
PHYSICAL REVIEW B 96, 045126 (2017)

Magnons in a two-dimensional transverse-field XXZ model
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The XXZ model on a square lattice in the presence of a transverse magnetic field is studied within the
spin-wave theory to investigate the resulting canted antiferromagnet. The small- and large-field regimes are
probed separately both for easy-axis and easy-plane scenarios which reveal an unentangled factorized ground
state at an intermediate value of the field. Goldstone modes are obtained for the field-free XY antiferromagnet
as well as for the isotropic antiferromagnet with field up to its saturation value. Moreover, for an easy-plane
anisotropy, we find that there exists a nonzero field, where magnon degeneracy appears as a result of restoration
of a U(1) sublattice symmetry and that, across that field, there occurs a magnon band crossing. For completeness,
we then obtain the system phase diagram for S = 1/2 via large-scale quantum Monte Carlo simulations using
the stochastic series expansion technique. Our numerical method is based on a quantization of spin along the
direction of the applied magnetic field and does not suffer from a sign problem, unlike comparable algorithms
based on a spin quantization along the axis of anisotropy. With this formalism, we are also able to obtain powder
averages of the transverse and longitudinal magnetizations, which may be useful for understanding experimental
measurements on polycrystalline samples.
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I. INTRODUCTION

Quantum magnets have long served as the ideal frame-
work for exploring novel quantum phases and phenomena
in interacting many-body systems [1]. From a theoretical
standpoint, the reduced Hilbert space renders the systems
amenable to powerful analytic and computational techniques.
Consequently, the interplay between competing interactions,
crystal electric field effects, lattice geometry, and (in many
cases) geometric frustration can be studied systematically in
a well-controlled manner. At the same time, rapid advances
in material synthesis and characterization techniques have
resulted in a wide array of quantum magnets where many such
novel quantum phases can be realized and investigated experi-
mentally. Some examples include Bose-Einstein condensation
of magnons [2], spin-liquid phases [3], valence bond solids
[4,5], topologically nontrivial noncoplanar spin textures [6,7],
and magnetization plateaus [8].

The XXZ model—and its straightforward
generalizations—remain the standard paradigm for describing
the vast majority of quantum magnets, making this family of
Hamiltonians arguably the most intensively studied family
of microscopic models of interacting many-body systems.
The simple SU(2) variant of the model, in conjunction
with additional terms such as uniaxial anisotropies, on
different lattice geometries yields a rich array of field-driven
phases with unique functionalities. Since many of these
novel states can be controllably realized in real quantum
magnets by applying an appropriate external magnetic field,
the behavior of the XXZ model and its multiple variants
in an external field has been an active frontier of analytic
and numerical investigation. As a prototypical example, the
quasi-one-dimensional (quasi-1D) compound Cs2CoCl4 has
been studied at length as a system that can realize an XXZ
antiferromagnet under an applied transverse field [9–11]. To
date, most of the studies have utilized a longitudinal magnetic
field [12–14]. In contrast, the study of a transverse field

remains relatively less studied [15,16]. However, such an
investigation is important from an experimental standpoint.
Often, the chemical composition of spin compounds
makes it very difficult to synthesize single crystals, and
the experimental characterization has to rely on powder
samples. This is particularly true for neutron-scattering
studies (both elastic and inelastic)—possibly the most
powerful experimental probes to identify different magnetic
states. Neutron-scattering experiments require relatively large
samples and, for materials where large single crystals are
unachievable, one works with pellets of powder samples
which are comprised of microscopic domains of single
crystals with randomly oriented axes. When such a sample
is placed in a magnetic field, each domain experiences a
field in a different direction relative to its crystal axis and
the measurements yield the average of fields along different
directions. For a direct comparison of theoretical studies
with such experiments, a detailed study of the effects of a
transverse field on an XXZ model is important and can be
combined with results for a longitudinal field to estimate
(approximately) the powder average.

Aside from quantum magnets, the study of the XXZ
model in a transverse field is important from a quantum-
computational point of view as well [17]. While a longitudinal
magnetic field renders the model exactly solvable in one
dimension by the Bethe ansatz, integrability is lost in the pres-
ence of a transverse magnetic field [18]. Quantum correlations
give rise to entanglement, and the ability to control the amount
of entanglement in a system by using a noncommuting field
may play an important role in quantum technology applications
[19]. Furthermore, by tuning the transverse field in an XXZ
model, it is possible to obtain an unentangled state [20]. This
phenomenon of ground-state factorization indicates an entan-
glement phase transition which has no classical analog [21].

Though a transverse-field XXZ (TF-XXZ) model has been
studied previously [15,16], a rigorous investigation of the
sublattice structures as well as the magnon modes as a
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function of the transverse field has been long due. In order
to bridge that gap in the literature, in this paper we use
spin-wave theory (SWT) to explore the evolution of the
magnetic ground states and their low-lying excitations as the
transverse field strength is gradually increased. Hamiltonian
symmetries and their symmetry breakings, as well as the
corresponding degeneracies and Goldstone excitations, are
analyzed in detail. We also identify the special entanglement
free point in the phase space that appears at the so-called
factorizing field [17] h = hf . Magnon modes are obtained in
the resulting canted antiferromagnet (AFM) and magnetization
along the field direction is observed. The analytical studies are
complemented by large-scale quantum Monte Carlo (QMC)
study using the stochastic series expansion technique in order
to obtain the system phase diagram. The two-dimensional (2D)
TF-XXZ model has been studied using the quantum Monte
Carlo method before [16], and here our approach is essentially
the same. In addition to identifying the different ground-state
phases as the parameters are varied, we extract powder-
averaged values for the magnetization (weighted averages
over the longitudinal and transverse field components of the
magnetization), which are useful for analyzing the results of
experimental measurements on polycrystalline samples [22].

II. MODEL

We investigate the S = 1/2 XXZ model with both Ising and
XY anisotropies in longitudinal as well as transverse external
magnetic fields. A generic XYZ model in a magnetic field �h
can be written as

H =
∑
〈ij〉

JxS
x
i Sx

j + JyS
y

i S
y

j + JzS
z
i S

z
j −

∑
i

�h · �Si, (1)

where Jx,Jy,Jz denote the spin-exchange interactions along
the x,y,z spin axes and are summed over nearest-neighbor
pairs on the square lattice. From here, a TF-XXZ model may be
derived by setting the spin-exchange interactions to Jx = Jy =
J⊥ with Jz/J⊥ = �, and applying the transverse field along
the x axis, �h = hx̂. In zero field, the XXZ model is gapless
for −1 � � � 1 while it is gapped with an Ising anisotropy
for � > 1. Néel long-range order is observed in the gapped
Ising-like phase, while the gapless XY-anisotropic regime also
exhibits long-range Néel order but is instead characterized by
the presence of Goldstone modes due to the breaking of a
continuous U(1) symmetry.

The U(1) symmetry of the XXZ model is lost upon adding
the transverse magnetic field. At zero magnetic field, there
is no magnetization in the system and the quantization axis
is decided by the exchange anisotropy parameter Jz/J⊥ = �

yielding an easy-axis AFM for � > 1 and an easy-plane AFM
for � < 1. The magnetic field turns on the magnetization in
the system. With a transverse field along the x direction, the
total spin along the exchange anisotropy direction becomes
nonconserving away from the Heisenberg point � = 1. A
perpendicular antiferromagnetic order appears with spins
canted towards the field direction. In other words, we obtain
simultaneous spin alignment along the x direction and anti-
ferromagnetic ordering in the z (for � > 1) or y (for � < 1)
direction (see Fig. 1). The magnetization along the x direction
(mx) increases monotonically with magnetic field h until it

reaches the critical field h = hc where antiferromagnetic order
is extinguished and spins align almost completely (for � �= 1)
in the x direction, forming a (nearly) saturated paramagnetic
phase. However, it needs an infinitely large field, away from
the Heisenberg point, to ensure complete polarization along
the field.

In addition to describing the quasi-one-dimensional
magnet Cs2CoCl4 for fields applied along the b axis [9],
the TF-XXZ model is also related to effective models for
certain quantum magnets where an alternating g-tensor and/or
Dzyaloshinskii-Moriya interaction can give rise to an effective
staggered field [23]. Such an effective model has successfully
been applied to the quasi-one-dimensional quantum magnet
copper benzoate [23–25].

In this work, we focus on the case of a uniform magnetic
field perpendicular to the axis of exchange anisotropy in a spin-
1/2 XXZ model on the square lattice. The easy-axis version
of this model was previously considered by Jensen et al. [15]
using a Green’s function approach. Their main conclusion
was that for small fields, the reduction in spin fluctuations
dominates over the spin canting, leading to an increase in the
staggered magnetization ms along the Ising axis, as well as to
an increase in the Néel temperature TN . At higher fields, of
course, the trend reverses, until both ms and TN are zero at the
critical field.

III. SPIN-WAVE THEORY

In order to develop the spin-wave analysis for the
transverse-field XXZ model with magnetic field h along the
x direction, we need to first identify how the quantization
direction changes with h. An Ising anisotropy causes the spin
quantizations in the two sublattices to be along ±z directions.
But U(1) symmetry in the XY anisotropic case forbids any such
preferences for quantization direction in the x-y plane. With
infinitesimal h along x, however, the symmetry is broken and
spin flop process results in the perpendicular ±y directions
to stand out as the quantized axes (see Fig. 1). As h is
increased, the sublattice magnetization starts canting towards
the x direction until it becomes parallel to the x axis, though
the maximal value of the spin is reached at an infinite value of
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FIG. 1. Canting of the spin quantization axis in a transverse field
directed along x. For nonzero field, the spins are canted parallel to
the x ′ axes. The canting occurs (a) in the x-z plane (with y ′ = y)
for � > 1 and (b) in the x-y plane (with z′ = z) for � < 1. Here
xyz denotes the original uncanted frame while x ′

A(B) refers to the
transformed x axes in the A (B) sublattices of the canted frame.
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h in the presence of exchange anisotropy. There exists a finite
critical value of the field at which the spins align parallel to
the field: this is marked by a sharp change in the slope of the
mx vs h curve with the magnetization close to its saturation
value. Beyond this critical field, the magnetization increases
slowly (due to decrease in quantum fluctuations) towards full
polarization which is reached theoretically at an infinite field.
At some nonzero h = hf , a factorized ground state is obtained
where entanglement becomes zero. In the case of an Ising
(XY) anisotropy, we first perform a spin-coordinate rotation
by an angle ±θ about the spin-y (spin-z) axis in the A (↑)
and B (↓) sublattices, respectively. Calling the canted new x

directions the quantization directions, a ferromagnetic state is
obtained in the transformed coordinates.

Within the linear spin-wave approximation in this rotated
frame, the easy-plane XXZ Hamiltonian gets transformed to
(for the remainder of this section we set J⊥ to unity and use it
as our unit of measurement)

H = E0(θ ) +
∑
〈ij〉

[
h

Z
(ni + nj ) cos θ − cos(2θ )S(ni + nj )

+cos 2θ − �

4
(a†

i b
†
j + H.c.) + cos 2θ + �

4
(a†

i bj + H.c.)

+2h sin θ/Z − sin 2θ

4
(a†

i − b
†
j + H.c.)

]
.

Here ni (nj ) and ai (bj ) are spin deviation and bosonic
annihilation operators, respectively, at site i (j ) within the ↑ (↓)
sublattice and Z is the coordination number (Z = 4 in the 2D
XXZ model). See Appendix A for details. Minimizing E0(θ )
identifies the state of quantization by selecting the reference
angle θr with cos θr = h/2ZS. A Fourier transformation, from
there on, leads to

H = E0(θr ) +
∑

k

[
ZS(a†

kak + b
†
kbk)

+ZSγk

(
cos 2θr + �

2
(a†

kbk + H.c.)

+ cos 2θr − �

2
(a†

kb
†
−k + H.c.)

)]
(2)

with γk = (cos kx + cos ky)/2. We need to resort to a 4 × 4
Hamiltonian matrix formulation [26] to solve this problem
(see Appendix B). A Bogoliubov transformation for such a
case [27] brings in the magnon modes to be given by �k =√

(ZS ± ZSγk (cos 2θr+�)
2 )

2 − (ZSγk (cos 2θr−�)
2 )

2
. The easy-planar

AFM, for h = 0, has no preferred quantization directions in
the x-y plane and hence enjoys a U(1) symmetry. Switching
on the field, even infinitesimally, spontaneously breaks that
symmetry, causing nondegenerate acoustic (with Goldstone
excitation) and optical magnon modes to appear. Gradual
increase in h reduces the gap between the modes, eventually
restoring magnon degeneracy at h = hd = 2SZ

√
(1 − �)/2.

At this point the Holstein-Primakoff transformed Hamiltonian
lacks the boson hopping term between neighboring sites. We
see that for the easy-axis or isotropic case, such vanishing
of the hopping term occurs at h = 0 and magnon modes
become degenerate there as well. Now also notice that for
cos(2θr ) = �, Eq. (2) is devoid of the number-nonconserving

third term and the spin reference state indeed becomes the
ground state. Hence we realize a factorized ground state which
indicates zero quantum entanglement. This is parametrized as

cos θf =
√

1+�
2 and hf = 2ZS cos θf .

Similarly for the easy-axis scenario, we obtain

H = E0(θr ) + ZS
∑

k

[
�(a†

kak + b
†
kbk)

+ γk

(
cos2 θr (1 + �)

2
(a†

kbk + H.c.)

+ 2 − cos2 θr (1 + �)

2
(a†

kb
†
−k + H.c.)

)]
(3)

with cos θr = h/SZ(1 + �). The factorizing

point is denoted by cos θf =
√

2
1+�

and hf =
ZS(1 + �) cos θf . The magnon modes are given by

�k =
√

(�SZ ± ZSγk cos2 θr (1+�)
2 )

2 − (ZSγk(2−cos2 θr (1+�))
2 )

2
.

Hence, with the application of a transverse field h, the
degeneracy between the magnon modes within the reduced
Brillouin zone is lost. Even at h = 0, nondegenerate modes
are obtained as long as � < 1. Goldstone modes are present
for all values of XY anisotropy whereas the system exhibits a
finite gap to lowest magnetic excitations for � > 1.

We can understand the behavior of the magnon excitation
modes intuitively from symmetry considerations. Let us first
discuss the field-free XXZ model at h = 0. For � > 1, spin
quantization directions are along z. There is a Z2 symmetry
corresponding to the transformation Si,z → −Si,z (denoted
by Z2,z) as well as a U(1) symmetry corresponding to
(Si,x + iSi,y) = S+

i → S+
i eiφ [denoted by Uxy(1)] for arbitrary

angle φ about z. Thus the Hamiltonian possesses an overall
Z2,z

⊗
Uxy(1) symmetry and, consequently, two degenerate

magnon modes. This remains true up to the isotropic limit
when an overall SU(2) symmetry is observed in the Hamil-
tonian. Now a Goldstone excitation results if a continuous
symmetry of the Hamiltonian is broken spontaneously by the
ground state in the thermodynamic limit. The spin component
along the quantization direction is a good quantum number
and for � = 1 this can be continually rotated, leaving the
Hamiltonian intact and thereby yielding Goldstone modes in
the spectrum. For � > 1, the quantized component Sz does
not have that liberty due to spin anisotropy and no Goldstone
excitation is formed. For � < 1, the quantization direction
changes (see Fig. 1). Considering this direction to be along y

(which will be the case due to spin flopping, with a transverse
field along the x direction), we see that the Hamiltonian still
possesses a Uxy(1) symmetry enabling the system to have a
Goldstone mode [however, note that a Uyz(1) symmetry is not
obeyed and hence only one Goldstone mode is observed in
this case). The discrete Z2,y symmetry is obeyed. However,
Uxz(1) symmetry is lost because of the spin anisotropy of the
rest of the terms: J (Si,xSj,x + �Si,zSj,z). This, in turn, makes
the magnon modes nondegenerate.

Switching on a noncommuting transverse field h results
in an interesting outcome. Spin canting develops and the
quantization directions (denoted by x ′

A and x ′
B for A and B

sublattices) in the two sublattices no longer remain oppositely
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directed. A magnon degeneracy, in this case, would require a
Uy ′z′ (1) symmetry corresponding to sublattice rotations about
x ′ axes (by angle φ and −φ, say, for the two sublattices,
respectively). But that is absent as canting causes other
phase-nonconserving terms to appear in the presence of h. So
degeneracy is lifted, in general. The isotropic point at � = 1,
however, holds a sublattice symmetry corresponding to a con-
tinuous rotation of S ′

x by any angle φ (and −φ on the other sub-
lattice) about an axis which lies in the x ′-x plane. This results
in the appearance of a Goldstone mode (and not two Goldstone
modes because of the restriction on the axis of rotation), which
survives until h < hc. Beyond hc, both x ′

A and x ′
B overlap with

the x direction, ruling out any spontaneously broken symmetry
for the ground state. Next, we see that for h = hd , magnon de-
generacy resurfaces for planar anisotropy. This is the singular
point where coefficients of the fluctuation terms S+

i S−
j vanish

and the Hamiltonian is invariant under a sublattice rotation by
an arbitrary angle φ (and −φ on the other sublattice) in the
y ′-z′ plane. This reappearance of Uy ′z′ (1) sublattice symmetry
brings back degenerate magnon modes.

For � < 1, the lower and higher magnon branches start
moving towards each other as h is increased from zero and
eventually a magnon band crossing occurs at h = hd . At the
critical field hc, the magnon spectrum contains an acoustic and
an optical mode. In contrast, an isotropic AFM has degenerate
acoustic modes at h = 0 whereas an easy-axis AFM has
degenerate optical modes (i.e., the minimum magnon energy is
positive). In either case a finite h lifts the magnon degeneracy,
resulting in the appearance of an acoustic-optical mode pair
at h = hc. But there is no band crossing. However, for an
easy-plane AFM, we see an acoustic and an optical mode
due to spontaneous breaking of the U(1) symmetry at h = 0.
With increase in h, the gap between the modes reduces and
they cross each other at some intermediate field finally to
become an acoustic-optical mode pair again for h = hc (but
this time, the acoustic mode at h = 0 evolves to become an
optical mode at h = hc and vice versa). This feature can be
observed in neutron-scattering experiments, where the density
of states shows large intensities at the field where magnon
degeneracy appears. Also, by experimentally probing the
lowest energy excitations, a change in the excitation spectrum
can be detected during field tuning across the particular field
exhibiting degeneracy.

Figure 2 demonstrates such behavior, showing the magnon
dispersion plots for easy-axis � = 2, easy-planar � = 0.5,
and isotropic � = 1 at ky = 0. The gapped and gapless nature
of the Ising and XY anisotropy, respectively, can be readily
seen there.

This SWT analysis (call it SWT(1)
a ) indicates a maximum

field value h = hc with hc = 2ZS for |�| < 1 and hc =
ZS(1 + �) for � � 1, up to which this method can be
meaningfully pursued as θ no longer remains real beyond that.
With an increase in h, calculations eventually lead to a gapless
mode at h = hc thereby indicating the limit beyond which the
choice of given reference state fails. In this regard, it may also
be pointed out that, with an increase in h, the spin deviation
ε (a measure of quantum fluctuation in this case) consistently
decreases to become zero at h = hf .

For large h (i.e., h � hc), E0(θ ) also becomes a minimum
at θ = 0 and we consider, instead, a different prescription

-2 0 2
k

x

3

4

Ω
k

-2 0 2
k

x

0

1

2

3

h = 0.0
h = 1.0
h = 2.0
h = 3.0

-2 0 2
k

x

Δ = 2

Δ = 0.5

Δ = 1

(a) (b) (c)

FIG. 2. Magnon modes �k of the S = 1/2 XXZ model on the
square lattice as a function of momentum kx (with ky = 0) for
various values of the transverse field h and spin-exchange anisotropy
(a) � = 2.0, (b) � = 0.5, and (c) � = 1.0.

(call it SWT(1)
b ), with the ferromagnetic state along the x

direction being the new spin reference state. The SWT(1)
b

calculation gives the magnon dispersion expression to be �k =√
(h − SZ + 1+�

2 γkSZ)2 − (�−1
2 γkSZ)2, where the measure

of the critical field for full polarization becomes h′
c = SZ +

1+�
2 SZ + |�−1|

2 SZ (see Appendix C). Notice that hc = h′
c, as

it should be. Additionally at the Heisenberg point, we obtain
hc = hf as well.

The sublattice magnetization along the rotated x directions
can be obtained as ms = S − ε, where spin deviation ε =
1
N

∑
k(〈a†

kak〉 + 〈b†kbk〉). From there the magnetization along
the field direction can be obtained as mx = ms cos θr . The
plots of mx for various h are shown in Fig. 3, highlighting
also the results from QMC calculations to be discussed below.
Notice that the magnetization as obtained by linear spin-wave
analysis and QMC calculations match exactly at h = 0 and hf .
At h = 0, the rotated quantized directions are perpendicular
to the x direction, thereby ensuring that mx = 0 there. On
the other hand, hf is the factorization point where we get
the factorized ground state with ε = 0 and thus magnetization
becomes mx = S cos θf . At the factorization field, the ground
state is believed to be a direct product state, which explains
the agreement between QMC simulations and SWT(1)

a analysis
(i.e., there are no quantum corrections at hf ).

Another quantity of interest, in this reference, is the
staggered magnetization m⊥

s orthogonal to the field direction
and along the spin quantization direction at zero field (infinites-
imally small field, in the easy-plane case, however). For the
transverse field along x, these are the z or y directions in an
easy-axis or easy-plane XXZ model, respectively (see Fig. 1).
Thus m⊥

s is obtained as m⊥
s = ms sin θr . Figure 4 shows the

plot of m⊥
s as a function of transverse field h. A reduction of

spin fluctuation with field (for h < hf ) causes m⊥
s to increase

while a spin canting towards the field direction reduces the
magnetization component along the perpendicular direction.
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FIG. 3. Magnetization mx along the field direction of the S =
1/2 XXZ model on a square lattice for (a) � = 0.2, (b) � = 0.8,
(c) �−1 = 0.6, and (d) �−1 = 0.2, as a function of the transverse
field h. The comparison between QMC and SWT(1)

a , SWT(1)
b results

ise given. The locations of hf and hc are also shown by the dotted
lines.

These two effects together determine the behavior of m⊥
s under

the variation of the field. In the easy-plane XXZ model, the
former (latter) one dominates for small (large) field values
and we see m⊥

s initially increase with h, then pass through a
maximum, and finally decrease down to zero at hc (see also
Ref. [15]). For large anisotropy (i.e., large �), however, spin
fluctuations are never strong enough to cause such an initial
increase in m⊥

s for small field values.
We should also mention here that the spin deviation

ε leaves room for correction to the spin-wave results as
that is what contributes to the next higher order spin-wave
expansion. At h = 0, ε decreases as we move away from
the Heisenberg point. But ε also consistently decreases with
h becoming zero at the factorization point. Beyond hf , ε

0 4 8 12
h / J⊥

0

0.1

0.2

0.3

0.4

0.5

m
s⊥

Δ = 0.2
Δ = 0.8
Δ−1 = 0.9
Δ−1 = 0.6
Δ−1 = 0.2

FIG. 4. Staggered magnetization m⊥
s , orthogonal to the field

direction (see Sec. III for details) in an S = 1/2 XXZ model on a
square lattice, as a function of the transverse field h for different
values of �.

increases again, more sharply for � sufficiently away from
unity. This indicates the fluctuations around the quantum
critical point and demonstrates the inability of mean field SWT
to describe the physics precisely. That is why, in Fig. 3, the
magnetization plots around hc show some unphysical turning,
already witnessed for an Ising AFM (see Ref. [28]). As the
Heisenberg point has hc = hf , ε remains zero there and a linear
SWT remains a good theory. But away from � = 1, ε starts
getting bigger with larger spin anisotropy, making mean-field
SWT estimates more inappropriate at h ∼ hc. So the phase
boundaries obtained using linear SWT differ more from QMC
estimates in Fig. 5 for � farther away from unity. See that the
unphysical behavior in mx for h ∼ hc also gets pronounced
mostly away from � = 1 [compare results in Figs. 3(a) and
3(d) with those of Figs. 3(b) and 3(c)].

A linear SWT (i.e., SWT(1)
a and SWT(1)

b ), thus, cannot
predict an accurate phase boundary, as compared to the
QMC calculations. However, we notice that a second-order
correction to linear SWT (see Appendix D) improves the result
and also give phase boundaries close to the QMC predictions
[see SWT(2) results in Fig. 5(a)]. A perturbation analysis (see
Appendix F) at the crossover point between full polarization
and the one with all but one spin flipped also describes the
transitions better and gives phase boundaries close to that
obtained by QMC calculations.

A. Quasi-1D models

Following our calculations, magnon modes can also be
obtained for the quasi-1D XXZ model. For f being the fraction
of the spin-exchange interaction strength along the y direction,
as compared to that along x, the magnon dispersion �k is
given as

� < 1 : �2
k = ((1 + f ) ± γ ′

k(cos 2θr + �))2

− (γ ′
k(cos 2θr − �))2,

� > 1 : �2
k = (�(1 + f ) ± γ ′

k cos2 θr (1 + �))2

− (γ ′
k(2 − cos2θr (1 + �)))2, (4)

where γ ′
k = [cos(kx) + f cos(ky)]/2. This is a good estimate

for elementary excitations as long as x is not very small,
because deconfined spinons appear, otherwise affecting the
excitation modes [29].

IV. QUANTUM MONTE CARLO

The typical way of dealing with transverse fields within
the stochastic series expansion (SSE) formalism, or QMC
calculations more generically, has been to treat them as
adding individual raising and lowering operators to the XXZ
Hamiltonian. This method has been successful in describing
ferromagnetic systems, and details of this typical implementa-
tion of transverse fields can be found in Refs. [30,31]. However,
this approach is not suitable for antiferromagnetic models, as
the off-diagonal nature of the transverse field complicates the
sublattice rotation necessary to transform the Hamiltonian into
a sign-problem-free form.

In this work, we take an alternative approach by choosing
the direction of the applied magnetic field as the projection
axis for spin quantum number so that the magnetic field acts
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FIG. 5. Phase diagram of the S = 1/2 XXZ model in
(a) transverse (with �h = hx̂) and (b) longitudinal (with �h = hẑ) mag-
netic fields. Within (a), phase boundaries between the canted Ising
states (CAFM-z and CAFM-y) and the nearly saturated paramagnetic
(PM) phase are shown for quantum Monte Carlo (QMC), first-order
perturbation theory (PT), first-order spin wave theory (SWT(1)), and
second-order spin wave theory (SWT(2)). Solid black lines represent
exact boundaries by QMC. Dashed lines represent analytic results
from PT (red) and SWT(1) (magenta) while numerical data points
from QMC (black) and SWT(2) (blue) are shown as well. QMC data
points in (a) and (b) are determined by finite-size crossings of ρsL

and energy level crossings, respectively.

upon the spins via diagonal operators (see Appendix E). The
Hamiltonian for the TF-XXZ model is given by

H = J⊥
∑
〈ij〉

Sx
i Sx

j + S
y

i S
y

j + �Sz
i S

z
j − h

∑
i

Sx
i . (5)

Choosing the x axis as our spin quantization axis, we rewrite
the above Hamiltonian in terms of the ladder operators S± =
Sy ± iSz to find

H = J⊥
∑
〈ij〉

Sx
i Sx

j + 1 − �

4
(S+

i S+
j + S−

i S−
j )

+1 + �

4
(S+

i S−
j + S−

i S+
j ) − h

∑
i

Sx
i . (6)

This Hamiltonian can be shown to be free of the QMC “sign
problem” for bipartite lattices by choosing an appropriate
(sub)lattice rotation, or by keeping track of the overall sign
of the vertex weights in the operator string (for more details,
see Appendix E).

In order to accommodate planar anisotropy, additional
vertices need to be included compared to the standard ones
required for axially anisotropic Hamiltonians. This was noted
by Roscilde et al. in their earlier study of the TF-XXZ
model [16] and has also been discussed in relation to the
quantum compass model on a square lattice by Wenzel et al.
[32,33]. Here, we comment that while the added terms S+

i S+
j

and S−
i S−

j break the U(1) symmetry of the zero-field XXZ
model, they preserve a Z2 symmetry corresponding to the
total magnetization modulo 2. This turns out to be sufficient to
guarantee that link discontinuities in the directed loop update
can only occur in pairs, and therefore we may use the standard
directed loop equations (though they now act on 4 × 4 matrices
of vertex weights; we use “solution B” of Syljuåsen [31]).

Using the QMC scheme described above, we have obtained
the magnetic phase diagram as a function of spin-exchange
anisotropy and applied magnetic field (Fig. 5). For a field along
the longitudinal direction, hz, the ground-state phase diagram
is relatively simple and well known. At the isotropic point
(� = 1), in the absence of any external field the system is in a
gapless Néel phase with a spontaneously chosen quantization
axis. When a field is turned on, the AFM ordering is confined to
the x-y plane, and a nonzero uniform magnetization is induced
parallel to the applied field. We refer to this canted AFM
phase as CAFM-xy. The canting increases monotonically
with increasing field and the system becomes fully polarized
at a saturation field, hs = ZS(J⊥ + Jz). Interestingly, the
expression for the saturation field is an exact result. Away
from the Heisenberg point, for XY-like anisotropy (� < 1),
the ground state at zero field has long-range antiferromagnetic
order with spontaneously broken symmetry in the x-y plane
(AFM-xy) and gapless excitations. The field-induced behavior
is qualitatively similar to that in the Heisenberg limit: the
ground state acquires a canting of the spins parallel to
the field (CAFM-xy), which increases monotonically up to
saturation. For Ising-like anisotropy (� > 1), the ground state
is characterized by longitudinal antiferromagnetic order with
a finite gap to lowest spin excitations. With increasing field,
the system remains in the AFM-z phase up to a critical point,
at which point there is a transition to the CAFM-xy phase
accompanied by the closing of the spin gap. The critical field of
this first-order phase transition can be determined by an energy
level crossing in the QMC data. Upon further increasing the
field, the canting increases until it reaches saturation.

The situation is more complex for transverse field. As
shown in Fig. 5, under a small transverse field the XXZ model
displays two phases: the canted AFM-y phase (CAFM-y)
and the canted AFM-z phase (CAFM-z). The CAFM-y and
CAFM-z phases possess uniform magnetization along the x

axis simultaneously with antiferromagnetic order along the y

and z axes, respectively. The canting along the respective axes
increases monotonically, but the system reaches saturation
only at an infinite field strength. Instead, there is a critical field
above which long-range order is lost and the system enters
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FIG. 6. Powder averages for XY-like anisotropies. Transverse
field data in red, longitudinal field data in blue, and powder average
in black.

a partially polarized state. Up to first order in perturbation
theory (see Appendix F) the critical field is estimated as
hc = ZS(3J⊥ + Jz)/2. The phase transition at this critical
field is continuous and belongs to the Ising universality class in
2 + 1 dimensions [34]. This field can be accurately determined
with QMC data by using finite-size scaling of the structure
factor of the staggered magnetization along the y or z axis. It
can be pointed out here that the mean-field SWT overestimates
the critical field and thus it is, in general, higher than the values
obtained using QMC data.

The powder average for magnetization is given by

3mp = 2m⊥ + m||, (7)

where m⊥ and m|| are magnetizations for external magnetic
field perpendicular and parallel to the easy direction (i.e.,
z), respectively. So m|| = mz for longitudinal fields along
the z direction and m⊥ = mx for transverse fields along the
x direction. Within the QMC approach, these are calcu-
lated as mx(z) = 1

N

∑
i Si,x(z). Equation (7) can be obtained

by integrating the well-known powder average formula for
susceptibility [35]. In Figs. 6 and 7 we show the powder
averaged magnetization (mp) as a function of applied magnetic
field for XY- and Ising-like anisotropy, respectively. Notice
that the variation of mp with field develops a kink (or jump)
before the saturated field value for easy-planar (easy-axis)
anisotropy when � is away from unity. This is also realized
in magnetization measurements from powder samples with
easy-planar anisotropy [22]. Furthermore, we find that a
temperature variation of the powdered magnetization profile
shows a gradual thermal smoothening of such kink features
(see Fig. 8), in tune with the observations from polycrystalline
materials [22]. The inset in Fig. 8 captures the behavior of the
susceptibility χ = dmp/dh where two peaks can be witnessed
at low temperatures. These peaks are due to critical points
where antiferromagnetic order ceases: the first in response
to the longitudinal component of the field and the second in
response to the transverse component of field. For easy-planar

0 1 2
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h / Jz
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FIG. 7. Powder averages for Ising-like anisotropies. Transverse
field data in red, longitudinal field data in blue, and powder average
in black.

anisotropy, peaks of comparable height are obtained as also
observed experimentally and reported in Ref. [22]. For easy-
axis anisotropy, on the other hand, the first peak is a sharp one
due to the sudden increase in magnetization occurring at the
spin-flop transition for the longitudinal component of the field.
All these observations indicate that an analytic calculation
followed by numerical computations of thermalized states in
the presence of longitudinal and transverse fields contributes
significantly in understanding the magnetic response from
powder samples.

V. DISCUSSION

We have studied the ground-state phases and low-lying
excitations of the two-dimensional XXZ model—with both
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FIG. 8. Powder averages mp vs field h for (a) easy-planar � =
0.4 and (b) easy-axis �−1 = 0.6 cases at different temperatures. Here
β = 1/kBT values are in units of (a) J⊥ or (b) J||. The inset shows
the corresponding susceptibilities.
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Ising-like and XY-like exchange anisotropies—in the presence
of a transverse magnetic field. The transverse field causes
a tilting of the sublattice magnetization, producing canted
magnetic orders in the system. For a small field, the overall
magnetization grows slowly as the field competes with the
spin anisotropy. Both the longitudinal and transverse com-
ponents of the magnetization are probed, as is the low-lying
excitation spectrum. The evolution of the magnon excitation
with increasing field is examined in detail using spin-wave
theory, with particular emphasis on the nature of the excitation
spectrum at the entanglement free point. For this critical value
of the field, quantum fluctuations are suppressed, resulting in
an unentangled ground state at a finite field value. Beyond
this point, however, fluctuation shoots up fast to become a
maximum at the transition point hc. The spin-wave results are
complemented by and benchmarked against large-scale QMC
simulations, yielding a deeper understanding of the magnetic
properties across a wide range of Hamiltonian parameters.
We find that in a longitudinal field, the saturation field can
be calculated exactly to be hs = ZS(J⊥ + Jz). In a transverse
field, on the contrary, the expression is no longer exact, in part
because the saturation field is replaced by a critical field. Up

to first order in perturbation theory the critical field is given by
hc = ZS(3J⊥ + Jz)/2. We also provide an estimate of magnon
excitation modes in quasi-1D antiferromagnets. Finally, we
use our QMC results to calculate the weighted average of the
longitudinal and transverse components of the magnetization
as an estimate of powder averaged neutron-scattering data
in polycrystalline samples. This will be useful in analyzing
experimental results in quantum magnets where large single
crystals are not available.
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APPENDIX A: DETAILS OF SWT(1)
a

When we write the Hamiltonian for � < 1 in terms of the
sublattice rotations, we obtain

H =
∑
〈ij〉

Hij =
∑
〈ij 〉

[
�Sz

i S
z
j + cos(2θ )

(
Sx

i Sx
j + S

y

i S
y

j

) + sin(2θ )
(
Sx

i S
y

j − S
y

i Sx
j

) − h

Z

((
Sx

i + Sx
j

)
cos θ − (

S
y

i − S
y

j

)
sin θ

)]
.

(A1)

Here the Hamiltonian is written in units of Jxy . With x being the quantization axis and S±
i = S

y

i ± iSz
i the raising and lowering

operators, we can rewrite the Hamiltonian as

H =
∑
〈ij 〉

[
cos(2θ )Sx

i Sx
j − h

Z

(
Sx

i + Sx
j

)
cos θ + cos 2θ

4
(S+

i + S−
i )(S+

j + S−
j ) − �

4
(S+

i − S−
i )(S+

j − S−
j )

+ sin 2θ

(
(S − ni)

S+
j + S−

j

2
− (S − nj )

S+
i + S−

i

2

)
+ h

Z

(
S+

i + S−
i

2
− S+

j + S−
j

2

)
sin θ

]
. (A2)

Now applying the Holstein-Primakoff transformation for SWT in a ferromagnet, we get Sx
i = S − a

†
i ai = S − ni (Sx

j = S −
b
†
j bj = S − nj ) and S+

i = √
2Sai (S+

j = √
2Sbj ), where i (j ) denotes the ↑ (↓) sublattice along x, and ai’s (bj ’s) are the bosonic

operators in the ↑ (↓) sublattice. Hence we obtain

H =
∑
〈ij 〉

[
cos(2θ )(S − ni)(S − nj ) − h

Z
(2S − ni − nj ) cos θ + cos 2θ − �

4
(a†

i b
†
j + H.c.) + cos 2θ + �

4
(a†

i bj + H.c.)

+2h sin θ/Z − sin 2θ

4
(a†

i − b
†
j + H.c.)

]

= E0(θ ) +
∑
〈ij 〉

[
− cos(2θ )S(ni + nj ) + h

Z
(ni + nj ) cos θ + cos 2θ − �

4
(a†

i b
†
j + H.c.) + cos 2θ + �

4
(a†

i bj + H.c.)

+2h sin θ/Z − sin 2θ

4
(a†

i − b
†
j + H.c.)

]
. (A3)

By minimizing E0(θ ), we obtain the reference angle θr as cos θr = h/2ZS. Thus we fix the reference state for spin-wave
expansion. A consecutive Fourier transformation, thereafter, leads to

H = E0(θr ) +
∑

k

[
Z

2
(a†

kak + b
†
kbk) + Zγk

(
cos 2θr + �

4
(a†

kbk + H.c.) + cos 2θr − �

4
(a†

kb
†
−k + H.c.)

)]
. (A4)
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Finally a Bogoliubov transformation brings in the magnon modes to be given by �k =
√

(Z
2 ± Zγk(cos 2θr+�)

4 )2 − (Zγk(cos 2θr−�)
4 )2.

Notice that for cos(2θr ) = �, the Hamiltonian (A4) becomes diagonal, making the reference state there the actual factorized

ground state. So at the factorization point, cos θf =
√

1+�
2 and hf = 2ZS cos θf .

Now for � > 1, we have

H =
∑
〈ij 〉

[
Sx

i Sx
j (cos2 θ − � sin2 θ ) + (S+

i + S−
i )(S+

j + S−
j )

4
+ sin(2θ )(1 + �)

4i

(
Sx

i (S+
j − S−

j ) − (S+
i − S−

i )Sx
j

)

− (S+
i − S−

i )(S+
j − S−

j )

4
(− sin2 θ + � cos2 θ ) − h

Z

((
Sx

i + Sx
j

)
cos θ − (S+

i − S−
i ) − (S+

j − S−
j )

2i
sin θ

)]
, (A5)

within linear spin-wave theory, which becomes

H = E0(θ ) +
∑
〈ij〉

[
(� sin2 θ − cos2 θ )S(ni + nj ) + h

Z
(ni + nj ) cos θ + 1 + sin2 θ − � cos2 θ

4
(a†

i b
†
j + H.c.)

+ 1 − sin2 θ + � cos2 θ

4
(a†

i bj + H.c.) +
(

h sin θ

2Zi
− sin(2θ )(1 + �)

4i

)
(a†

i − b
†
j − H.c.)

]
.

Minimizing E0(θ ) gives cos θr = h/SZ(1 + �). And with this and by Fourier transformation we obtain

H = E0(θr ) + Z
∑

k

[
�

2
(a†

kak + b
†
kbk) + γk

(
cos2 θr (1 + �)

4
(a†

kbk + H.c.) + 2 − cos2 θr (1 + �)

4
(a†

kb
†
−k + H.c.)

)]
, (A6)

with cos θr = h/SZ(1 + �). The factorizing

point is denoted by cos θf =
√

2
1+�

and hf =
ZS(1 + �) cos θf . The magnon modes are given by

�k =
√

(�Z
2 ± Zγk cos2 θr (1+�)

4 )2 − (Zγk(2−cos2 θr (1+�))
4 )2.

APPENDIX B: OBTAINING MAGNON MODES FROM A
4 × 4 SPIN-WAVE HAMILTONIAN

Let us now construct the magnon modes from the k-space
Hamiltonian,

H = E0 +
∑

k

[Ak(a†
kak + b

†
kbk)

+ (Bka
†
kbk + Cka

†
kb

†
−k + H.c.)]. (B1)

We can write this as H = E0 + ∑
k〈φk|Hk|φk〉, where |φk〉 =

(ak,b
†
−k,bk,a

†
−k)T and

Hk =

⎛
⎜⎝

Ak Ck Bk 0
Ck Ak 0 Bk

Bk 0 Ak Ck

0 Bk Ck Ak

⎞
⎟⎠.

From there we can obtain the diagonalized version as outlined
in Refs. [26,27]. A Bogoliubov transformation brings in the
states |ψk〉 = U |φk〉, where |ψk〉 = (αk,β

†
−k,βk,α

†
−k)T and U

is a coefficient matrix so that U †HkU becomes a diagonal
matrix with eigenvalues λk’s. This as well as the bosonization
of the new variables αk and βk requires Det[Mk] = 0 for a
certain matrix Mk , given as

Mk =

⎛
⎜⎝

Ak − λk Ck Bk 0
Ck Ak + λk 0 Bk

Bk 0 Ak − λk Ck

0 Bk Ck Ak + λk

⎞
⎟⎠.

Hence we get λk(±) = [(Ak ± Bk)2 − C2
k ]0.5 and the Hamilto-

nian becomes

H = E′
0 +

∑
k

[λk(+)α
†
kαk + λk(−)β

†
kβk]. (B2)

Solving for the coefficient matrix U (see Ref. [27]), we can also
obtain the spin deviation given as ε = 1

N

∑
k(〈a†

kak〉 + 〈b†kbk〉),
where 〈· · · 〉 denotes the ground-state average.

APPENDIX C: DETAILS OF SWT(1)
b

On the other hand, if we want to do the spin-wave analysis
for large h values we rather consider the ferromagnetic spin
orientations along the field direction x to be the quantization
axis and take that ferromagnetic state (with no sublattice
division) to be the spin reference state. A π/2 rotation about
the y axis moves the z axis to the field direction and that
becomes the z axis in the transformed coordinates. Within such
definition, the transverse field XXZ Hamiltonian becomes

H =
∑
〈ij〉

[
Sz

i S
z
j + � − 1

4
(S+

i S+
j + H.c.)

+1 + �

4
(S+

i S−
j + H.c.)

]
− h

∑
i

Sz
i . (C1)

Using linear spin-wave theory, this becomes

H = E0 + (h − SZ)
∑

i

ni +
∑
〈ij〉

(
1 + �

4
a
†
i aj

+� − 1

4
a
†
i a

†
j + H.c.

)
. (C2)
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Then we do the Fourier transformation to get

H = E0 + (h − SZ)
∑

k

nk +
∑

k

[
1 + �

2
γkSZa

†
kak

+� − 1

2
γkSZ(aka−k + H.c.)

]
. (C3)

Finally a Bogoliubov transformation gives

H = E′
0 +

∑
k

�kã
†
kãk, (C4)

where �k =
√

(h − SZ + 1+�
2 γkSZ)2 − (�−1

2 γkSZ)2. So this

gives the critical h to be h′
c = SZ + 1+�

2 SZ + |�−1|
2 SZ.

APPENDIX D: SECOND-ORDER SPIN-WAVE THEORY
AT LARGE FIELDS

In order to do a second-order correction to the linear SWT(1)
b

at high fields, we see that the higher-order correction to spin-
wave expansion, for a ferromagnetic reference state, gives
us a modified S+

i = √
2S(ai − niai

2 ). This alters the off-site
interaction terms as

S+
i S−

j = aia
†
j

(
1 − nj

2

)
− niaia

†
j

2
,

S+
i S+

j = aiaj

(
1 − nj

2

)
− niaiaj

2
, (D1)

up to the quartic order of the bosonic operators. A mean-field
treatment for a product of variables A and B can be given as
AB = AB + AB, where A and B are the respective averages.
Applying that to the quartic correction terms, we obtain the
modified magnon mode expressions of SWT(1)

b to be

�k =
√

A2
1k − A2

2k,

where A1k = h − SZ

[
1 − 1 + �

2
{γk(1 − ε) − δ}

+ (� − 1)η

]
,

A2k = � − 1

2
γkSZ(1 − ε). (D2)

The critical field becomes

h(2)
c = SZ

[
1 + 1 + �

2
(1 − ε − δ) − (� − 1)η

+|� − 1|
2

(1 − ε)

]
. (D3)

Here 〈ni〉 = 〈nj 〉 = ε is the spin deviation. The other fluctua-

tion measures δ = 〈a†
i aj 〉 = ∑

k γka
†
kak/N and η = 〈aiaj 〉 =∑

k γkaka−k/N (see Ref. [36]). So we need to calculate both
�k and hc numerically in a self-consistent manner. We obtain
the critical fields at Ising and XY limits to be h(2)

c |Ising = 1.75
and h(2)

c |XY = 3.75. See that for the isotropic point � = 1,
h′

c = 2Zs = 4 is the factorization point where ε = 0. Other

FIG. 9. The allowed diagonal (v1 − v4) and off-diagonal (v5 and
v6) vertices for the TF-XXZ model. The first six vertices also appear
in the longitudinal field XXZ model, while the last two vertices appear
whenever � �= 1.

fluctuations δ and η are also zero at this point, which have
been checked numerically.

APPENDIX E: DETAILS OF QUANTUM MONTE
CARLO METHOD

In Fig. 9 we show the allowed vertices for the TF-
XXZ model. This includes the addition of two number-
nonconserving vertices (v7 and v8) to the usual six vertices
(v1 − v6) of the XXZ model. On a bipartite lattice, it can be
shown that the vertices v5 and v6 must occur an even number
of times (nv5 + nv6 is even), which is sufficient to ensure that
the overall contribution to the weight function in the diagonal
sector is positive definite. Similarly, the vertices v7 and v8 must
also occur an even number of times (nv7 + nv8 is even), even
on nonbipartite lattices.

Measurements in the off-diagonal sector are also possible,
but the total weight is no longer guaranteed to be positive
definite. However, since the partition function is still defined
in the diagonal sector, the total weight in the off-diagonal
sector can be obtained by working with the absolute weights
while keeping track of the overall sign of the vertex weights.
Observables such as the Green’s function are then calculated as
the signed average over configurations. In short, measurements
in the off-diagonal sector are easily obtained by using the
absolute value of all off-diagonal vertex weights, while
separately keeping track of the overall sign of the operator
string as it evolves during the loop update. We find this method
to be much simpler in practice than the standard alternative:
first define a formal (sub)lattice transformation such that all
off-diagonal terms become negative definite, then determine
the momentum shift required to map between the original and
transformed Hamiltonian observables. For the XXZ model in
a longitudinal field, this becomes a sublattice rotation of π

around the z axis, with a (π,π ) momentum shift. In the present
case, an additional lattice rotation by π/2 is required whenever
� > 1, which becomes tedious to keep track of compared to
the relative simplicity of our explicit sign tracking described
above. Another benefit to our method of sign tracking is that
if the overall sign is ever negative at the close of the loop
update, then we know that the model has a QMC sign problem.
Thus, we have explicitly checked our assumption that no sign
problem exists for the TF-XXZ model as defined in this paper.
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APPENDIX F: DETAILS OF PERTURBATION THEORY

Let us begin by writing the unperturbed Hamiltonian as

H0 = J⊥
∑
〈ij〉

Sx
i Sx

j − h
∑

i

Sx
i , (F1)

so that the perturbed Hamiltonian becomes

H′ = J⊥
∑
〈ij〉

1 − �

4
(S+

i S+
j + S−

i S−
j )

+1 + �

4
(S+

i S−
j + S−

i S+
j ). (F2)

Next, we consider the zero-order (unperturbed) contribution to
the energy of a state with all and all but one of its spins aligned
with the magnetic field and label these energies E0(N ↑ ,0 ↓)

and E0(N − 1 ↑ ,1 ↓), respectively. It is easy to show that

E0(N ↑ ,0 ↓) = NZ

2
J⊥S2 − NBS,

E0(N − 1 ↑ ,1 ↓) =
(

NZ

2
− 2Z

)
J⊥S2 − (N − 2)BS.

(F3)

The first-order corrections can be obtained as 〈ψ0|H‘|ψ0〉 and
are given by

E1(N ↑ ,0 ↓) = 0

E1(N − 1 ↑ ,1 ↓) = −Z
J⊥ + Jz

4
. (F4)

Finally, by equating these energies up to first order (i.e., E0 +
E1) we find an estimate of the critical field, where the fully
saturated unperturbed state is favorable to the state with a
flipped spin: hc = Z(3J⊥ + Jz)/4.
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