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Hall number across a van Hove singularity
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In the context of the relaxation time approximation to Boltzmann transport theory, we examine the behavior
of the Hall number nH of a metal in the neighborhood of a Lifshitz transition from a closed Fermi surface
to open sheets. We find a universal nonanalytic dependence of nH on the electron density in the high-field
limit, but a nonsingular dependence at low fields. The existence of an assumed nematic transition produces a
doping dependent nH similar to that observed in recent experiments in the high-temperature superconductor
YBa2Cu3O7−x .
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I. INTRODUCTION

In the absence of superconductivity or exotic fractionalized
phases, the low-energy elementary excitations of a conducting
system are typically the well-known quasiparticles of Fermi
liquid theory. In sufficiently clean systems, much about the
character of these excitations, and in particular, information
concerning the geometry and topology of the Fermi surface,
can be inferred most sensitively from transport experiments.
Specifically, in many circumstances, the Hall number, nH ≡
(B/e)(1/ρxy), in the T → 0 limit can give information about
the volume (area in 2D) enclosed by the Fermi surface [1,2].
From this, one may extract insight concerning the existence
of a putative broken symmetry state that “reconstructs” the
Fermi surface. For example, density wave order that breaks
translational symmetry, changes not only the topology of the
Fermi surface, but the volume enclosed as well. In contrast, the
constraints of Luttinger’s theorem seemingly imply that Fermi
surface changes produced by translation symmetry preserving
orders, such as Ising nematic order, will be invisible to a
measurement of the Hall number.

There are, however, important caveats to using the Hall
number as a proxy for the electron density of a metal. In the
absence of Galilean invariance, it is only the B → ∞ limit
of the Hall number that corresponds to the carrier density
[2]. The B → 0 limit of the Hall number is sensitive to the
momentum dependence of the Fermi velocity, and is related in
a complicated way [3] to the dominant scattering processes and
curvature of the Fermi surface. For open Fermi surfaces, the
Hall number is in general a nonuniversal quantity, and is not
related to the density in any simple fashion in either the strong
or weak field limit. In fact, little is known about the critical
behavior of the Hall number at the topological Lifshitz phase
transition between open and closed Fermi surfaces. While
there is intuitively no reason to expect singular behavior in
the limit B → 0, since the Fermi surface is locally unchanged
across the van Hove singularity, there is every reason to
expect singular behavior at high fields, where quasiparticles
exhibit many cyclotron orbits before being scattered, and so
are sensitive to the global topology of the Fermi surface.

Here we address these issues via exact solution of the
Boltzmann equation in the relaxation time approximation for

a two-dimensional nearest-neighbor tight-binding model, and
by numerical solution of models with other band structures.
We report results in the T → 0 limit under the assumption that
the semiclassical approximation is valid, i.e., ωc/ε � 1, where
ωc ∝ B is the cyclotron energy and ε is the smallest significant
energy scale characterizing the band structure at energies near
the chemical potential μ. Subject to this constraint, we will
discuss our results in the high- and low-field limits, ωcτ � 1
and ωcτ � 1, respectively, where τ is the relaxation time. In
the high-field limit, nH is nonanalytic at the point of transition
from a closed to an open Fermi surface. Specifically, nH = n

in a metal with only closed Fermi pockets, while for open
Fermi sheets, nH is not simply related to n; we find that it
exhibits a nonanalytic evolution:

nH − n ∝ nc

ln |n − nc| , (1)

upon approach to the Lifshitz transition at n = nc.1 Con-
versely, at low fields, nH is smooth as a function of density in
the neighborhood of nc.

Suggestively, similar behavior of nH has recently been
reported [4] in the hole-doped cuprate superconductor
YBa2Cu3O7−x (YBCO). There, nH was found to rise sharply
on approach to a critical hole doping of p = p� ≈ 20%,
although the very high values of Hc2 have precluded measure-
ments below approximately 40 K. A somewhat similar sharp
increase of nH as p approaches a critical value near optimal
doping was reported previously in Bi-2201 [5,6] and LSCO
[7,8], where the lower critical fields permitted experiments
at much lower temperatures. In these latter studies, the Hall
number decreases at higher doping (i.e., nH is peaked at p�),
while more recent studies of LSCO and LNSCO [9,10] have
inferred that nH saturates at a value nH ∼ (1 + p) for p > p�.
(These observations are yet to be reconciled.)

The idea that measurements of nH performed in high
enough fields to quench superconductivity could be used

1To be precise, in the presence of multiple Fermi surfaces, note that
nH = −(ne − nh), where ne is the area enclosed by electron pockets,
and nh is the area enclosed by hole pockets.
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to identify a quantum critical point (QCP) was introduced
by Chakravarty et al. [11] in the context of a d-density-
wave (dDW) QCP, and soon after by Kee et al. [12] for a
model of a metal undergoing a first-order nematic-to-isotropic
transition. In both cases, the Hall number was found to
decrease significantly in the ordered phase. Here, we show
that a singular drop in nH is also consistent with a continuous
nematic phase transition. This result may be applicable to
YBCO assuming that its low-temperature in-field properties
can be treated in the context of Fermi liquid theory.2

Starting with a tight-binding approximation of the large
hole pockets of the overdoped cuprates [13], we consider
(phenomenologically) a nematic order parameter onsetting at
p�. In the high-field limit, nH exhibits a nonanalytic drop when
the Fermi surface transitions to open sheets, which generically
occurs at a different doping pvH < p�. At low fields, a drop
in nH occurs exactly at p�. We find that the abruptness of the
drop in nH is controlled by the strength of the onset of the
nematic order parameter.

This paper is organized as follows. In Sec. II, we describe
how analytic solutions to the Lorentz force law can be
used to obtain an exact expression for the conductivity of a
two-dimensional nearest-neighbor tight-binding model, and
in Sec. II B, we provide these explicit expressions. In Sec. III,
we evaluate the Hall number near the van Hove singularity,
and obtain the form of the critical anomaly. Finally, in Sec. IV,
we discuss how these results may be applicable to the cuprates
by analyzing an explicit model in which nematicity onsets in
a mean-field-like fashion below a critical doping p�.

II. AN ANALYTIC EXPRESSION
FOR THE HALL NUMBER

A. Chambers’ formula

We compute the magnetotransport using Chambers’ expres-
sion for the conductivity tensor [14,15]. This is a formally exact
integral solution to the Boltzmann equation in the relaxation
time approximation, correct to all orders in B. The conductivity
tensor at zero temperature in d dimensions takes the form
(h̄ = 1)

σαβ = e2

(2π )d

∫
dS

|v| vα(0)
∫ 0

−∞
dt ′vβ(t ′)et ′/τ , (2)

where τ is the scattering time, the first integral is over the
Fermi surface (FS), and the effect of the magnetic field is
included implicitly via the quasiparticle velocities v(t) along
a cyclotron orbit. To evaluate this expression requires that for
each point k on the FS, we calculate v(t) = ∇kε(k(t)), where
k(t) evolves according to the Lorentz force law: k̇ = −ev × B
[16]. The solutions are generically periodic with period T , and
therefore in d = 2,

σαβ = e3B

(2π )2

∫ T

0
dt vα(t)

∫ t

−∞
dt ′ vβ(t ′)e(t ′−t)/τ . (3)

2The assumption that Fermi liquid theory is valid in the cuprates
at low-T and moderate-B fields is supported by quantum oscillation
measurements, where a Lifshitz-Kosevich-like temperature depen-
dence has been reported [38].

B. Nearest-neighbor tight-binding model

We consider spinless electrons on a square lattice,

H =
∑

k

ε(k)c†kck, (4)

where H is the Hamiltonian, c†k creates an electron with Bloch
wave number k, tx , and ty are the hopping strengths on x̂- and
ŷ-directed bonds, and

ε(k) = −2tx cos kx − 2ty cos ky. (5)

Chambers’ formula for this model can be evaluated ex-
actly.3 The solutions for the quasiparticle velocities at a given
chemical potential μ are rational fractions of Jacobian elliptic
functions, with the corresponding cyclotron frequency given
by

ωc =
{ π

2K(κ)ω0 closed orbits, |μ| > μc,
κπ

2K(1/κ)ω0 open trajectories, |μ| � μc,
(6)

where ω0 = eB
√

4tx ty is a “bare” cyclotron frequency, and
K(κ) is the complete elliptic integral of the first kind, with
elliptic modulus given by

κ =
√

μ2
0 − μ2

μ2
0 − μ2

c

. (7)

Here, μ0 = 2(tx + ty) is half the bandwidth, and the van Hove
singularities occur at μ = ±μc = ±2(ty − tx).

The integral in Eq. (3) is tractable provided Fourier series
expansions for the quasiparticle velocities can be computed.
The gory details of the lengthy, but straightforward manipula-
tions needed to achieve this are presented in Appendix B. The
final results for the conductivities of the i = e,o,h (electron,
open and hole pockets, respectively) are expressible as rapidly
convergent infinite series over Fourier coefficients of the
quasiparticle velocities:

σ i
xx = 2σ0

K

∑
m

sech2
(

mπK ′
2K

)
sin2

(
mπui

2K

)
1 + (mωcτ )2

, (8)

σ i
yy = σ0δi,o

K
+ 2σ0

K

∑
m

sech2
(

mπK ′
2K

)
cos2

(
mπui

2K

)
1 + (mωcτ )2

, (9)

σ i
xy = σ0

K

∑
m

(mωcτ ) sech2
(

mπK ′
2K

)
sin

(
mπui

K

)
1 + (mωcτ )2

, (10)

with σ0 = e2τ
√

4tx ty . For closed pockets (i = e,h), the sums
are over positive odd integers, while for open Fermi surfaces
(i = o), the sum is over positive even integers. We have used
the shorthand notation K ≡ K(κ) for closed pockets, and
K ′ ≡ K(

√
1 − κ2); for open surfaces, we substitute K(κ) →

1
κ
K(1/κ) and likewise for K ′. Finally, the parameters ui are

3This form of exact solution is similar to that in Schofield et al. [39],
where weakly coupled 1d chains were considered. There, Galilean
invariance is present in one direction so the Hall number is always
equal to the density.
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Tetragonal

Orthorhombic tx = 0.75, ty = 1.25

tx = ty = 1

FIG. 1. The Hall number nH in the B → 0 and B → ∞ limits
vs density for tetragonal and orthorhombic systems. Insets show the
Fermi surfaces (FS) at densities n = 0.2,0.5, and 0.8. When the FS
is closed, nH is exactly equal to the carrier density (dashed lines) in
the large B limit, while for B → 0, nH deviates strongly from the
dashed line near the van Hove fillings where the topology of the FS
changes. For orthorhombic systems, a sharp nonanalyticity exists in
the high-field nH at the van Hove fillings. The red box shows the
critical region examined in Fig. 2.

defined implicitly as

sn(ue/h,κ) =
√

(μ0 − μc)/(μ0 ∓ μ),

sn(κuo,1/κ) =
√

(μ0 + μ)/(μ0 + μc), (11)

where sn(u,k) is a Jacobian elliptic function.
The Hall number is computed from the conductivity tensor

as

1

nH

= 1

eB

(
σxy

σxxσyy + σ 2
xy

)
. (12)

Figure 1 shows both the B → 0 and B → ∞ limits of this
expression, for tetragonal (tx = ty) and orthorhombic (tx < ty)
systems. For closed FS’s in both tetragonal and orthorhombic
systems, the high-field nH (yellow points) corresponds to the
density of electrons or holes. In the low-field limit (blue
points), nH is only equivalent to the carrier density near
the band edges, where Galilean invariance is approximately
recovered. For generic fillings, the low-field Hall number
is inequivalent to the electron density; it in fact diverges
near the band center, where the FS curvature vanishes. For
orthorhombic systems, when there is an open FS, nH is not
equivalent to the density even in the high-field limit. There is a

sharp nonanalyticity at the Lifshitz transition in the high-field
limit, but not in the low. Note that nH diverges (i.e., the Hall
coefficient and hence the Hall voltage vanishes) at the point of
particle-hole symmetry, n = 0.5, even though the evolution of
the open FS is in no way singular at this point [17].

III. CRITICAL BEHAVIOR

So long as there are no open pieces of Fermi surface, the
Hall number in the infinite field limit is equal to the (net) area
enclosed by the Fermi surface(s). However, for open surfaces,
it follows from expressions for the magnetoconductivity
[Eqs. (8)–(10)] that nH → n

(o)
H , where

n
(o)
H = −2

S(uo)

K(1/κ)S ′(uo)
− K(1/κ)S ′(u0) (13)

and

S(uo) ≡ 1

π2

∞∑
m=1

1

m2
sech2

(
mπK ′(1/κ)

K(1/κ)

)
sin2

(
mπuo

K(1/κ)

)
.

The particle-hole symmetry of the present model relates
the behavior at density n to that at density 1 − n, so without
loss of generality we focus on the more-than-half-filled band,
1/2 < n < 1. Near the van Hove, where μ = (μc − δμ) with
0 < δμ � μc, the sum can be evaluated up to small corrections
in powers of δμ/μc with the result n

(o)
H = nc + δnH , where nc

is the density at μ = μc, and

δnH (μ) = nc C1

ln |C2δμ/μc| + O
(

δμ

μc

)
, (14)

in which C1 and C2 are μ-independent dimensionless constants
with complicated dependencies on tx/ty . (Explicit expressions
are given in the Appendix C.) A comparison between the
exact μ dependence of n

(o)
H from Eq. (13) and the asymptotic

expression in Eq. (14) is shown in Fig. 2(a).
It is illuminating to express nH as a function of the electron

density, n. In 2D, the density of states diverges logarithmically
at the van-Hove point, but the density is continuous, with a
weakly nonanalytic form

n(μ) − n ∝ δμ ln |δμ/μc|. (15)

(a) B → ∞ (b) B → 0

FIG. 2. Asymptotic behavior of the high- and low-field Hall
number across the van Hove singularity at μc = +2(ty − tx) = 1 (i.e.,
ty = 1 + φ and tx = 1 − φ, with φ = 0.25). For μ = μc − δμ, the
sharp nonanalyticity in the high-field limit is of the form (14), while
in the low-field limit it is weaker, and of the form δμ ln |μc/δμ|.
Insets are schematics of the FS on either side of μc.
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(1 + p)/2

(1 + p)/2

p1/8

(a)

(b)

(c)

(d)

pnem

pnem

pnem

pnemφ = φ0|p − pnem|1/2

B → 0

B → ∞
pc

pc

pc

IIIIII

IIIIII

FIG. 3. The Hall number computed numerically, as a function of hole doping p for a model in which a nematic phase transition occurs at
pnem = 20%. (a) The doping evolution of the nematic order parameter φ. (b) Fermi surfaces as a function of doping: the Lifshitz transition
is generically separated from pnem; for φ0 = 1, it occurs at pc < pnem, however, for the stronger onset (φ0 = 3), it is too close to pnem to be
resolved. (c) and (d) The sharpness of the drop in nH in both the strong and weak field limits is controlled by φ0. Longitudinal resistivities are
shown in Appendix A.

Consequently, nH (n), given in Eq. (1), behaves in much the
same way as nH (μ).

In the low-field limit, nH (μ) is again expressible in terms
of infinite series and the sums can be performed, as discussed
in Appendix D. While the resulting expression is still singular
at μc, the singularity is much weaker as shown in Fig. 2(b);
it simply reflects the logarithmic divergence of the density of
states. Consequently, both nH (n) and its first derivative are
continuous at n = nc.4

Concerning experimental realizations, one can tune across
the Lifshitz transition either by changing the chemical potential
μ, or the orthorhombicity φ. μ is tuned by changing the
electron concentration, either by doping or possibly by gating.
φ can be directly varied by application of appropriate strain, or
indirectly in systems which spontaneously break C4 symmetry,
by perturbations that affect the magnitude of the nematicity.
We note that there is already strong evidence that strain has
been used to tune the γ band of Sr2RuO4 across a Lifshitz
transition, using both epitaxial strain in thin films [18] and
mechanical clamping in bulk crystals [19,20]. Measuring the
Hall number in this material as it is strained across the Lifshitz
transition will provide a direct test of the results in this paper.5

4Note that close enough to the Lifshitz transition, the condition ωc <

ε necessarily breaks down. Moreover, the assumption of constant τ

becomes questionable.
5An important question, which we have not addressed, is how the

high-field limit ωcτ � 1 can be achieved when m∗ is diverging. We
note, however, that m∗ only diverges logarithmically with distance
to the van Hove singularity (m∗ ∝ ln |μ − μc|), so the field scale Bc

required for a large cyclotron frequency ωc = eB/m∗ only diverges

IV. POSSIBLE RELEVANCE TO THE CUPRATES

The cuprate phase diagram is complex, with multiple
“intertwined” orders. This complicates attempts to associate
particular features of the transport, even apparent singularities,
with specific ordering tendencies. Given the considerable
evidence of a tendency to nematic order in the cuprates
[21–26], we have undertaken to show that a nematic transition
could produce a doping dependence of the Hall number similar
to that seen in experiment. However, this is merely a consis-
tency check; similar behavior of nH was predicted on the basis
of an assumed dDW transition [11], and has been postdicted
on the basis of assumed transitions involving spin or charge
density wave (CDW) order [27–29], spiral antiferromagnetism
[30], or a transition to an “FL* phase” [31,32].

To capture something of the electronic structure of
the cuprates, we have considered an electronic dispersion
of the form ε(k) = −2t(1 − φ) cos kx − 2t(1 + φ) cos ky +
4t ′ cos kx cos ky , with t ′ = 0.4t . Here, φ is the nematic order
parameter, which we assume has a mean-field-like dependence
φ = φ0(pnem − p)1/2 on the doped hole concentration p,
with p < pnem ≈ 20%. With second-neighbor tunneling (t ′),
Chambers’ formula becomes analytically intractable, so we
obtain results numerically.6

As Fig. 3 illustrates, the relation of the Hall number to the
FS area differs at high and low fields. From the ratio of ρxy to

logarithmically. Thus there is a parametrically large window over
which the high-field regime can be reached.

6Details of the model and the method of solution are presented in
Appendix A.
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SCAF

Nematic

pcpcdw

T

p

CDW

Low energy 
spin fluctuations

psdw pnem

SDW

T ∗

FIG. 4. A speculative zero-field phase diagram of an ideal cuprate
with a nematic phase included. In a tetragonal cuprate, pnem is a
nematic quantum critical point, which in YBCO would be rounded
by weak orthorhombicity. Here, we have considered pc to be a Lifshitz
transition, which generically occurs inside the nematic phase. There
is then a continuous transition to a unidirectional CDW. SDW and AF
represent different forms of magnetic order, although in the presence
of disorder, the SDW is typically manifest as a spin-glass. All the
ordered phases occur below a pseudogap crossover temperature T ∗.

ρxx taken from the Hall measurements of Badoux et al. [4] on
YBCO at p = 0.205, we estimate ωcτ ≈ 0.17 for B = 90 T
and T = 50 K; from quantum oscillation measurements at p =
0.152 [33], we estimate ωcτ ≈ 0.5 for B = 90 T and T =
1.5 K. Both estimates place the YBCO Hall measurements
in the low-field limit. Indeed, the low-field curves in Fig. 3
resemble the behavior measured in YBCO.

To place these results in context, Fig. 4 shows a speculative
phase diagram of an ideal cuprate. There is considerable
evidence of the existence of a QCP at p∗ = 0.2 associated
with the termination of a pseudogap crossover line T ∗, as
shown. Various ordering tendencies occur in the pseudogap
regime. While it seems likely that CDW order terminates
at lower doping, pcdw < p∗, vestigial nematic order is more
robust [34,35]—we have shown it terminating at pnem ≈ p∗.
Moreover, recent work [36,37] has shown that nematicity can
account for some of the pseudogap phenomenology, including
Fermi arcs and bad metal behavior. A notable aspect of this
proposal is the existence of a Lifshitz transition at pc, at which
the Fermi surface topology changes; in contrast to a nematic
transition, this is sharply defined only at T = 0.

There are several testable consequences of this scenario. (1)
The presence of open Fermi surfaces results in large resistive
anisotropies as well as nonsaturating magnetoresistance in the
“open” direction. (2) A continuous transition at pcdw < pnem

to a charge density wave (CDW) ordered phase is possible
only if the CDW is unidirectional. (3) The nematic transition
is replaced by a crossover in an orthorhombic crystal, such
as YBCO; however, the Lifshitz transition remains a sharply
defined QCP. An attractive aspect of this scenario is that
optimal doping is proximate to both a Lifshitz and a nematic
QCP, both of which have been shown to enhance Tc under
appropriate circumstances.
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APPENDIX A: NUMERICAL SOLUTIONS FOR A
NEXT-NEAREST-NEIGHBOR TIGHT-BINDING MODEL

With the inclusion of second-neighbor hopping on the
square lattice, the Chambers formula is no longer analytically
tractable. Our numerical solutions proceed by numerically
solving for the time evolution of quasiparticles on the Fermi
surface, and by discretization of the Chambers formula in
Eq. (3) of the main text:

σαβ = e3B

(2π )2

∫ T

0
dt vα(t)

∫ t

−∞
dt ′ vβ(t ′)e(t ′−t)/τ . (A1)

We discretize these integrals using numerical solutions for
the quasiparticle’s velocities as a function of discrete time
n�t where N�t = T . The periodic nature of the quasiparticle
orbits means that the second integral can be truncated to one

(a)

pnem

pnemφ = φ0|p − pnem|1/2

pc

III

(b )

FIG. 5. The chemical potential as a function of doping as the
nematic order parameter onsets with differing strengths φ0. While the
Lifshitz transition from closed hole pockets to open sheets virtually
coincides with pnem = 20% for strong nematic onset (green curves
φ0 = 3), it occurs at pc < pnem when the nematic onset is weaker
(blue curves, φ0 = 1).
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(a) B → 0 (b) B → ∞

FIG. 6. The longitudinal resistivities (units of 1/e2τ , logarithmic scales) in the low-field (left) and high-field (right) limits as a function of
doping. There is a large increase in ρxx when the Fermi surface becomes open along the x direction (i.e., the nematicity forces the system to
become quasi-one-dimensional. Note that ρxx technically diverges in the infinite-field limit due to the quadratic dependence, ρxx ∝ B2. The
figure shows its value for large but not infinite fields.

period, with an additional infinite sum

σαβ = e3B

(2π )2
�T 2

N∑
m

vα(m�t)
N∑
n

vβ(n�t)e(n−m)�t/τ

× (1 + e−T/τ + e−2T/τ + · · · )

= e3B

(2π )2

�T 2

1 − e−T/τ

N∑
n,m

vα(m�t)vβ(n�t)e(n−m)�t/τ .

(A2)

In Fig. 3, we calculated the Hall number as a nematic order
parameter onset at a function of hole doping p, φ(p) = φ0|p −
pnem|1/2. To maintain the correct doping, we also (numerically)
determine the chemical potential a function of p, as is shown
in Fig. 5.

Meanwhile, the longitudinal resistivities are shown in
Fig. 6. While there is a small decrease in ρyy , there is a large
increase in ρxx in both the low- and high-field limits. This is
natural when we realize that the quasi-one-dimensional limit
is being approached with increasing nematicity.

APPENDIX B: MAGNETOTRANSPORT IN THE
NEAREST-NEIGHBOR TIGHT-BINDING MODEL

1. Solving the equations of motion

To find exact expressions for the magnetoconductivity, we
must solve the semiclassical equation of motion

dk
dt

= − e

h̄c
v(k) × B(r,t), (B1)

where v(k) = ∂kε(k), for a given band structure ε(k). At
zero temperature, we are only interested in particles at the

Fermi level, for the two-dimensional nearest-neighbor tight-
binding dispersion ε(k) = −2tx cos kx − 2ty cos ky − μ. For a
z directed magnetic field, B = B ẑ, the semiclassical equations
of motion are

dkx

dt
= 2tyeB sin ky, (B2)

dky

dt
= −2txeB sin kx. (B3)

Because the quasiparticles are always constrained to move on
the Fermi surface, it is useful to eliminate ky , by using the
constraint that the momenta are always confined to the Fermi
surface:

μ = −2tx cos kx(t) − 2ty cos ky(t)

⇒ 1 =
(

μ0−μc

μ0 + μ

)
sin2

[
kx(t)

2

]
+

(
μ0+μc

μ0 + μ

)
sin2

[
ky(t)

2

]
,

(B4)

where μ0 = 2(ty + tx) and μc = 2(ty − tx). This rewriting
makes it clear that the solutions will be generalized versions
of ellipses, and the equation of motion for kx(t) becomes

d(kx/2)

du
=

[
1 −

(
μ0 − μc

μ0 + μ

)
sin2(kx/2)

]1/2

×
[

1 +
(

μ0 − μc

μ − μc

)
sin2(kx/2)

]1/2

, (B5)

where u = eB
√

(μ + 2tx)2 − (2ty)2 t . The solutions to this
nonlinear equation of motion depend on the boundary
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TABLE I. The different types of Fermi surfaces and initial conditions for the equations of motion in each scenario.

Closed Electron Pockets Open Fermi surface Closed Hole pockets

Chemical potential 2(ty + tx) � μ � −2(ty − tx) |μ| � 2(ty − tx) −2(ty + tx) � μ � −2(ty − tx)
kx(t = 0) 0 0 π

ky(t = 0) cos−1
(

μ+2tx
−2ty

)
cos−1

(
μ+2tx
−2ty

)
cos−1

(
μ−2tx
−2ty

)
vx(t = 0) 0 0 0
vy(t = 0) vy0 = √

(2ty)2 − (μ + 2tx)2
√

(2ty)2 − (μ + 2tx)2 vyπ = √
(2ty)2 − (μ − 2tx)2

conditions (see Table I), and are summarized as

kx(t) =

⎧⎪⎪⎨
⎪⎪⎩

2 tan−1
[m0vy0

2 sd(ω0t,κ)
]
, for electron pockets, μ � −2(ty − tx)

2 tan−1
[m0vy0

2κ
sc(κ ω0 t,1/κ)

]
, for open Fermi surfaces, |μ| � 2(ty − tx)

π + 2 tan−1
[m0vyπ

2 sd(ω0t,κ)
]
, for hole pockets, μ � 2(ty − tx)

. (B6)

Here, we have defined the “bare” cyclotron frequency ω0 = eB
√

4tx ty , and the elliptic modulus is (as in the main text)

κ =
√

(μ2
0 − μ2)/(μ2

0 − μ2
c). The true cyclotron frequencies are given in Eq. (6) of the main text.

2. Solutions for quasiparticle velocities

The velocities vx(t) and vy(t) are obtained by using the equations of motion, vx(t) = 2tx sin kx(t) and vy(t) = 1
eB

dkx (t)
dt

. We
therefore obtain

vx(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
tx
ty
vy0

sn(ω0t,κ)dn(ω0t,κ)

1+
(

1
4 m2

0v
2
y0−κ2

)
sn2(ω0t,κ)

μ � −2(ty − tx)√
tx
ty

vy0

κ

sn(κ ω0t,1/κ)cn(κ ω0t,1/κ)

1+
(

1
4κ2 m2

0v
2
y0−1

)
sn2(κ ω0t,1/κ)

|μ| � 2(ty − tx)

−
√

tx
ty
vyπ

sn(ω0t,κ)dn(ω0t,κ)

1+
(

1
4 m2

0v
2
yπ −κ2

)
sn2(ω0t,κ)

μ � 2(ty − tx)

. (B7)

While for the y velocities we find

vy(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vy0
cn(ω0t,κ)

1+
(

1
4 m2

0v
2
y0−κ2

)
sn2(ω0t,κ)

μ � −2(ty − tx)

vy0
dn(κ ω0t,1/κ)

1+
(

1
4κ2 m2

0v
2
y0−1

)
sn2(κ ω0t,1/κ)

|μ| � 2(ty − tx)

vyπ
cn(ω0t,κ)

1+
(

1
4 m2

0v
2
yπ −κ2

)
sn2(ω0t,κ)

μ � 2(ty − tx)

. (B8)

3. Fourier series expansions

The solutions for the quasiparticle velocities are periodic functions of time. Thus their Fourier series expansions are especially
useful for evaluating the Chambers’ integral exactly. While the Fourier series expansions for simple combinations of Jacobian
elliptic functions are well known, the expansion for these rational fractions of elliptic functions are not as readily available. In
Appendix E, we explicitly derive these expressions by contour integration. Here, we list the results for the velocities:

vi
x(t) = (1 − 2δi,h)

2π

m0K(κ)

∞∑
n=1

sech

[
(2n − 1)πK ′

2K

]
sin

[
(2n − 1)πui

2K

]
sin

[
(2n − 1)πω0t

2K(κ)

]
, (B9)

vi
y(t) = 2π

m0K(κ)

∞∑
n=1

sech

[
(2n − 1)πK ′

2K

]
cos

[
(2n − 1)πui

2K

]
cos

[
(2n − 1)πω0t

2K(κ)

]
, (B10)

for closed pockets (either i = e for electron or i = h for hole pockets), while for open surfaces, we have

vo
x(t) = 2πκ

m0K(1/κ)

∞∑
n=1

sech

[
nπK ′

K

]
sin

[
nπuo

K

]
sin

[
nπκω0t

K(1/κ)

]
, (B11)

vo
y(t) = 2πκ

m0K(1/κ)

{
1

2
+

∞∑
n=1

sech

[
nπK ′

K

]
cos

[
nπuo

K

]
cos

[
nπκω0t

K(1/κ)

]}
, (B12)
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where κ and ωc have their definitions as before, and m0 = 1/
√

4tx ty , where the parameters ui are given by

sn(ue,κ) =
√

4tx

2(tx + ty) − μ
=

√
μ0 − μc

μ0 − μ
, (B13)

sn(uh,κ) =
√

4tx

2(tx + ty) + μ
=

√
μ0 − μc

μ0 + μ
, (B14)

sn(κu0,1/κ) =
√

2(tx + ty) + μ

4ty
=

√
μ0 + μ

μ0 + μc

. (B15)

4. Solutions for the conductivity

Armed with the Fourier expansions for the conductivities, we finally integrate the zero-temperature Chambers’ expression
exactly. We first demonstrate how the finite-temperature Chamber’s expression can be massaged into the form given in Eq. (3)
of the main text:

σαβ = e2

h̄

∫
d2k

(2π )2
vα(k(0))

∫ 0

−∞
dt ′

(
−∂f (0)

∂ε

)
vβ(k(t ′))et ′/τ

= T →0
e2

4π2

∫
FS

dk
|vF |vα(k(0))

∫ 0

−∞
dt ′vβ(k(t ′))et ′/τ = e2

4π2

∫ T

0

dt

√
k̇2
x + k̇2

y

|vF | vα(t)
∫ t

−∞
dt ′vβ(t + t ′)et ′/τ ,

σαβ = e3B

4π2

∫ T

0
dt vα(t)

∫ t

−∞
dt ′vβ(t ′)e(t ′−t)/τ , (B16)

where in getting to the last line, we used the Lorentz force law. Using the Fourier series expansion for the velocities, we can do
the integral over t ′ and then use Fourier orthogonality to perform the integral over t .

We demonstrate this procedure for the longitudinal conductivity of a closed electron pocket. Schematically, writing

vx(t) = ṽi
x

∞∑
n=1

ai
n sin

[(
n − 1

2

)
πω0t

K(κ)

]
, (B17)

we have for σxx :

σxx = e3B

4π2
(ṽi

x)2
∫ 4K(κ)/ω0

0
dt

∑
n,m

anam sin

[(
n − 1

2

)
πω0t

K(κ)

] ∫ t

−∞
dt ′ sin

[(
m − 1

2

)
πω0t

K(κ)

]
e(t ′−t)/τ

= e2

4π2
m0ω0

(
2K

πω0

)2(
ṽi

x

)2
∫ 2π

0
du

∑
n,m

anam sin[(2n − 1)u]
∫ u

−∞
du′ sin[(2m − 1)u′]e2K(u′−u)/πω0τ

= e2

4π2
m0ω0

(
2K

πω0

)2(
ṽi

x

)2
∫ 2π

0
du

∑
n,m

anam sin[(2n − 1)u]

(
πω0τ

2K

)
sin[(2m − 1)u]

1 + (2m − 1)2
(

πω0τ

2K

)2

= e2τ

2π2
m0K(κ)

(
ṽi

x

)2
∞∑

n=1

a2
n

1 + (
n − 1

2

)2(πω0τ

K

)2

= 2e2τ

m0K(κ)

∞∑
n=1

sech2
( (2n−1)πK ′

2K

)
sin2

( (2n−1)πui

2K

)
1 + (nωcτ )2

, (B18)

where in the last line, we have restored an and ṽi
x . Note that in going from the second to the third line above, we have only

kept the sin term since this is the only term which contributes upon integrating over t . A similar set of manipulations leads for
the other elements of the conductivity tensor, and for all the different types of Fermi surfaces, leads to the formulas in Eqs. (8)
through (10) of the main text for the conductivity tensor.

APPENDIX C: HIGH-FIELD LIMIT OF THE HALL NUMBER NEAR THE LIFSHITZ TRANSITION

The high-field Hall number is given by

1

nHall
= lim

B→∞
1

B
ρxy = lim

B→∞
1

B

−σxy

σxxσyy + σ 2
xy

. (C1)
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Using the expressions we derived above, for closed pockets (i = e,h for electron and hole pockets respectively), we have

ne
Hall = − 1

π

∞∑
n=1

1(
n − 1

2

) sech2

[(
n − 1

2

)
πK ′(κ)

K(κ)

]
sin

[
(2n − 1)

πue

K(κ)

]
, (C2)

nh
Hall = 1

π

∞∑
n=1

1(
n − 1

2

) sech2

[(
n − 1

2

)
πK ′(κ)

K(κ)

]
sin

[
(2n − 1)

πuh

K(κ)

]
, (C3)

while for open pockets i = o, the expression is

no
Hall = −

1
π2

∑∞
n=1

1
n2 sech2

[
nπK ′(1/κ)

K(1/κ)

]
sin2

[
nπuo

K(1/κ)

]
1
π

∑∞
n=1

1
2n

sech2
[

nπK ′(1/κ)
K(1/κ)

]
sin

[ 2nπuo

K(1/κ)

] − 1

π

∞∑
n=1

1

n
sech2

[
nπK ′(1/κ)

K(1/κ)

]
sin

[
2nπuo

K(1/κ)

]
. (C4)

1. Closed pockets

To make progress, note that each of the infinite sums looks like a Fourier series expansion. In fact, the coefficient sech[(n −
1/2)πK ′/K] appears in the Fourier series expansion for cn(u,k):

cn(u,k) = π

Kk

∞∑
n=1

sech

[(
n − 1

2

)
πK ′

K

]
cos

[(
n − 1

2

)
πu

K

]
. (C5)

A convolution of two Jacobian cn functions, followed by two integrals allows us to re-express these infinite sums as analytic
expressions, albeit involving integrals that cannot be performed. The results for the closed (electron and hole) pockets are

n
e/h

Hall = ∓ 1

π

∞∑
n=1

1(
n − 1

2

) sech2

[(
n − 1

2

)
πK ′(κ)

K(κ)

]
sin

[
(2n − 1)

πue/h

K(κ)

]

= ∓2κ

π2

∫ π/2

0
dθ

cos θ√
1 − κ2 sin2 θ

tan−1

(
κ sn(2ue/h,κ)

dn(2ue/h,κ)
cos θ

)

= ∓ 1

2π2

√
(2tx + 2ty)2 − μ2

tx ty

∫ π/2

0
dθ

cos θ√
1 − κ2 sin2 θ

tan−1

⎛
⎝∓

√
(2tx + 2ty)2 − μ2

μ2
cos θ

⎞
⎠. (C6)

This is in fact exactly the density of the metal (modulo 2), as can be demonstrated by taking the derivative with respect to (w.r.t.)
μ, to yield the density of states. We have

ρ(μ) = dne/h

dμ
= 1

2π2√tx ty
K

(√
(2tx + 2ty)2 − μ2

16tx ty

)
= 2

π2
√

μ2
0 − μ2

c

K

(√
μ2

0 − μ2

μ2
0 − μ2

c

)
, (C7)

which is the well-known expression for the density of states of a 2D tight-binding model. For μ0 = μc + δμ, this diverges
logarithmically like

ρ(μ = μc + δμ) = − 1

π2
√

μ2
0 − μ2

c

ln

[
μcδμ

8
(
μ2

0 − μ2
c

)
]
. (C8)

2. Open sheets

The expression [Eq. (C4)] for the Hall number of an open Fermi surface at infinite field involves two related sums:

s1(uo) = 1

π

∞∑
n=1

1

n
sech2

[
nπK ′(1/κ)

K(1/κ)

]
sin

[
2nπuo

K(1/κ)

]
. (C9)

s2(uo) = 1

π2

∞∑
n=1

1

n2
sech2

[
nπK ′(1/κ)

K(1/κ)

]
sin2

[
nπuo

K(1/κ)

]
. (C10)

It is clear that

s2(uo) = 1

K(1/κ)

∫ uo

0
du s1(u). (C11)
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Once more, using the Fourier expansion of an elliptic function,

dn(u,k) = π

2K
+ π

K

∞∑
n=1

sech

[
nπK ′

K

]
sin

[
nπuo

K

]
, (C12)

along with a convolution followed by an integral w.r.t. u, to give

s1(uo) = 1

π

∞∑
n=1

1

n
sech2

[
nπK ′(1/κ)

K(1/κ)

]
sin

[
2nπuo

K(1/κ)

]

= 1 − uo

K(1/κ)
+ 2

π2

∫ π/2

0
dθ tan−1

[
sn(2u0,1/κ)

cn(2u0,1/κ)

√
1 − 1

κ2
sin2 θ

]
, (C13)

where the integral cannot be done in terms of elementary functions. A further integral gives

s2(uo) = 1

π2

∞∑
n=1

1

n2
sech2

[
nπK ′(1/κ)

K(1/κ)

]
sin2

[
nπuo

K(1/κ)

]

= uo

K(1/κ)
− u2

0

2K2(1/κ)
+ 2

π2K(1/κ)

∫ uo

0
du

∫ π/2

0
dθ tan−1

[
sn(2u,1/κ)

cn(2u,1/κ)

√
1 − 1

κ2
sin2 θ

]
, (C14)

where once more the integral cannot be expressed in terms of elementary functions.

3. Asymptotic scaling at the critical point

Despite the fact that Eqs. (C13) and (C14) contain integrals, which cannot be performed, the asymptotic behavior of these
sums is determined by the preceding terms. Concentrating first on s1(uo) in the limit μ = μc − δμ, where κ → 1, it can be
shown that

uo(μ = μc − δμ) = sn−1

[√
μ0 + μc − δμ

μ0 + μc

,

√
μ2

0 − μ2
c

μ2
0 − (μc − δμ)2

]

= − tanh−1

(√
μ0 + μc

μ0 − μc

)
− 1

2
ln

( −μcδμ

8(μ2
0 − μ2

c)

)
+ O

(
δμ

μc

)
. (C15)

This, together with the expansion for the elliptic function near the van Hove singularity, yields the following asymptotic expression
for the ratio uo/K:

uo

K(1/κ)
= 1 −

ln
[

μ0−
√

μ2
0−μ2

c

μc

]
ln

[
μcδμ

8(μ2
0−μ2

c )

] + O
(

δμ

μc

)
. (C16)

Furthermore, we find that the integral in Eq. (C13) is roughly a constant in this limit, and so we can set κ = 1 and perform the
integral, to yield

lim
μ→μc

2

π2

∫ π/2

0
dθ tan−1

[
sn(2u0,1/κ)

cn(2u0,1/κ)

√
1 − 1

κ2
sin2 θ

]

= − 2

π2

∫ π/2

0
dθ tan−1

⎡
⎣
√

μ2
0

μ2
c

− 1(cos θ )

⎤
⎦

= − 2

π2

⎡
⎣3

2
ζ (2) + tanh−1

(√
μ0 − μc

μ0 + μc

)
ln

(
μ0 − μc

μ0 + μc

)
+ Li2

⎛
⎝− μc

μ0 +
√

μ2
0 − μ2

c

⎞
⎠ − Li2

⎛
⎝ μc

μ0 +
√

μ2
0 − μ2

c

⎞
⎠
⎤
⎦

= −nc(μ0,μc), (C17)

where we have define nc, the density at the critical point, ζ (2) = π2/6 is the Riemann zeta function, and Lin(x) is the polylogarithm
function.
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(a) s1(µ) with tx = 0.5ty (b) s2(µ) with tx = 0.5ty

FIG. 7. The two sums, which occur in the high-field expression for the Hall number, shown logarithmically near the van Hove singularity.

Putting this all together, we find that this first sum in the limit μ → μc − δμ is

lim
μ→μc

s1(uo) = −nc(μ0,μc) +
ln

[
μ0−

√
μ2

0−μ2
c

μc

]
ln

[
μcδμ

8(μ2
0−μ2

c )

] + O
(

δμ

μc

)
. (C18)

In Fig. 7(a), we plot an exact evaluation of the sum, the exact integral representation of the sum, and the asymptotic approximation
to this sum, in the limit μ → μc.

The second sum, s2(u) has u dependence, which is less obvious [the integral over u in Eq. (C21) is not a constant in the limit
μ → μc]. Nevertheless, an analytic approximation is possible, up to a μ independent constant. We first note that the following
infinite sum can be done:

∞∑
n=1

1

k
sin (kθ ) = 1

2
(π − θ ). (C19)

Integrating this w.r.t., θ gives the next infinite sum:

∞∑
n=1

1

k2
sin2

(
kθ

2

)
= θ

8
(2π − θ ). (C20)

Using this equation, we find

s2(uo) = 1

π2

∞∑
n=1

1

n2
sech2

[
nπK ′(1/κ)

K(1/κ)

]
sin2

[
nπuo

K(1/κ)

]

= 1

π2

∞∑
n=1

1

n2
sin2

[
nπuo

K(1/κ)

]
− 1

π2

∞∑
n=1

1

n2
tanh2

(
nπK ′(1/κ)

K(1/κ)

)
sin2

[
nπuo

K(1/κ)

]

= uo

2K(1/κ)

(
1 − uo

2K(1/κ)

)
− 1

π2

∞∑
n=1

1

n2
tanh2

(
nπK ′(1/κ)

K(1/κ)

)
sin2

[
nπuo

K(1/κ)

]
. (C21)

Empirically, we find that the second term (the sum) has the form

lim
μ→μc

1

π2

∞∑
n=1

1

n2
tanh2

(
nπK ′(1/κ)

K(1/κ)

)
sin2

[
nπuo

K(1/κ)

]
≈ c(μ0,μc)

K(1/κ)
, (C22)

where c(μ0,μc) is a constant. Thus, using the previously obtained expansion for uo/K(1/κ) [Eq. (C16)], we find

lim
μ→μc

s2(uo) ≈ 1

2

ln
[

μ0−
√

μ2
0−μ2

c

μc

]
ln

[
μcδμ

8(μ2
0−μ2

c )

] − 1

2

ln2
[

μ0−
√

μ2
0−μ2

c

μc

]
ln2

[
μcδμ

8(μ2
0−μ2

c )

] + 2c(μ0,μc)

ln
[

μcδμ

8(μ2
0−μ2

c )

] + O
(

δμ

μc

)
. (C23)

In Fig. 7(b), we show the exact series, along with the exact rewriting [Eq. (C21)], and finally the asymptotic expression [Eq. (C23)].
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(a) Logarithmic scale (b) Linear scale

FIG. 8. The asymptotic expression for the Hall number, on logarithmic and linear scales. We have chosen tx = 0.5 and ty = 1, so that the
critical point occurs at μc = 1. The constant c(μ0,μc) is 0.2951 for these parameters.

Putting all the results together, we find that the Hall number in the limit μ → μc is given by

lim
μ→μc

nHall = lim
μ→μc

(
− s2(uo)

1
2 s1(uo)

− s1(uo)

)
, (C24)

i.e.,

nHall(μ = μc − δμ) = nc +
(1 − nc) ln

[
μ0−

√
μ2

0−μ2
c

μc

]
+ 4c(μ0,μc)

nc ln
[

μcδμ

8(μ2
0−μ2

c )

]
− ln

[
μ0−

√
μ2

0−μ2
c

μc

] + O
(

δμ

μc

)
, (C25)

where, to recap all the terms in this expression, μ0 = 2(ty + tx) is half the bandwidth, μc = 2(ty − tx) is the value of the chemical
potential at which the van Hove occurs, c(μ0,μc) is constant that depends only on ty and tx , and nc is the filling at the van Hove
point, given by

nc = 2

π2

⎡
⎣3

2
ζ (2) + tanh−1

(√
μ0 − μc

μ0 + μc

)
ln

(
μ0 − μc

μ0 + μc

)
+ Li2

⎛
⎝− μc

μ0 +
√

μ2
0 − μ2

c

⎞
⎠ − Li2

⎛
⎝ μc

μ0 +
√

μ2
0 − μ2

c

⎞
⎠
⎤
⎦. (C26)

Figure 8 shows this function (dashed blue), compared to the asymptotic behavior of the exact expression for the hall number, on
logarithmic and linear scales.

The expression in the main text, Eq. (14),

nH (μ) − nc = nc C1

ln |C2μc/δμ| + O
(

δμ

μc

)
, (C27)

is obtained by setting

C1 = 1

n2
c

⎧⎨
⎩(1 − nc) ln

⎡
⎣μ0 −

√
μ2

0 − μ2
c

μc

⎤
⎦ + 4c(μ0,μc)

⎫⎬
⎭, (C28)

C2 = μ3
c

8
(
μ2

0 − μ2
c

)(
μ0 −

√
μ2

0 − μ2
c

) . (C29)

APPENDIX D: LOW-FIELD HALL NUMBER NEAR THE LIFSHITZ TRANSITION

In the limit of the field approaching zero, the Hall number for closed Fermi surfaces is given by

n
e/h

Hall = − 2

π

(∑∞
n=1 sech2

[
(2n − 1)πK ′

2K

]
sin2

[
(2n − 1)πue/h

2K

])(∑∞
n=1 sech2

[
(2n − 1)πK ′

2K

]
cos2

[
(2n − 1)πue/h

2K

])
∑∞

n=1

(
n − 1

2

)
sech2

[
(2n − 1)πK ′

2K

]
sin

[
(2n − 1)πue/h

2K

]
cos

[
(2n − 1)πue/h

2K

] , (D1)
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where K = K(κ) is the complete elliptic integral with modular parameter κ , etc., while for open Fermi surfaces the Hall number
is

no
Hall = − 2

π

(∑∞
n=1 sech2

[
nπK ′

K

]
sin2

[
nπuo

K

])(
1
2 + ∑∞

n=1 sech2
[

nπK ′
K

]
cos2

[
nπuo

K

])
∑∞

n=1 n sech2
[

nπK ′
K

]
sin

[
nπuo

K

]
cos

[
nπuo

K

] , (D2)

where now the modular parameter is 1/κ . Using the same tricks/techniques of the previous section, we can in fact find exact
expressions for these infinite sums, in terms of elementary functions.

Focusing on the open Fermi surface side, let us define an elementary sum

s(uo) =
∞∑

n=1

sech2

[
nπK ′(1/κ)

K(1/κ)

]
cos

[
nπuo

K(1/κ)

]

= −1

2
+ 2K(1/κ)

π2

dn(uo,1/κ)

sn2(uo,1/κ)
[K(1/κ) − �(κ−2sn2(uo,1/κ),1/κ)cn2(uo,1/κ)], (D3)

where the second equality follows from using the convolution theorem on the Fourier series expansion of dn(u,k). Here, � is the
complete elliptic integral of the third kind. Note that this implies

s(0) = −1

2
+ 2

π2
E(1/κ)K(1/κ), (D4)

where E(k) is the complete elliptic integral of the second kind. With this definition, it is not difficult to see that

∞∑
n=1

sech2

[
nπK ′

K

]
sin2

[
nπuo

K

]
= 1

2
[s(0) − s(2uo)], (D5)

∞∑
n=1

sech2

[
nπK ′

K

]
cos2

[
nπuo

K

]
= 1

2
[s(0) + s(2uo)], (D6)

1

2

∞∑
n=1

n sech2

[
nπK ′

K

]
sin

[
2nπuo

K

]
= − K

2π
s ′(2uo). (D7)

So we end up with the following expression for the Hall number in the zero-field limit:

no
Hall = 1

K(1/κ)

s(0) − s(2uo) + s2(0) − s2(2uo)

s ′(2uo)
. (D8)

This expression is fairly complicated, but written in full has the form

n
(o)
H =

2

[(
μ2 − μ2

0

)
2E

(
μ2

c−μ2
0

μ2−μ2
0

)2
− μ2

c

(
μ2�(1− μ2

c

μ2
0
| μ2

c−μ2
0

μ2−μ2
0

)

μ0
− μ0K

(
μ2

c−μ2
0

μ2−μ2
0

))2]

π2μ

√
μ2

0 − μ2
{(

μ2
c − μ2 + μ2

0

)
K
(

μ2
c−μ2

0

μ2−μ2
0

)
+ (

μ2 − μ2
0

)
E
(

μ2
c−μ2

0

μ2−μ2
0

)
+ μ2

c

[
−�

(
1 − μ2

c

μ2
0

∣∣∣μ2
c−μ2

0

μ2−μ2
0

)]} . (D9)

This is an exact expression for the low-field Hall number. The series expansion is complicated, but in the limit μ → μc, we find
a weak singularity in the Hall number:

no
Hall ≈ α + β|μc − μ| ln |μc − μ| + · · · , (D10)

where α and β are constants.

APPENDIX E: FOURIER SERIES FOR RATIONAL
FRACTIONS OF JACOBIAN ELLIPTIC FUNCTIONS

We must calculate Fourier series expansions for the func-
tions

sn(u,k)dn(u,k)

1 − α2sn2(u,k)
,

cn(u,k)

1 − α2sn2(u,k)
,

sn(u,k)cn(u,k)

1 − α2sn2(u,k)
,

and
dn(u,k)

1 − α2sn2(u,k)
(E1)

for 0 < α < k < 1. Note that the condition α < k follows from
the forms for the quasiparticle velocities found in Eqs. (B7) and
(B8). These Fourier series expansions are not readily available

in the literature, so here we discuss their derivations in a little
detail.

These four Fourier series can be obtained from simple
addition and subtraction of the functions:

dn(u,k)

1 ± α sn(u,k)
and

cn(u,k)

1 ± α sn(u,k)
. (E2)

These are both periodic functions, with a period of 4K , and
we can calculate its Fourier coefficients by using the relation

an = cn

∫ 2K

−2K

ei nπu
2K

[c/d]n(u,k)

1 ± α sn(u,k)
du (E3)
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Poles of

Poles of

Poles of cn(z, k) and dn(z, k)

2K−2K

4K + 2iK2iK

Im(z)

Re(z)
I

II

III

IV

FIG. 9. Contour used for finding Fourier coefficients of rational
fractions of Jacobian elliptic functions, with the positions of the poles
indicated.

with cn = (2iK)−1 for odd functions and cn = (2K)−1 for
even functions. These integrals can be done by considering

a contour in the complex plane, as shown in Fig. 9.
First, let us note the positions of the poles (α > 0): (1)
dn(z,k) has simple poles at iK ′ and 2K + iK ′; (2) cn(z,k)
likewise has simple poles at iK ′ and 2K + iK ′; (3) (1 −
α sn(z,k))−1 has simple poles at u0 + iK ′ and 2K − u0 +
iK ′; (4) (1 + α sn(z,k))−1 has simples poles at −u0 +
iK ′ and 2K + u0 + iK ′, where u0 is the solution of the
equation

sn(u0,k) = α

k
. (E4)

We therefore consider a contour integral, with the contour
shown in Fig. 9. Considering first cn(u,k)/(1 ± α sn(u,k)) and
defining

I±α =
∫ 2K

−2K

du
cn(u,k)ei nπu

2K

1 ± α sn(u,k)
, (E5)

we find that I±α are given by solving the simultaneous
equations:

Iα + (−1)n+1e− nπK′
K I−α = 2πi√

α2 − k2
e− nπK′

2K

[
(−1)n+1ei

nπu0
2K + e−i

nπu0
2K

]
, (E6)

I−α + (−1)n+1e− nπK′
K Iα = 2πi√

α2 − k2
e− nπK′

2K

[
ei

nπu0
2K + (−1)n+1e−i

nπu0
2K

]
. (E7)

This leads to solutions

I±α = 2π√
k2 − α2

sech

(
nπK ′

2K

)[
sin2

(
nπ

2

)
cos

(
nπu0

2K

)
∓ i cos2

(
nπ

2

)
sin

(
nπu0

2K

)]
. (E8)

So that the Fourier expansion is

cn(u,k)

1 ± α sn(u,k)
= π

K
√

k2 − α2

∞∑
n=1

sech

(
nπK ′

2K

)[
sin2

(
nπ

2

)
cos

(
nπu0

2K

)
cos

(
nπu

2K

)

∓ cos2

(
nπ

2

)
sin

(
nπu0

2K

)
sin

(
nπu

2K

)]
. (E9)

For the case of dn(u,k)/(1 ± α sn(u,k)), we perform a very similar computation. Once more,
∫
II

+ ∫
IV

= 0, and defining

J±α =
∫ 2K

−2K

du
dn(u,k)ei nπu

2K

1 ± α sn(u,k)
(E10)

performing the contour integrals leads to the following simultaneous equations:

Jα + (−1)ne− nπK′
K J−α = 2π√

1 − α2
e− nπK′

2K

[
(−1)nei

nπu0
2K + e−i

nπu0
2K

]
, (E11)

J−α + (−1)ne− nπK′
K Jα = 2π√

1 − α2
e− nπK′

2K

[
ei

nπu0
2K + (−1)ne−i

nπu0
2K

]
, (E12)

whose solutions are

J±α = 2π√
1 − α2

sech

(
nπK ′

2K

)[
cos2

(
nπ

2

)
cos

(
nπu0

2K

)
∓ i sin2

(
nπ

2

)
sin

(
nπu0

2K

)]
. (E13)

We therefore find that the Fourier expansion is

dn(u,k)

1 ± α sn(u,k)
= π

K
√

1 − α2

{
1

2
+

∞∑
n=1

sech

(
nπK ′

2K

)[
cos2

(
nπ

2

)
cos

(
nπu0

2K

)
cos

(
nπu

2K

)

∓ sin2

(
nπ

2

)
sin

(
nπu0

2K

)
sin

(
nπu

2K

)]}
. (E14)
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Taking different combinations of Eqs. (E9) and (E14), we find our final expressions

sn(u,k)dn(u,k)

1 − α2sn2(u,k)
= π

α
√

1 − α2K

∞∑
n=1

sech

[
(2n − 1)πK ′

2K

]
sin

[
(2n − 1)πu0

2K

]
sin

[
(2n − 1)πu

2K

]
, (E15)

cn(u,k)

1 − α2sn2(u,k)
= π√

k2 − α2K

∞∑
n=1

sech

[
(2n − 1)πK ′

2K

]
cos

[
(2n − 1)πu0

2K

]
cos

[
(2n − 1)πu

2K

]
, (E16)

sn(u,k)cn(u,k)

1 − α2sn2(u,k)
= π

α
√

k2 − α2K

∞∑
n=1

sech

[
nπK ′

K

]
sin

[
nπu0

K

]
sin

[
nπu

K

]
, (E17)

dn(u,k)

1 − α2sn2(u,k)
= π√

1 − α2K

{
1

2
+

∞∑
n=1

sech

[
nπK ′

K

]
cos

[
nπu0

K

]
cos

[
nπu

K

]}
. (E18)
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