(2)-invariant phase

The g2 = 0, g̃3 = −11/14 fixed ray [point E in Fig. 5(b)]
is much more difficult to analyze because the fixed ray
Hamiltonian has no additional symmetry. We can make some
progress as follows.

The free spin-1 fermion currents form a representation
of su(2)10. The pseudospin sector of the free theory can be
decomposed as su(4)1 = su(2)10 ⊗ (su(4)1/su(2)10), and the
spin-1 currents have strictly zero correlation functions with
any operator in the coset theory. In fact su(2)10 has central
charge c = 5/2, so the coset su(4)1/su(2)10 has central charge
c = 1/2 and is thus the Ising CFT. If g3 were zero, as at
point A in Fig. 5(b), the interaction would be of the form
gJSU (2)

L · JSU (2)
R and would flow to strong coupling. We would

expect that the su(2)10 sector would fully gap out and we would
be left with a gapless Ising theory.

However, g3 is not zero at the fixed point. The corre-
sponding operator can be decomposed into a product of the
pseudospin-3 primaries in the su(2)10 theory and an Ising
primary, as in the discussion following Eq. (22). However,
the chiral pseudospin-3 primary φ3

L,m happens to have scaling

dimension h = 1 in su(2)10. Therefore, by Eq. (24), the Ising
primary has dimension 0 and is trivial, so the fixed ray
Hamiltonian is

Hint = g
(
JSU (2)

L · JSU (2)
R − 11

14φ3
L,mφ3

R,m

)
. (37)

In particular, the Hamiltonian does not couple to the Ising
coset theory. We therefore conclude that the low-energy theory
of this phase contains the Ising CFT and is thus gapless.
However, we cannot draw conclusions about the fate of the
su(2)10 sector using any tools familiar to us. Since there is RG
flow, its central charge should decrease, but it is unclear if it
should gap out or, for example, flow to su(2)k′ for some k′ < k.

V. IDENTIFYING THE PHASES

Our RG and non-Abelian bosonization pictures were very
useful for understanding what fixed points are available,
the spectrum, and symmetry. However, they only provided
heuristic descriptions of, for example, correlation functions
within each phase. To improve on that, we first build intuition
using mean field theory, which is inaccurate in 1D but will
prove helpful. We will then use Abelian bosonization on the
fixed rays in order to extract accurate physical interpretations
and calculate some correlation functions. In this section, we
first explain our general techniques and conventions, then
explicitly apply them to the cases N = 2, 3, and 4. Finally,
we briefly comment on the interpretation of order parameters
in the context of the original Landau level problem.

A. Mean-field theory

In this subsection we outline our mean-field procedure; see
Appendix D for the details and a more careful explanation of
our heuristic use of mean-field theory. To do mean-field theory,
we can convert the coupling constant g1 in the direct channel
to coupling constants gE

S in the exchange and gC
S in the Cooper

channels, defined as

Hint =
∑

S

gE
S

∑
α

ψ
†
L,mM

S,α
mm′ψR,m′ψ

†
R,nM

S,α
nn′ ψL,n′ (38)

=
∑

S

gC
S

∑
α

ψ
†
L,mM

(p),S,α

mm′ ψ
†
R,m′ψR,nM

(h),S,α
nn′ ψL,n′ .

(39)

Here M (p) and M (h) are defined using the same conditions
as the M matrices but with the appropriate transformation
rules under SU (2) for particle-particle and hole-hole bilinears,
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respectively. We will show shortly that the transformations are
always linear; that is, there exist N × N matrices KE and KC

for each N such that

gE
S = KE

SS ′gS ′ (40)

with a similar equation for gC .
Next, we perform a Hubbard-Stratonovich transformation

in either the exchange or Cooper channels, integrate out
the fermions, and expanding in the set of mean-field order
parameters ψ

†
LMS,αψR or ψ

†
LM (p),S,αψ

†
R . At second order,

all of the order parameter fields are decoupled thanks to our
orthogonalization convention tr(MS,αMS ′,β) = kδSS ′δαβ . The
expansion shows that if one of the g is negative, then there
is a divergent susceptibility to the corresponding order, with
larger |g| implying a stronger instability. The details of this
calculation can be found in Appendix D.

We now provide an explicit formula for the matrices K

defined in Eqs. (38) and (39). This is done by matching the
fermion operators appearing in those equations term by term,
that is, ∑

S ′,β

gS ′M
S ′,β
mm′ M

S ′,β
nn′ = −

∑
S ′,β

gE
S ′M

S ′,β
mn′ M

S ′,β
nm′ . (41)

Multiplying both sides by M
S,α
n′mM

S,α
m′n for fixed S,α and

summing on m,m′,n,n′, the orthogonality of the MS,α results
in

gE
S =KE

SS ′gS ′ =− 1

k2

∑
S ′,β

gS ′ tr(MS,αMS ′,βMS,αMS ′,β). (42)

By SU (2) invariance this result is independent of α. A nearly
identical computation shows that

KC
SS ′ = 1

k2

∑
S ′,α

tr(M (p),S,αMS ′,βM (h),S,α(MS,α)T ). (43)

It is also easy to show that the operator Ĉ defined in Eq. (30)
transforms

Ĉ
∑
S,α

gE
S ψ

†
L,mM

S,α
mm′ψR,m′ψ

†
R,nM

S,α
nn′ ψL,n′Ĉ−1

=
∑
S,α

gE
S ψ

†
L,mM

(p),S,α

mm′ ψ
†
R,m′ψR,nM

(h),S,α
nn′ ψL,n′ , (44)

that is, it converts an operator in the exchange channel to
one in the superconducting channel. But the transformation
also changes the direct channel coupling constants gS →
(−1)S+1gS . We conclude, then, that

KE
SS ′ = KC

SS ′ (−1)S
′+1 (45)

and will therefore only explicitly list KE .

B. Abelian bosonization

We introduce one free chiral boson field φm,χ (χ = L,R)
for each component ψ

†
m,χ of chiral fermion. Our convention is

〈φm,χ (x)φn,χ (0)〉 = −δm,n log |x|. (46)

We define

φm = φm,L + φm,R (47)

θm = φm,L − φm,R (48)

which obey the commutation relations

[φm(x),∂yθm(y)] = iδ(x − y). (49)

The corresponding bosonization identities are

ψ
†
m,L → ηmeiφm,L (50)

ψ
†
m,R → η̄me−iφm,R (51)∑

χ

: ψ†
m,χψm,χ : → ∂xφm, (52)

where ηm and η̄n are mutually anticommuting Klein factors
which square to 1. We have dropped normalization factors.
Note that the fermion operators are left unchanged under
φm → φm + 2πl for l ∈ Z, so we should think of φm as
compact bosons with φm ∼ φm + 2π .

C. N = 2

We analyze the Luther-Emery phase at N = 2 as a familiar
example before moving to the less familiar larger-N cases.
The mean-field coupling constants in the exchange channel
are computed using Eq. (42) to be

KE = −1

2

(
1 3
1 −1

)
. (53)

That is, for g0 = 0, we have gE
0 = gC

0 = −3g1/2 and gE
1 =

gC
1 = g1/2. At mean field level, there is, as expected,

an instability to a singlet CDW with order parameter
〈ψ†

L(x)ψR(x) + H.c.〉 and to singlet SC with order parameter
〈ψ†

L(x)M (p),0ψ
†
R(x)〉 = 〈ψ†

R(x)M (p),0ψ
†
L(x)〉; these two orders

happen to be degenerate, which is closely related to the fact
that both order parameters have power-law correlations in the
Luther-Emery phase. At this level of approximation, g0 > 0
will break the degeneracy in favor of CDW order and g0 < 0
will favor superconductivity, but we know from the more
accurate bosonization study that this degeneracy remains,
illustrating the limitations of the mean field formalism.

In Abelian bosonization, since we expect spin-charge
separation it is convenient to define charge and pseudospin
bosons

φc = φ1/2 + φ−1/2√
2

(54)

φs = φ1/2 − φ−1/2√
2

(55)

which obey the same canonical commutation relations as the
φm. The compactness of φ±1/2 implies that φc,s are not simply
compact bosons; instead, φc,s ∼ φc,s + √

2πlc,s where lc and
ls are integers of the same parity. The g0 interaction term
simply renormalizes the Luttinger parameter K of the charge
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sector. The g1 interaction term bosonizes to

Hint = −g1

∫
dx cos

√
2φs(x), (56)

where we have made a gauge choice to project the Klein factors
to the subspace η1/2η−1/2η̄−1/2η̄1/2 = −1. The pseudospin
sector thus becomes the sine-Gordon model, and since g1

flows to strong coupling, φs gets pinned to
√

2πl with l ∈ Z.
All values of l lead to physically equivalent configurations.

Now we just need to bosonize the possible order parameters.
They are

�CDW(x) =
∑
m

e2ikF x : ψ
†
m,Lψm,R :

= η1/2η̄1/2e
2ikF xeiφc/

√
2 cos

(
φs√

2

)
(57)

�SC(x) = ψ
†
1/2,Lψ

†
−1/2,R − ψ

†
−1/2,Lψ

†
1/2,R

= η1/2η̄−1/2e
iθc/

√
2 cos

(
φs√

2

)
, (58)

where all fields are evaluated at x. The pseudospin-density
wave and triplet SC order parameters involve θs but not
φs . Since φs is pinned and ∂xθs is its conjugate variable,
the pseudospin-density wave and triplet SC order parameters
have exponentially decaying correlations. On the other hand,
the CDW and singlet SC order parameters fluctuate; at long
distances,

〈�CDW(x)�∗
CDW(0)〉 ∼ 1

|x|1/K
(59)

〈�SC(x)�∗
SC(0)〉 ∼ 1

|x|K . (60)

These simultaneously fluctuating order parameters, together
with the spin gap, are a hallmark of the Luther-Emery phase.

D. N = 3

For the mean-field analysis, we find

KE = −1

3

⎛
⎝1 3 5

1 3/2 −5/2
1 −3/2 1/2

⎞
⎠. (61)

We first consider g0 = 0. At the SU (3)-symmetric flow,
the most negative coupling constant is pseudospin-singlet
CDW order. At the SO(3)-symmetric flow, pseudospin-singlet
superconductivity 〈ψ†

L(x)M (p),0ψ
†
R(x)〉 has the most negative

coupling constant. Both are degenerate at the g2 = 0 fixed ray.
We thus expect a phase transition between fluctuating CDW
and fluctuating singlet SC orders.

Now let us add g0 �= 0. At mean-field level, g0 changes the
location of the transition. In the bosonization language, there
is spin-charge separation; the naive effect of a nonzero g0 is
simply to change the Luttinger parameter of the charge sector.
Deep in a phase this merely distinguishes the power laws of
correlation functions of the two order parameters. However,
this distinction suggests that g0 modifies the energies of the two
phases relative to one another, and since the phase transition
seems to be first order this may indeed modify the location of
the phase transition.

To check this in Abelian bosonization, we define one charge
and two pseudospin bosons

φc =
∑

m φm√
3

(62)

φs1 = φ1 − φ−1√
2

(63)

φs2 = φ1 + φ−1 − 2φ0

2
. (64)

These fields mutually commute. Again there is pseudospin-
charge separation and the only effect of g0 is to renormalize the
Luttinger parameter K of the charge sector. Compactness of
the φm results in compactifications of φc, φs1, and φs2 generated
by the identifications (φc,φs1,φs2) ∼ (φc + 2

√
3π,φs1,φs2) ∼

(φc,φs1 + 2
√

2π,φs2) ∼ (φc + 2π/
√

3,φs1 + √
2π,φs2 + π ).

Analyzing the interaction for general values of g1 and g2 is
challenging, but it is straightforward on the stable fixed rays,
which, as before, we refer to as the SU (3) (g2 = g1) and SO(3)
(g2 = −g1) fixed rays. The pseudospin Hamiltonians are

Hint,SU (3) = −g

∫
dx

(
cos

√
2φs1 + 2 cos φs2 cos

(
φs1√

2

))
(65)

Hint,SO(3) = g

∫
dx

(
cos

√
2φs1 − 2 sin θs2 sin

(
φs1√

2

))
,

(66)

where we have chosen three independent Klein factor pro-
jections and all fields inside the integrals are evaluated at
x. The appearance of sines instead of cosines in the SO(3)
Hamiltonian results from the Klein factors and the odd number
of fermion flavors and, as we will see, it is very important.

These Hamiltonians are unfrustrated. In the SU (3) phase,
φs1 and φs2 are pinned to

√
2πl1 and πl2, respectively, where

l1 and l2 are integers of the same parity. All such configurations
are physically identical. In the SO(3) phase, φs1 and θs2 are
pinned to

√
2π (l1 + 1/2) and π (l2 + 1/2), where l1 and l2

again have the same parity.
To understand what the phases do physically, we bosonize

the pseudospin-singlet order parameters:

�S=0
CDW = e2ikF xeiφc/

√
3+iφs2/3η1η̄1

(
2 cos

(
φs1√

2

)
+ e−iφs2

)
(67)

�S=0
SC = eiθc/

√
3+iθs2/3η1η̄1

(
−2i sin

(
φs1√

2

)
+ e−iθs2

)
. (68)

Since φs1 is always pinned and φs2 (θs2) is pinned in the SU (3)
(SO(3)) phase, we see that singlet CDW (SC) order has power-
law decay and SC (CDW) order has exponential decay. The
long-distance power laws are

〈
�S=0

CDW(x)�S=0∗
CDW (0)

〉 SU (3)∼ 1

|x|2/(3K)
(69)

〈
�S=0

SC (x)�S=0∗
SC (0)

〉 SO(3)∼ 1

|x|2K/3
. (70)
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For higher-spin channels, SU (2) invariance allows us to
only check the m = 0 component of the higher-spin order
parameters. The spin-density wave (SDW) order parameters
bosonize as follows:

�S=1
SDW ∝ eiφc/

√
3+φs2/3η1η̄1 sin

(
φs1√

2

)
(71)

�S=2
SDW ∝ eiφc/

√
3+φs2/3η1η̄1

(
cos

(
φs1√

2

)
− eiφs2

)
. (72)

In the SU (3) phase, φs1 and φs2 are both pinned to zero,
so both order parameters are also pinned to zero. In the
SO(3) phase, θs2 is pinned, causing both of these order
parameters to have exponentially decaying correlations. The
higher-spin SC order parameters are also either pinned to zero
or decay similarly. The conclusion is that, as expected, only the
pseudospin-singlet CDW (SC) order parameter has power-law
correlations in the SU (3) [SO(3)] phase.

Remarkably, these results are in accordance with the
intuition gained from mean field theory. The channel with the
most negative coupling constant has power-law fluctuations,
while all others have exponentially decaying correlations.

Comparison to non-Abelian results

Notice that φs1 is pinned to physically inequivalent values in
the two phases. In particular, if there is an externally-enforced
boundary between these two phases, φs1 must change by a
half-integer multiple of its compactification length

√
2π . The

interpretation can be understood as follows. Clearly ∂xφs1 is
proportional to the density of Sz. In particular locally adding
a fermion with Sz = +1 corresponds to adding a 2π kink in
φ1; this means that there is a

√
2π kink of φs1. Hence a

√
2π

kink in φs1 corresponds to a localized change in spin by 1 unit.
We instead have a π/

√
2 kink, so there must be a half-integer

spin trapped at the boundary despite the system being built out
of integer pseudospins. We conclude that the two phases are
topologically distinct.

However, non-Abelian bosonization (see Sec. IV D) indi-
cated that at the phase transition (g2 = 0), the low-energy
theory should have central charge 0 and thus be gapped. There
are therefore two possibilities:

(1) The transition at g2 = 0 is first order.
(2) The transition at g2 = 0 is continuous, and there is a

topological obstruction to gapping out su(2)4 using a JL · JR

interaction.
We cannot rule out the second possibility except to say that

we have found no evidence supporting it. In the absence of
numerical evidence, we suggest that the transition is first order.

E. N = 4

Starting with mean field again, we find

KE = −1

4

⎛
⎜⎝

1 3 5 7
1 11/5 1 −21/5
1 3/5 −3 7/5
1 −9/5 1 −1/5

⎞
⎟⎠. (73)

At mean field level, the leading instabilities are as follows
when g0 = 0. At the SU (4)- and USp(4)-invariant fixed points,
CDW and singlet SC orders, respectively, have the most

negative coupling constants, so we expect physics similar to
N = 3. The fixed point without emergent symmetry (g2 =
0,g3 = −11/14g1) has degenerate pseudospin-triplet SDW
order and pseudospin-triplet p-wave superconductivity. The
physical picture of this phase should then be of fluctuations of
both of these order parameters. Both order parameters would
spontaneously break SU (2) symmetry if they developed;
therefore it makes sense that the pseudospin sector could
remain gapless due to fluctuating Goldstone modes.

The effect of a nonzero g0 is similar to that of N = 3;
again at mean-field level it modifies the location of the phase
transition. However, if the transition between the SU (4)- and
USp(4)-invariant phases is second order (which is allowed for
N even), we expect that g0 will not significantly modify the
phase transition.

For the SU (4)- and USp(4)-invariant phases, the Abelian
bosonization analysis is very similar to that for N = 3. We use
the fields

φc =
∑

m φm

2
(74)

φs1 = φ1/2 − φ−1/2√
2

(75)

φs2 = φ1/2 + φ−1/2 − φ3/2 − φ−3/2

2
(76)

φs3 = φ3/2 − φ−3/2√
2

. (77)

Bosonizing the fixed point Hamiltonians produces, after
setting Klein factor conventions,

Hint,SU (4) = − g

∫
dx

(
cos(

√
2φs1) + cos(

√
2φs3)

+ 4 cos

(
φs1√

2

)
cos

(
φs3√

2

)
cos(φs2)

)
(78)

Hint,USp(4) = − g

∫
dx

(
cos(

√
2φs1) + cos(

√
2φs3)

+ 4 cos

(
φs1√

2

)
cos

(
φs3√

2

)
cos(θs2)

)
. (79)

Again both Hamiltonians are unfrustrated, and the difference
between the two phases is whether φs2 or θs2 is pinned. It is
easy to check by bosonizing the order parameters that when
φs2 (θs2) is pinned, the CDW (singlet SC) order parameter
acquires power-law correlations

〈
�S=0

CDW(x)�S=0∗
CDW (0)

〉 SU (4)∼ 1

|x|1/(2K)
(80)

〈
�S=0

SC (x)�S=0∗
SC (0)

〉 USp(4)∼ 1

|x|K/2
. (81)

There is a crucial qualitative difference between N = 3 and
N = 4: For N = 4, both φs1 and φs2 are pinned to the same set
of (physically equivalent) values in both phases. This means
that, unlike for N = 3, there are no topologically protected,
fractionalized edge states between these two phases. This
is expected; since the onsite fermion number is not fixed,
the fermions should be thought of as transforming in the
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fundamental representation of USp(4) ⊂ SU (4), a symmetry
which is preserved at both the CDW and SC fixed points.
Being simply connected, USp(4) ≈ Spin(5) has no projective
representations and thus there can be no fractionalization of
the full symmetry. By contrast, for N = 3, the fermions carry
the fundamental of SO(3), which can fractionalize into spinor
representations.

The phase without emergent symmetry is unfortunately
very difficult to analyze using Abelian bosonization. Even
assuming that perturbative RG yielded the correct value for
the ratios of couplings on the fixed ray, which need not be the
case since the flow is to strong coupling, the cosine terms that
appear do not all commute, so there is no simple “pinning”
picture at strong coupling. We therefore cannot confirm our
mean field intuition about this peculiar phase and leave further
investigation to future work.

F. Interpretation of the order parameters

We finish this section by reinterpreting the fluctuating
order parameters that we have discussed, moving from the
pseudospin language back to the Landau level problem. We
begin with the CDW and pseudospin-DW order parameters.
As discussed at the end of Sec. III, the pseudospin degree of
freedom corresponds to the spatial distribution of fermions
over the cross section of the wire. Consider, for example, the
CDW order parameter �CDW = ∑

m e2ikF xψ
†
m,Lψm,R . Since

this is an SU (2) singlet, this object is rotationally invariant over
the cross section of the wire. Therefore, in the Landau level
problem’s language, this really is a CDW order parameter;
a finite value of 〈�CDW〉 the fermion density is modulated
in the x direction but uniform over the cross section. Any
pseudospin-DW order parameter, on the other hand, transforms
nontrivially under SU (2), so if it has a finite expectation
value, there is a modulation of the fermion density within the
cross section of the wire. However, the modulation averaged
over the entire cross section is still zero, and this modulation
depends on x as e2ikF x . A pseudospin-DW in the pseudospin
language should therefore be thought of as a CDW with
density modulation both in the longitudinal and cross-sectional
directions in the Landau level problem language.

Similar arguments work for the superconducting order
parameters. The pseudospin-singlet SC order parameter is a
singlet under rotations of the cross section of the wire, and thus
corresponds to an actual SC order parameter. Whether it is even
or odd parity as a purely 1D SC order (i.e., its transformation
under kx → −kx with no modification of the transverse
direction) depends on N ; for even and odd N , the transverse
(pseudospin) part of the wave function is antisymmetric and
symmetric, respectively, so the superconductor is even and
odd parity, respectively. For other SC order parameters, there
is a nontrivial transformation of the order parameter under
rotations about the wire’s cross section, which, in the Landau
level problem language, means that there is a pair-density wave
(PDW) in the system.

In this language, then, the phases we found in the previ-
ous section are as follows. The Luttinger liquid fluctuating
pseudospin-singlet CDW phase and fluctuating pseudospin-
singlet SC phase are fluctuating 1D CDW and 1D SC phases,
respectively, where, as we will see in the next section, the parity

of N sets whether the SC is even or odd parity. The phase at
N = 4 with fluctuating pseudospin-triplet CDW and SC order
parameters has, in the Landau level problem language, both
fluctuating CDW order and fluctuating PDW order, where
the CDW wave vector has components both along the long
direction of the wire and within the cross section, while the
PDW modulation is within the cross section.

VI. PHASE DIAGRAM FOR GENERAL N

Unfortunately, the fixed ray structure is hard to visualize
for N > 4 due to the large parameter space. We can make
some exact statements for general N ; together with example
calculations and numerics done at small N , this is enough to
guess the key features of the phase diagram at all N .

Before discussing the results, we briefly explain the nature
of our numerical work. We evaluated Eq. (15) numerically in
order to obtain the RG equations, which were then rewritten as
a function of the g̃S and solved numerically in order to obtain
the full set of fixed rays. The stability of the fixed rays was
evaluated by numerically linearizing the RG equations for g̃S

about the fixed ray, writing dδg̃S/dl ≈ ASS ′δg̃S ′ , where δg̃S is
the difference between g̃S and its fixed ray value. The fixed ray
is stable if and only if all of the eigenvalues of A are negative;
we diagonalized A numerically. The fixed point structure was
obtained numerically in this way for all N � 8. We also
calculated KE from Eq. (42) by numerically generating the
MS,α using the relation to Clebsch-Gordan coefficients (which
can be generated algorithmically by standard techniques)
detailed in Appendix A.

As a first general statement, using Eq. (15), it is straight-
forward to show that the RG equation for g1 is always of the
form

dg1

dl
= 2π

3

∑
S

S(S + 1)(2S + 1)g2
S. (82)

We conjecture that, as in N = 3 and N = 4, there is a region
where the pseudospin sector can still flow to the free fixed
point when g1 < 0, occurring when the |g̃S | are sufficiently
small; in this regime, all the |gS | for S > 1 decrease more
rapidly than |g1| does. Otherwise, unless there is fine tuning,
the system will generically flow to large positive g1, and the
system should be analyzed using fixed rays in the same way
as at small N .

A. SU(N)-invariant phase

Using the completeness of the Clebsch-Gordan coefficients,
it can be shown that

∑
S ′,S ′′ β

S
S ′,S ′′ = −2Nk for all S. Hence,

there is a fixed ray with gS = g for all S > 0, and the flow
is to strong coupling if g > 0. The existence is rigorous; we
conjecture based on the numerical evidence discussed above
that this fixed ray is stable.

On this fixed ray, the system has a nonchiral SU (N )
symmetry and the corresponding interaction, when bosonized,
is of the form gJSU (N)

L · JSU (N)
R . Hence we expect the interaction

to gap out the su(N )1 sector.
To understand the nature of this phase, we use similar

arguments as before. Since the su(N ) sector is gapped out,
we expect the fluctuating order parameter to be an SU (N )
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singlet. This can only happen (for fermion bilinears) in the
particle-hole channel because the fundamental representation
of SU (N ) is not self-conjugate for N > 2. We therefore expect
the leading mean-field instability to be the pseudospin-singlet
density wave (exchange) channel, which is confirmed by our
numerical calculations of KE . This phase should thus have
power-law correlations of the CDW order parameter (where
the power depends on N , see Sec. VIII). These correlations
were checked explicitly in Abelian bosonization for N � 6 by
generalizing the method in Sec. V.

B. Odd N

In addition to the SU (N )-invariant fixed ray, there is always
additional structure in the phase diagram. By the selection rule
present in the OPE coefficients in Eq. (15), the number of gS

with even S has the same parity on both sides of the RG
equation. Hence the RG equation is symmetric under gS →
(−1)S+1gS , so the existence of the SU (N )-invariant fixed
ray implies the existence of a fixed ray at gS/g1 = (−1)S+1.
Moreover, the chiral particle-hole transformation Eq. (30)
relates these two fixed rays at the level of the low-energy
theory. This transformation causes the even-S generators of the
SU (N ) symmetry to become anomalous, and it interchanges
particle-hole and particle-particle order parameters. This is
true for all N .

Apart from the existence of these two fixed rays, however,
the behavior of the phase diagram depends strongly on the
parity of N , with odd N being simpler. We first focus on this
simpler case. In fact, N = 3 contains almost all the physics
of the general case for odd N . Our numerical solution of the
RG equations finds that g̃S = 1 and g̃S = (−1)S+1 are the only
stable fixed rays. This latter fixed ray has SO(N ) symmetry; in
fact, we prove in Appendix A that for odd N , the MS,α for odd
S form the fundamental representation of so(N ) and that the
corresponding chiral fermion currents form a representation
of so(N )2 for N > 3. [N = 3 is exceptional, forming so(3)4

due to the isomorphism of the Lie algebras so(3) and su(2).]
We also conjecture that the SO(N )-invariant fixed ray has
power-law correlations of spin-singlet SC order (where the
power again depends on N , see Sec. VIII). This was checked
in Abelian bosonization for N = 5; the treatment is completely
analogous to N = 3 and N = 4.

Moreover, our numerical solution of the RG equations
always shows that there is an unstable fixed ray with gS = 0
for even S and gS/g1 = 1 for odd S, analogous to the
g2 = 0 fixed point at N = 3. Naively this might mark a
continuous transition between an SU (N )-invariant phase and
an SO(N )-invariant phase. But since the only couplings which
appear involve currents in the fundamental representation of
so(N ), the interaction is the marginally relevant coupling
gJSO(N)

L · JSO(N)
R . The fixed point at strong coupling should

be described by su(N )1/so(N )2, which can be checked to
have central charge 0; this is a known conformal embedding
[36]. For the same reasons as at N = 3, we conjecture that the
transition between these phases is first order.

C. Even N: U Sp(N)-invariant phase and parafermions

When N is even, we conjecture based on the numerical
solution of the RG equations for N � 8 that the phase structure

is similar to that of N = 4. That is, in addition to the
SU (N )-invariant phase, there is a USp(N )-invariant phase and
a phase which has no symmetry beyond the SU (2) symmetry
we imposed. We focus on the former in this section.

As in the odd N case, the RG equations are symmetric
under gS → (−1)S+1gS , so there is (rigorously) always a fixed
ray at gS/g1 = (−1)S+1, which we conjecture to be stable.
We prove in Appendix A that the MS,α for odd S generate
the fundamental representation of USp(N ). By the selection
rules resulting from Eq. (15), we also see that the OPE of
an odd-pseudospin fermion current with an even-pseudospin
current produces only even-pseudospin currents. Therefore,
this phase is fully USp(N ) invariant.

To understand this phase, we can again use the operator
Ĉ appearing in Eq. (30) with the appropriate value of S0.
Equation (31) holds for any N , so as in the N = 4 case, the
USp(N )-invariant phase should have a full pseudospin gap and
power-law singlet s-wave superconducting correlations. This
was checked by numerical mean field calculations using KE

for N � 8, which show that singlet s-wave superconductivity
is the leading instability, and Abelian bosonization for N � 6.

We can also consider the phase transition between the
SU (N )-invariant phase and the USp(N )-invariant phase; since
at gS/g1 = 1 for odd S and gS = 0 for even S the system
is invariant under Ĉ, such a fixed point always exists. We
know that the odd-pseudospin matrices generate USp(N ), and
we have computed in Appendix A that the odd-pseudospin
fermion bilinears generate a representation of sp(N )1. We can
then conjecture that if the transition is second order, then it is
described by su(N )1/sp(N )1.

To understand this theory, we simply note that su(N )1 =
u(N )1/u(1), so the pseudospin sector is described by
(u(N )1/u(1))/sp(N )1. Switching the order of the coset pro-
cedure (which is valid because the generator of the u(1)
subalgebra commutes with the generators of sp(N )1), we
obtain (u(N )1/sp(N )1)/u(1). But u(N )1/sp(N )1 = su(2)N/2

for even N , so our phase transition is described by the
su(2)N/2/u(1) theory, which describes ZN/2 parafermions.

Although this second-order phase transition is consistent
with our results, we cannot rule out the possibility of first-order
phase transitions appearing instead. In fact, it is quite possible
that, much like the quantum rotor model, for some values of N

this fixed point is actually the multicritical end of a line of first-
order transitions. All of our results are consistent with previous
cold atoms work [26,27] studying the USp(N )-invariant line.

D. Even N: SU(2)-invariant phase

Again based on the numerical solution to the RG equations
for all N � 8, we conjecture that there is always another stable
fixed ray for even N at gS = 0 for S even and some particular
but nongeneric (and not all positive) values of g̃S for S odd.
Unfortunately, the analysis of this fixed point is even more
challenging than for N = 4 for two reasons. First, the coset
theory su(n)1/su(2)k has central charge

ccoset = (N − 3)(N − 2)(N − 1)(N + 2)

N3 − N + 12
(83)

which is not an easily identifiable theory for N > 4. Second,
it is merely a coincidence that for N = 4, the field φ3

Lφ3
R has
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scaling dimension 2 in su(2)10. This coincidence allowed us,
using Eq. (24), to say that the coset theory did not flow as
the fixed ray couplings grow large. In general, the interaction
at the fixed point will not generally live only in the su(2)k
theory; although some spin-S term may happen to have scaling
dimension 2, other operators are typically present, so the coset
theory flows as well.

However, based on our mean-field procedure and numerical
calculations of KE , we conjecture that this phase has, as
at N = 4, fluctuating pseudospin-triplet CDW and p-wave
SC orders, and should, correspondingly, be gapless in the
pseudospin sector. As an additional piece of evidence, if the
fixed ray indeed always has gS = 0 for S even (as it does
at our level of approximation for N � 8), then at the level
of the low-energy theory the pseudospin part of the theory
is invariant under Ĉ. This means that the triplet CDW order
parameter has power-law correlations if and only if the triplet
SC order parameter does as well.

VII. SU(2)-BREAKING PERTURBATIONS

Recall that the whole point of our analogy between a wire
and R × S2 geometry was to restore magnetic translation
symmetry, which is broken in a wire, while also changing the
group structure of magnetic translation symmetry to SU (2). In
order for our results to relate to real wires, we therefore need
to add SU (2)-breaking perturbations. In this section, we give
some qualitative arguments about what happens when SU (2)
symmetry is broken.

Recall that in the R × D2 geometry in symmetric gauge,
single-particle states are localized in the radial direction.
Suppose the potential at the edge of the disk decays on a
length scale ξ ; then only the states localized within a strip of
width ξ near the edge will be significantly affected by the edge
potential. In the R × S2 geometry, single-particle states are lo-
calized in the azimuthal direction with m = S0 corresponding
to a state near the north pole and m = −S0 localized near the
south pole. Adding a perturbation ψ†(Sz/S0 − 1)γ ψ for some
large power γ therefore corresponds to sharply increasing the
energy of the states near the south pole without affecting the
rest very much; such a perturbation is analogous to adding an
edge potential to the disk geometry if we associate the north
(south) pole of the sphere with r = 0 (r = R) on the disk.
In the spin language, this perturbation behaves similarly to a
magnetic field.

To estimate the strength of this perturbation, we note that
the electron density in the disk is N/πR2. Suppose the edge
potential decays on a length scale ξ ; then only the states within
a strip of width ξ near the edge will be significantly affected
by the symmetry-breaking field. Therefore, approximately
(2πRξ )(N/πR2) = Nξ/R out of the N degenerate states
will be affected. That is, the fraction ξ/R of the degenerate
states will have a marginal perturbation applied to them
(roughly speaking, kF changes for these states because their
kz dispersion is shifted upward in energy); we thus expect the
strength of the “Zeeman field” to be proportional to ξ/R. For
a thick enough wire, ξ/R should be small, so most of the
single-particle states remain degenerate.

After this analysis it is straightforward to understand the fate
of the phase diagram upon moving to the disk geometry. Since

charge is obviously still conserved, SU (2)-breaking marginal
perturbations affect only the pseudospin sector. Therefore,
despite the fact that the whole system is gapless, a gap in the
pseudospin sector is enough to guarantee perturbative stability
of a phase. This immediately implies that the singlet CDW
and singlet SC phases are stable at both odd and even N .
These phases should also remain distinct. Breaking SU (2)
symmetry does not mix CDW and SC order parameters; in
fact, in the Abelian bosonization picture it is clear that the
fact that φs1,φs2, . . . are well defined even when the external
“field” is applied is sufficient to maintain the distinctness of
these phases.

The triplet CDW/SC phase at even N , on the other hand,
is probably not strictly speaking stable to SU (2)-breaking
perturbations. Its gaplessness originates from fluctuations of a
putative spontaneous breaking of SU (2) symmetry, so explicit
symmetry breaking should induce a gap of order ξ/R. As a
result, this need not be a distinct phase, but the smallness of
the gap may allow a crossover to a regime where signatures of
this phase remain.

VIII. THE THREE-DIMENSIONAL LIMIT

Considerable work has already been done [10–17] on bulk
3D crystals in the zeroth Landau level; to compare with those
results, we wish to take the bulk limit in our treatment. In
the disk geometry, this means taking the radius of the wire to
infinity at fixed magnetic field and carrier density. Since the
Landau level degeneracy goes as the total flux penetrating the
wire, the bulk limit is that of large N , a limit we can also take in
the sphere geometry. One key expectation is that as the system
becomes less one-dimensional, true long-range order appears
instead of quasi-long-range order. In this section, we compare
to previous work and to this expectation.

The simplest way to see the bulk limit emerge is by
examining what power laws appear in correlation functions of
various order parameters. Looking at our Abelian bosonization
results in Sec. V and generalizing the pattern of basis changes,
we expect that the singlet order parameters obey

�CDW =
∑
m

eiφm ∝ eiφc/
√

N (84)

�SC =
∑
m

eiθm ∝ eiθc/
√

N, (85)

where φc = (
∑

m φm)/
√

N and we have dropped the spin
sector pieces of the order parameters. We saw at small N that
at the fixed point, the power law correlations come entirely
from the U (1) charge sector; the spin sector delivers constant
factors. Assuming this trend continues, for a given Luttinger
parameter K of the charge sector, we compute that

〈�CDW(x)�∗
CDW(0)〉 SU (N)∼ 1

|x|2/(NK)
(86)

〈�SC(x)�∗
SC(0)〉 SO(N),USp(N)∼ 1

|x|2K/N
. (87)

Suppose that the interactions before projecting to the ZLL
are fixed and weak. As N grows, none of the projected
interaction strengths should diverge; that is, g0 should not
grow with N . This means that corrections to the free value
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K = 1, which are controlled by the small parameter g0,
do not diverge with N . Hence as N → ∞, the power law
falls off slower and slower, eventually becoming a distance-
independent contribution to the correlation function. This is
how true long-range order appears in the bulk limit.

It would be nice to check our conjectures about the
general-N phase diagram at large N . The starting point would
be to expand the RG coefficients βS

S ′S ′′ at large N by expanding
the Wigner 6j symbols appearing in Eq. (15) at large S0.
Unfortunately, the leading-order term in the expansion [30]
is proportional to the Clebsch-Gordan coefficient 〈S,m =
0|S ′,m = 0; S ′′,m = 0〉, which is precisely zero when S +
S ′ + S ′′ is odd. If S + S ′ + S ′′ is even, then βS ′′

SS ′ is instead zero
due to the selection rules in Eq. (15). To get any nontrivial flow,
then, 1/N corrections must be considered, which considerably
complicates the analysis.

Although it is difficult to analyze the large-N limit in more
detail, we can make some simple comparisons with the results
of Ref. [14], where fully three-dimensional spinless fermions
were considered in the parquet approximation. Reference [14]
finds two zero-temperature phases in the bulk limit depending
on whether the contact interactions are repulsive or attractive.
In the former case, there is a transition to a CDW state, and in
the latter the system is a marginal Fermi liquid.

We do find two phases much like those above. Our CDW
state exists at all N and becomes long-range order in the
N → ∞ limit; this should be analogous to the CDW phase
in Ref. [14]. The marginal Fermi liquid phase is harder to
compare because we have focused on T = 0 while Ref. [14]
finds susceptibilities at T > 0 which diverge only as T → 0.
However, the marginal Fermi liquid phase has a divergent SC
susceptibility and finite CDW susceptibility as T → 0, which
is qualitatively similar to our SO(N ) [USp(N )] phase.

We do find more phases than Ref. [14], in that we find a
Luttinger liquid phase at all N and a phase with fluctuating
triplet order parameters at even N . A likely reason for
this inconsistency is that although we require short-range
interactions, we do not constrain the range of the interactions
compared to the magnetic length. Reference [14] does make
this assumption in order to argue that considering a projected
contact interaction is sufficient and therefore is in a special
case of our results. Another possibility is that as N gets large,
our additional phases occupy a fraction of the phase diagram
which approaches zero; we cannot rule this out because we
do not know how the basin of attraction of these fixed points
behaves as a function of N .

Beyond these considerations, it is possible for our model
to break down entirely in the bulk limit due to disorder.
As the wire gets thicker, it is more likely to be disordered,
which would broaden the Landau levels. In fact, this would
be like analyzing our pseudospin model with a random
SU (2)-breaking field.

IX. DISCUSSION

We first briefly summarize our main results. We related
an interacting metallic wire with a strong magnetic field
along its length to one-dimensional fermions of pseudospin
S0 = (N − 1)/2, where N is the degeneracy of the zeroth
Landau level at fixed kx . We then computed the phase

diagram. For all N and any interactions, there is spin-charge
separation with a gapless charge sector (so long as the filling is
incommensurate). For all N , there is a Luttinger liquid phase
where the interactions only provide logarithmic corrections
to correlations in the pseudospin part of the free theory. For
N > 2, there are also two pseudospin-gapped phases where
an order parameter has power law correlations with a power
that depends on N : a fluctuating pseudospin-singlet CDW
phase and a fluctuating pseudospin-singlet SC phase. For N

odd, the transition between these phases is first order, but for
N even, the transition is permitted to be second order and
governed by the su(2)N/2/u(1) parafermion CFT. Even N > 2
has an additional phase which has no pseudospin gap and has
power-law correlations of both the pseudospin-triplet CDW
and SC order parameters.

Recalling that tuning N is like tuning the magnetic field,
our main predictions which are interesting to search for in
experiments are: power law correlation functions whose power
law is tuned by magnetic field, using the magnetic field to tune
between a Luttinger liquid, fluctuating SC order, and CDW
orders (although the extent to which this is possible depends
on the details of how the interactions project at different N ),
and signatures of the phase with fluctuating pseudospin-triplet
orders. One important consideration for any such experimental
search is how practical the limits we are considering are for real
experimental systems. The main constraint is that the carrier
density must be low enough that all carriers are in the zeroth
Landau level. For electrons with a quadratic dispersion, this
means that the chemical potential in field must be below the
energy of the first Landau level, i.e.,

h̄2k2
F

2m
� h̄eB

m
, (88)

where m is the effective mass and kF is the Fermi wave vector.
For a Weyl semimetal with Weyl points at k = ±kW x̂ (with
kW > 0), the corresponding estimate is

h̄|kF − kW |vF � vF

√
h̄eB (89)

with vF the Fermi velocity. The Landau level degeneracy N in
both cases is of order πR2B/�0, where R is the wire radius
and �0 = h/e is the flux quantum. The LL degeneracy can
be used to relate kF to the carrier density, which can then be
plugged into Eqs. (88) and (89) to estimate

B � h̄

e
(2π4n2)1/3 (90)

for Schrodinger electrons and

B � h̄

e
(4π4n2)1/3 (91)

for Weyl electrons. Assuming n ∼ 1017 cm−3, this is about 8
T for Schrodinger and 10 T for Weyl. However, in both cases

N ∼ 60

(
B

8 T

)(
R

100 nm

)2

. (92)

In the previous section, we saw that the power law correlation
functions are mostly one dimensional when N is small;
large N quickly starts to look like long-range order. Given
these estimations, the large-N limit should be experimentally
achievable, but the small-N limit may require extremely

045134-17



DANIEL BULMASH, CHAO-MING JIAN, AND XIAO-LIANG QI PHYSICAL REVIEW B 96, 045134 (2017)

narrow wires or extremely low carrier density (to reduce the
magnetic field required).

On the theoretical side, this work raises a number of open
questions. Analyzing the pseudospin-gapless phase at even
N and its stability to SU (2)-breaking perturbations is an
interesting and nontrivial CFT problem. Studying the various
phase transitions in this model and distinguishing first-order
and second-order transitions more clearly is also an interesting
technical challenge in both the Abelian and non-Abelian
bosonization languages. Another interesting possibility is to
see if there is a deep connection with the Haldane conjecture.
In particular, changing from even to odd N corresponds to
moving between half-integer and integer pseudospin, and the
appearance of a pseudospin-gapless phase for half-integer spin
is reminiscent of the Haldane conjecture. The connection is not
obvious because our results are at incommensurate filling and
because the set of allowed operators looks different.
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APPENDIX A: THE BASIS OF FERMION BILINEARS

In this appendix, we construct the matrices MS,α with the
properties discussed in Sec. III and use them to write down the
SU (2)-invariant Hamiltonian Eq. (10), prove that the odd-S
matrices form a usp(N ) (so(N )) subalgebra for N even (odd),
and prove that the corresponding affine subalgebra of fermion
bilinears has level 1 (2).

We start with some intuition. Fermion bilinears are objects
ψ

†
mMS,α

mn ψn (suppressing the L/R indices) which transform
under SU (2) as ψ

†
m′U

†
m′mMS,α

mn Unn′ψn′ . We are thus taking two
objects, one which transforms as pseudospin S0 = (N − 1)/2
and one which transforms as its complex conjugate, and
producing an object which transforms in a pseudospin-S
representation. In SU (2), moving from a representation to the
complex conjugate is the same as time reversal. Therefore,
we expect a relationship between MS,α

mn and the Clebsch-
Gordan coefficient 〈S0,m; S0, − n|S,p〉 for some appropriate
relationship between p and α. Let us make this precise.

Define a compact notation

CS,p
mn = 〈S0,m; S0,n|S,p〉 (A1)

for the Clebsch-Gordan coefficients fusing two spin-S0 objects
with Sz quantum numbers m and n to a spin-S object with
Sz quantum number p. Here m,n = −S0, − S0 + 1 . . . S0 and
p = −S, − S + 1, . . . S; note that p and S are always integers.
Treating m and n as matrix indices, the Clebsch-Gordan
coefficients are not Hermitian. Before building Hermitian

matrices from them, we need to establish some preliminary
properties. Using a convention where all Clebsch-Gordan
coefficients are real, elementary symmetry and completeness
properties of the Clebsch-Gordan coefficients lead to the
identities

CS,p
mn ∝ δm+n,p (A2)

(CS,p)† = (−1)S+2S0CS,p (A3)

tr[(CS,p)†CS ′,p′
] = δS,S ′

δp,p′
. (A4)

In taking the Hermitian conjugate and the trace, we are
treating m and n as the matrix indices and S,S ′,p,p′ as labels.
Equation (A3) relies on the fact that S is an integer, or else
there could be an extra negative sign.

Next, in the convention where the spin-S0 matrices Sx and
Sz are purely real and Sy is purely imaginary, the time reversal
operator is

T ≡ �K (A5)

with K the antiunitary complex conjugation operator and �

the unitary matrix � = exp(iπSy/
√

2) [the factor of
√

2 is due
to our normalization convention for the structure constants of
su(2)]. The matrix elements of � are �mn = (−1)S0−mδm,−n;
note that �† = (−1)2S0� and �2 = (−1)2S0 .

Next, define for each p the matrices AS,p = CS,p�. By in-
spection A is related to the Clebsch-Gordan coefficient C

S,p
m,−n,

as expected intuitively. Moreover, time-reversal symmetry of
the Cs implies

CS,p� = (−1)S−p�CS,−p, (A6)

which can be combined with Eq. (A3) and (A4) to find

(AS,p)† = (−1)pAS,−p (A7)

tr(AS,pAS ′,p′
) = (−1)pδS,S ′δp,−p′ . (A8)

Finally, we can define our desired matrices. For α = −S,
− S + 1, . . . ,S, define (suppressing matrix indices)

MS,α =

⎧⎪⎪⎨
⎪⎪⎩

√
k
2 (AS,α + (−1)αAS,−α) α > 0√
kAS,0 α = 0

i

√
k
2 [AS,α − (−1)αAS,−α] α < 0

. (A9)

Hermiticity follows immediately. Property (1) of Sec. III is
satisfied by definition. Additionally using Eqs. (A2) and (A4)
shows that these matrices are orthogonal and normalized
according to property (3) [all of the factors of (−1)p work
out properly].

To check the transformation properties under SU (2), note
first that Sz anticommutes with �; this immediately proves

[Sz,A
S,p] =

√
2pAS,p (A10)

(where again the
√

2 is due to normalization). Likewise, Sx and
Sy anticommute and commute, respectively, with �. Moreover,
transforming the lower indices of a Clebsch-Gordan coefficient
is the same as transforming the upper index, that is,

S±CS,p + CS,p(S±)† =
√

S(S + 1) − p(p ± 1)CS,p±1.

(A11)
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These two facts imply

[S±,AS,p] =
√

S(S + 1) − p(p ± 1)AS,p±1 (A12)

as desired.
From the transformation properties, it is straightforward

to show that SU (2) invariance requires that the interaction
Hamiltonian has the form

Hint =
∑
S,p

gS(−1)pψ
†
LAS,pψLψ

†
RAS,−pψR. (A13)

Substituting the definition Eq. (A9) of the Ms into Eq. (10)
proves that Eq. (10) is the same as Eq. (A13). That is, the
Ms are just a basis rearrangement of the As used to ensure
Hermiticity. This is particularly clear for S = 1; it is easy to
check that A1,±1 ∝ S±, so M1,±1 ∝ Sx,Sy , respectively. We
use Eq. (10) rather than Eq. (A13) because the orthogonality
and normalization of the MS,α is slightly simpler than that of
the AS,p.

Having discussed the SU (2) properties of the MS,α , we
now demonstrate that the MS,α for odd S generate sp(N ) and
so(N ) when N is even and odd, respectively. It is easy to count
that when N is even and odd, respectively, there are N (N +
1)/2 and N (N − 1)/2 (mutually orthogonal in the trace norm)
matrices MS,α with odd S; these are the dimensions of sp(N )
and so(N ), respectively. Next, note that � is always real and is
antisymmetric (symmetric) for N even (odd); therefore, we can
use it as a symplectic (symmetric) form and the fundamental
representation of the Lie group USp(N ) [SO(N )] consists of
unitary N × N matrices B which obey BT �B = �. Passing
to the Lie algebra and using �2 = (−1)N+1, this means that
if �(MS,α)T � = (−1)N+1MS,α for all odd S and each α, then
MS,α generate sp(N ) and so(N ), respectively. Using Eq. (A6)
we find

�AS,p� = (−1)N+1�CS,p = (−1)S−p+N+1AS,−p. (A14)

This immediately implies �(MS,α)T � = (−1)S+N+1MS,α ,
which is the desired identity.

Finally, we determine the level of the so(N ) and usp(N )
affine algebras generated by the corresponding fermion bi-
linears. According to Eq. (17), if MS,α is any generator in
the subalgebra, then the level of the corresponding affine
subalgebra is tr(MS,α)2 provided that the normalization of the
subalgebra structure factors f ab

c is such that∑
ab

f ab
c f ab

d = 2gδcd, (A15)

where a,b,c,d label generators of the subalgebra and g is
the dual Coxeter number of the subalgebra. In our current
normalization, tr(MS,α)2 = k; we still need to check the
normalization of the structure factors. Since the normalization
Eq. (A15) is independent of the index c, we can choose the
generator c to be M1,0 = Sz for convenience. From now on we
will use S ′,S ′′ as dummy indices taking only odd values from
1 to N − 1 if N is even and from 1 to N − 2 if N is odd. From
the definition of the structure factors it is easy to see that

f
S ′,α;S ′′,β
1,0 = 1

ik
tr([MS ′,α,MS ′′,β]M1,0). (A16)

Plugging this into Eq. (A15) and comparing to Eq. (14), we
see that ∑

S ′,S ′′,α,β

(
f

S ′,α;S ′′,β
1,0

)2 = −
∑
S ′,S ′′

β1
S ′,S ′′ . (A17)

Plugging in the definitions of the Ms in terms of As, expanding
carefully and doing some reindexing turns this into∑
S ′,S ′′,α,β

(
f

S ′,α;S ′′,β
1,0

)2 =−
∑

S ′,S ′′,αβ

(−1)α+β tr([AS ′,α,AS ′′,β]M1,0)

× tr([AS ′,−α,AS ′′,−β ]M1,0) (A18)

=−
∑

S ′,S ′′,αβ

(−1)α+β tr([M1,0,AS ′,α]AS ′′,β)

× tr([M1,0,AS ′,−α]AS ′′,−β ) (A19)

=
∑

S ′,S ′′αβ

2α2(−1)α+βδα,−βδS ′,S ′′ (A20)

= 2

3

∑
S ′odd

S ′(S ′ + 1)(2S ′ + 1) (A21)

=
{

2k
(
1 + N

2

)
N even

k(N − 2) N odd
(A22)

=
{

2kgsp(N) N even
kgso(N) N odd , (A23)

where we used Eqs. (A10) and (A8) to evaluate the commu-
tators and traces. Since tr(M2) = k, we immediately read off
that the level of the sp(N ) [so(N )] affine algebra is 1 (2) for
N even (odd).

APPENDIX B: DERIVATION OF THE RG COEFFICIENTS

In this Appendix, we outline the derivation of Eq. (15)
starting from Eqs. (14) and (A9). The left-hand side of Eq. (14)
is SU (2) invariant, so the right-hand side must be independent
of γ . For convenience we sum over γ :

βS
S ′,S ′′ = 1

k2(2S + 1)

∑
αβγ

tr([MS ′,α,MS ′′,β]MS,γ )2. (B1)

Next we plug in the explicit expression Eq. (A9) of the
M matrices. A careful expansion of the squares and some
reindexing leads to

βS
S ′,S ′′ = k

(2S + 1)

∑
αβγ

(−1)α+β+γ tr([AS ′,α,AS ′′,β]AS,γ )

× tr([AS ′,−α,AS ′′,−β]AS,−γ ) (B2)

= k

(2S + 1)

∑
αβγ

(−1)α+β+γ tr([CS ′,α�,CS ′′,β�]CS,γ �)

× tr([CS ′,−α�,CS ′′,−β�]CS,−γ �). (B3)

For the moment we ignore the sums on Greek indices and the
commutators in order to evaluate traces of products of three
Clebsch-Gordan (C-G) coefficients. Using Eq. (A6), we have

tr(CS ′,α�CS ′′,β�CS,γ �)

= (−1)S
′′−β+2S0 tr(CS ′,αCS ′′,−βCS,γ �) (B4)

= (−1)S
′′−β+2S0

∑
mnl

(−1)S0+mCS ′,α
mn C

S ′′,−β

nl C
S,γ

l,−m. (B5)
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Note that this is only nonzero when m + n = α, n + l = −β,
and l − m = γ , which means α + β + γ = 0. This removes
a phase factor in Eq. (B3). Transposing the first term using
Eq. (A3) manipulates this equation into a form for which there
is a known [30] identity relating such a product of three C-
G coefficients to a product of a 6j symbol and another C-G
coefficient. Applying the identity, we get

tr(CS ′,α�CS ′′,β�CS,γ �)

= (−1)S
′+S−β

√
(2S + 1)(2S ′ + 1)C̃S ′′−β

S ′,α;S,γ

{
S0 S0 S ′
S ′′ S S0

}
,

(B6)

where C̃ is a C-G coefficient for combining spin S and S ′ into
S ′′. Substituting this relationship into Eq. (B3) and using the
symmetry properties of the 6j symbols converts it to

βS
S ′,S ′′ = k

({
S S ′ S ′′
S0 S0 S0

})2

×
∑
αβγ

(
(−1)S

′−β
√

2S ′ + 1C̃
S ′′,−β

S ′,α;S,γ

− (−1)S
′′−α

√
2S ′′ + 1C̃

S ′,−α
S ′′,β;S,γ

)
× (

(−1)S
′+β

√
2S ′ + 1C̃

S ′′,β
S ′,−α;S,−γ

− (−1)S
′′+α

√
2S ′′ + 1C̃

S ′,α
S ′′,−β;S,−γ

)
. (B7)

Using elementary symmetry properties of the C-G coeffi-
cients, all the αs and γ s can be placed on the bottom and given
the same sign up to some phase factors and factors of

√
2S ′ + 1

or
√

2S ′′ + 1. This allows the use of the completeness relations
of the C-G coefficients in order to perform the sums over α

and γ and to remove all the C-G coefficients. The remaining
β dependence disappears, allowing the sum over β to be
replaced by a factor of (2S ′′ + 1). These manipulations are
simple but tedious; tracking all the factors carefully (and
remembering that α,β,γ,S,S ′, and S ′′ are integers) produces
Eq. (15).

APPENDIX C: SELECTION RULES FOR OPES

We found that in Eq. (15) that βS
S ′S ′′ = 0 if S + S ′ + S ′′

is even. In this section, we will use Young tableaux to
demonstrate how this selection rule results from the symmetry
properties of the fermion bilinears.

Consider the products of three Ms as they appear in Eq. (14).
The object tr(MS ′,αMS ′′,γ MS,δ) intuitively takes a spin-S ′ and
spin-S ′′ object, fuses them, and finds its overlap with the spin-S
channel. There are of course constraints on α, γ , and δ, but for
the moment we only care about whether βS

S ′S ′′ is zero.
The symmetry of such fusions can be encoded in Young

tableaux. For example, consider S ′ = 2,S ′′ = 1. Then the two
terms in the commutator tr([M2,α,M1,γ ]MS,δ) are

⊗
=

⊕ ⊕
(C1)

⊗
=

⊕ ⊕
(C2)

The shading tracks whether the box came from the spin-2 or
the spin-1 representation. It is implied that all boxes with the
same shading are symmetrized, regardless of the row, because
they are symmetrized on the left-hand side of Eq. (C1). The
three terms correspond to S = 3,2,1, respectively.

It is now clear from the symmetry properties of the Young
tableaux (that is, rows are symmetrized and columns are
antisymmetrized) that in subtracting Eq. (C2) from Eq. (C1)
the spin-3 and spin-1 tableaux will cancel out, while the
spin-2 tableau will not. The commutator in Eq. (15) is exactly
such a difference, so the commutator must produce zero
if S �= 2.

More generally, there will be a fully symmetric tableau
with 2S ′ boxes [the white boxes in Eq. (C1)] fused with a
fully symmetric tableau with 2S ′′ boxes [the shaded boxes in
Eq. (C1)]. Consider the fusion to spin S. There are 2(S ′ + S ′′)
boxes total, 2S of which must be “dangling” in the first row.
Hence there are S ′ + S ′′ − S columns which have two boxes
in them (this must be nonnegative for that fusion channel to
be allowed at all), one of which must come from S ′ and the
other of which must come from S ′′. Therefore under exchange

of the S ′ and S ′′ tableaux, the wave function picks up a
factor of (−1)S

′+S ′′−S = (−1)S+S ′+S ′′
(since S is an integer).

If S + S ′ + S ′′ is even, then the wave function is symmetric
under this exchange and the commutator produces zero, so
βS

S ′S ′′ = 0.

APPENDIX D: MEAN FIELD THEORY

In this section, we explain our mean-field procedure that
is used for intuition about the phase diagram. In particular,
we will compute the susceptibility for each possible CDW or
SC order parameter to show that at mean-field level, the most
negative coupling constant produces the strongest tendency
towards order (the strongest divergence in the susceptibility).

The action is

S =
∫

dxdτ
∑
m

ψ†
m∂τψm + H0 + Hint (D1)

with H0 defined in Eq. (8). We choose to write Hint in the
exchange channel as in Eq. (38).
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Next, consider the fat unity

1 ∝
∫

DGSα exp

(
− 1

4
∣∣gex

S

∣∣
∫

dxdτ
(
GS,α

+ 2gE
S ψ

†
LMS,αψR

)(
(GS,α)∗ + 2gE

S ψ
†
RMS,αψL

))
,

(D2)

where GS,α is a complex bosonic field and spacetime de-
pendences have been suppressed. Then it is easy to check
by expanding that when gS < 0, the quartic term produces
the correct sign to cancel off the interaction. We expect no
low-energy instabilities when gex

S > 0, so the mean field does
not need to make sense.

Defining the object �†(x) = (ψ†
L(x) ψ

†
R(x)) (a 2N -

component object) and inserting the fat unity into the path
integral, the effective action is then

Seff =
∫

dzdτ

[
1

4
∣∣gex

S

∣∣ |GS,α|2 + �†

×
(

G−1
0,L − 1

2GS,αMS,α

− 1
2 (GS,α)∗MS,α G−1

0,R

)
�

]
, (D3)

where G0,L(R) is the noninteracting Green’s function for the left
(right) movers (and is independent of m). We now integrate
out the fermions and expand to second order in GS,α . The
expansion produces terms in the free energy proportional to
tr(MS,αMS ′,β)GS,α(GS ′,β)∗; thanks to our convenient choice of
the Ms, the trace collapses the sum to only the diagonal terms.
Hence at second order, all the order parameters decouple,
yielding the free energy

F ≈
∫

dqdω
|GS,α(q,ω)|2

4
∣∣gex

S

∣∣ [1 + χCDW(q,ω)]. (D4)

The linear term vanishes by the trace in L/R space, and we
have dropped the zeroth-order (free fermion) contribution. We
have defined the CDW susceptibility

χCDW(q,ω) = k
∣∣gex

S

∣∣∑
p,ω′

G0,L(p,ω′)G0,R(p − q,ω′ − ω).

(D5)

The trace over the flavor index produces the factor of k. Here ω

and ω′ are bosonic Matsubara frequencies. We have assumed
that all gE

S < 0, and there are implicit sums over all S,α.
Evaluating the sum of noninteracting fermionic Green

functions by standard techniques produces, at zero temperature
and zero frequency, the static susceptibility

χCDW(q,ω = 0)

= k|gE
S |π log

∣∣∣∣ (δq)2

4�2 − (δq)2

4kF − 2� − δq

4kF + 2� − δq

∣∣∣∣. (D6)

Here δq = q + 2kF and � is the momentum cutoff of the
low-energy noninteracting theory. There is a divergence at
δq = 0 (i.e., q = 2kF ) which scales as 2πk|gE

S | log δq.
A completely analogous computation in the Cooper channel

yields a static susceptibility

χSC(q,ω = 0) = k
∣∣gC

S

∣∣π log

∣∣∣∣ q2(4kF + q − 2�)

(4�2 − q2)(4kF + q + 2�)

∣∣∣∣.
(D7)

This has a q = 0 divergence scaling as 2πk|gC
S | log q.

The conclusion of all of this is that at mean-field level,
any negative coupling constant produces a logarithmically
divergent susceptibility in its corresponding channel. More-
over, the strength of the divergence is the coupling constant
times a channel- and S-independent factor. Therefore, all
of the coupling constants are directly comparable, and the
most negative coupling constant should produce the strongest
tendency towards order.

Since there is no spontaneous symmetry breaking of a
continuous symmetry in one dimension, we expect that there
are significant corrections to the mean field picture. First,
decoupling of the order parameters should not persist past
second order, Second, we expect long-range, mean-field order
to be corrected to quasi-long-range order. As a heuristic guide,
then, we expect that the channel with the most negative
coupling constant will have quasi-long-range order and that
other channels will not.
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