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Sensitivity of entanglement Hamiltonian spectrum to boundary conditions is considered as a phase detection
parameter for delocalized-localized phase transition. By employing one-dimensional models that undergo
delocalized-localized phase transition, we study the shift in the entanglement energies and the shift in the
entanglement entropy when we change boundary conditions from periodic to antiperiodic. Specifically, we show
that both these quantities show a change of several orders of magnitude at the transition point in the models
considered. Therefore, this shift can be used to indicate the phase-transition points in the models. We also show
that both these quantities can be used to determine mobility edges separating localized and delocalized states.
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I. INTRODUCTION

Entanglement as a purely quantum phenomenon has
been intensively studied for decades [1]. It is thought to
underlie modern technologies such as quantum computing and
cryptography, to name a few [2–5]. Recently, entanglement
has been used intensively to study condensed-matter systems
as well. Entanglement is a measure of how much quantum
correlation exists in multipartite quantum systems. In
condensed matter, systems that exhibit continuous phase
transition are marked by a critical point, where the system
becomes highly correlated with power-law (long-range)
correlations. It is therefore not surprising that entanglement
can be used as a parameter to characterize phase transition
and critical points in quantum many-body systems [6–9],
although some debate exists [10,11].

There are several measures of entanglement [12] by which
various authors have characterized different phases and phase
transitions [13–16]; von Neumann entanglement entropy (EE),
as the most popular and standard measure of entanglement
in a pure state, has been frequently used. In a bipartite
approach, one can partition the system in various ways, as
in momentum space [17,18], a combination of momentum and
orbital partition [19], or various other choices [20]. In addition,
other authors have advocated a multipartite approach where
entanglement finds a more (extensive) thermodynamic inter-
pretation [21–25]. People also use spectrum of the reduced-
density matrix [26] to distinguish different phases. It is also
shown that eigenmodes of the entanglement Hamiltonian may
carry some useful physics [27–29].

Among the various phase transitions in condensed-matter
physics, Anderson phase transition between a localized and
an extended (delocalized) phase is of particular interest.
Various authors have also studied such a transition in the light
of entanglement. For example, in Ref. [30] the probability
distribution of the EE is used to characterize different phases in
a one-dimensional wire with attractive interaction. In Ref. [31],
it is shown that EE is nonanalytic at the delocalized-localized
phase-transition point. A finite-size scaling of the EE is done
in Ref. [32] to characterize the Anderson transition and to
obtain the critical exponents. The dependence of the EE
upon mean free path in a free fermion model and upon
the localization length in interacting model with Anderson

transition is studied in Refs. [33] and [34], respectively. More
recently, the role of the entanglement in interacting models and
its relation to thermalization has been emphasized [35–42].

In this paper, we intend to study localization-delocalization
phase transition by introducing another related quantity as
a phase detection parameter, namely the sensitivity of the
entanglement energies to boundary condition. Effect of the
(sub)system boundary condition on the entanglement prop-
erties has been studied before. Here we mention some of
these studies. In Ref. [43] the effect of the open bound-
ary condition—in contrast to periodic boundary condition
(PBC)—on the entanglement entropy is calculated. The effect
of an impurity located on the subsystem boundary is studied
for a Luttinger liquid in Ref. [44]. In Ref. [45], defects at the
boundary of the subsystem for a tight binding model are con-
sidered as impurities on the hopping elements and on-site ener-
gies, and their effects on the entanglement spectrum and central
charge. Our approach is different from above in a sense that we
consider the effect of boundary conditions in different phases,
and use this as a detection mechanism for the phase transition.

Regarding delocalized-localized transition, there are sev-
eral methods to distinguish different phases. The most widely
used method is the statistics of the level spacing [46],
wherein we only need the eigenenergies rather than the
eigenstates. In Ref. [47], Edwards and Thouless study the
sensitivity of the eigenenergies of a system’s Hamiltonian to
the boundary conditions. When boundary conditions change
from PBC to antiperiodic boundary condition (APBC), the
shift in the eigenenergies is used to distinguish localized
and delocalized phases. The basic idea is the following: If
the eigenmode is localized, it does not “see” the boundaries
and thus it is not affected by any change in the boundary
conditions and the corresponding eigenenergy does not alter.
On the other hand, when the eigenmode is extended, it is
affected by what happens at the boundary; the change in the
corresponding eigenenergy being comparable to the spacing
between eigenenergies. They used the amount of this shift as
a criterion for detecting the Anderson phase transition. This
shift in the eigenenergies is related to the transmission, and
subsequently to the conductance of the system [48–50].

On the other hand, there are similarities between the
eigenmodes of the Hamiltonian and the eigenmodes of the en-
tanglement Hamiltonian, especially between the eigen-modes
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of the Hamiltonian at the Fermi level |EF 〉, and the maximally
entangled mode |MEM〉 [51]. In Ref. [28] we demonstrated
this similarity by employing two one-dimensional free fermion
models that exhibit localized-delocalized (LD) phase transi-
tion. We found that both |EF 〉 and |MEM〉 are extended in
the delocalized phase and both are localized in the localized
phase. Also, their overlap is substantial in the delocalized
phase or at least at the phase-transition point. In short,
eigenmodes of the entanglement Hamiltonian and especially
the |MEM〉 carry on some physics of the |EF 〉. In this paper,
we further address this similarity by showing that one can
extract localization properties of the system by studying entan-
glement Hamiltonian instead of Hamiltonian of the system. We
conjecture that if the entanglement Hamiltonian eigenmode is
extended, the corresponding entanglement energy is affected
by the boundary conditions and, if it is localized, then the
corresponding entanglement energy does not change.

Accordingly, in specific one-dimensional free fermion
models that undergo LD phase transition, we change the
boundary condition from PBC to APBC and see how the en-
tanglement energies, and thus entanglement entropy, changes.
We show numerically that the shift in the entanglement
Hamiltonian spectrum is considerable in the delocalized phase
but it is negligible in the localized phase. Thus, it can be used as
a characterization of LD phase transition. Furthermore, we also
show that the same ideas can be used to identify mobility edges.
We would like to mention that the one-dimensional models we
consider here have theoretical relevance, but have also recently
been found to have experimental relevance as well [52,53].

The remainder of the paper is as follows: In Sec. II,
we explain the method for calculating the entanglement
spectrum and entanglement entropy. We also explain the
one-dimensional models that are used in this paper to verify our
conjecture. In Sec. III, we present the main result of this paper:
We study the effect of the change in the boundary conditions
on entanglement Hamiltonian spectrum and entanglement
entropy. We also show that the shift, only in the smallest
magnitude entanglement energy, is enough to characterize the
phase transition. As an extra check, for a one-dimensional
model with mobility edges, we show that the shift locates the
mobility edges for the whole spectrum. We close in Sec. IV
with a summary and concluding remarks.

II. METHODS AND MODELS

If a system is in a pure state |�〉, density matrix will be
ρ = |�〉〈�|. We divide the system into two subsystems, A

and B, and for each subsystem the reduced density matrix is
obtained by tracing over degrees of freedom of the other sub-
system: ρA/B = trB/A(ρ). Block von Neumann entanglement
entropy between the two subsystems is EE = −tr(ρA ln ρA) =
−tr(ρB ln ρB). For a single Slater-determinant ground state, the
reduced density matrix of each subsystem can be written as

ρA/B = 1

Z
e−HA/B

, (1)

where HA/B is the free-fermion entanglement Hamiltonians
(Z is determined by trρA/B = 1);

HA/B =
∑

ij

h
A/B

ij c
†
i cj , (2)

where c
†
i (ci) is the fermionic creation (annihilation) operator

for site i.
To calculate entanglement energies ε’s, i.e., the eigenvalues

of the hA/B matrix, we use the method of Ref. [54]: We divide
the system in two parts, subsystem A from site 1 to NA and the
rest as subsystem B. We diagonalize the correlation matrix of
a subsystem, say A,

Ci,j = 〈c†i cj 〉, (3)

(where i and j go from 1 to NA) and find its eigenvalues
{ζ }. Eigenvalues of the correlation matrix and those of the
entanglement Hamiltonian are related as

ζi = 1

1 + eεi
, (4)

and EE will be given as

EE = −
NA∑

i=1

[ζi ln(ζi) + (1 − ζi) ln(1 − ζi)]. (5)

Next, we introduce lattice models we work with in this
paper. They are one-dimensional, free-fermion, tight-binding
models with constant nearest neighbor coupling t and on-site
energies φn:

H = t

N∑

n=1

(c†ncn+1 + c
†
n+1cn) +

N∑

n=1

φnc
†
ncn. (6)

The first model is random dimer (RD) model [55] where
φn’s are randomly chosen from one of two independent on-site
energies, φa or φb. One of the site energies (we choose it to
be φb) is assigned to neighboring pairs of lattice sites. As
shown by Dunalp et al. [55], when −2t � φa − φb � 2t , states
at the resonant energy, Eres = φb, are delocalized. Here we
set t = −1 and φa = 0, thus when −2 � φb � 2 system is
delocalized at the resonant energy EF = Eres = φb, and is
localized otherwise.

Another model with the Hamiltonian of the form Eq. (6)
has on-site energies:

φn = 2λ
cos (2πnb)

1 − α cos (2πnb)
, (7)

where b = 1+√
5

2 is the golden ratio, so that it has incommen-
surate period with respect to lattice period (we set the lattice
constant to be 1). This model is neither completely periodic
(with extended eigenmodes) nor completely random (with
localized eigenmodes) and, as illustrated in Ref. [56], it has
mobility edges separating localized and delocalized states at

Emobility edge = 2 sgn(λ)(|t | − |λ|)
α

, (8)

where in our calculation we set t = −1.
A special case of Eq. (7) with α = 0 is the Aubry-Andre

(AA) model [57], which has a phase transition at λ = 1. All
eigenstates for λ < 1 are delocalized whereas they become all
localized for λ > 1. Thus the AA model does not have mobility
edges.
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FIG. 1. Left panel: disorder average of magnitude of shift in the
Hamiltonian eigenenergy at the Fermi level for RD model when we
change boundary condition from PBC to APBC as a function of φb.
System size N = 1000, disorder average is over 1000 samples. Right
panel: magnitude of shift in the Hamiltonian eigenenergy at the Fermi
level for AA model as a function of λ. System size N = 2000.

III. SENSITIVITY OF ENTANGLEMENT PROPERTIES TO
BOUNDARY CONDITION

As mentioned above, Edward and Thouless [47] used the
sensitivity of the eigenenergies of the system’s Hamiltonian to
boundary conditions to distinguish localized from delocalized
phases. They used the geometrical average of shifts in
the whole spectrum. For comparison with our method, we
calculate the magnitude of shift of the eigenenergy at the
Fermi level |δE| when we change the boundary conditions.
In our one-dimensional models we apply PBC by imposing
ψN+1 = +ψ1 and APBC by ψN+1 = −ψ1. The results are
plotted in Fig. 1. For both RD and AA models |δE| in the
delocalized phase is nonzero, it gradually becomes smaller as
we approach the phase-transition point, and in the localized
phase it becomes zero. As seen in Fig. 1, |δE| behaves much
as an order parameter in standard phase transition.

A. Shift in the entanglement Hamiltonian spectrum and
entanglement entropy

To study the sensitivity of the entanglement to the boundary
conditions, let us first examine the spectrum of the entan-
glement Hamiltonian {ε} of one subsystem (here we choose
subsystem A) when we change boundary condition from PBC
to APBC. In Fig. 2, we plot spectrum of the entanglement
Hamiltonian in RD model for both cases of PBC and APBC
at two different φb’s. We choose a φb = 0.5 in the delocalized
phase and a φb = 3.5 in the localized phase. Only one sample
is considered at each φb. There is a shift between two spectra in

FIG. 2. Eigenvalues of entanglement Hamiltonian of RD model
for φb = 0.5 (in delocalized phase) and for φb = 3.5 (in localized
phase). Spectrum with PBC is plotted in blue, and with APBC in red.
Inset plots are zoomed plots to show a few eigenvalues close to zero.
At each φb only one sample is considered without taking disorder
average. We choose N = 60,NA = 30.

FIG. 3. Left panel: disorder average of magnitude of shift in
the entanglement entropy < |δEE| > when we change boundary
condition from PBC to APBC for RD model. In the delocalized
phase EE ∼ 2.5 and in the localized phase EE ∼ 0.5. N = 1000.
Right panel: magnitude of shift in EE |δ EE| for AA model. In the
delocalized phase EE ∼ 2.2 and in the localized phase EE ∼ 0.4.
N = 2000.

the delocalized phase, whereas they are the same in the local-
ized phase—not for the whole spectrum but at least for those
ε’s close to zero, which are more important since they have
more contributions to the entanglement entropy EE [Eq. (5)].

To see the shift in the spectrum more quantitatively, we
calculate the magnitude of shift in the entanglement entropy
|δEE| for both RD and AA models when we change boundary
condition (Fig. 3). Since, in the delocalized phase, the spectrum
is modified, the change in the entanglement entropy is nonzero,
although very small compared to the EE value at each point.
But, in the localized phase, the change is much smaller and
very close to zero.

B. Shift in the smallest magnitude entanglement energy

Now, we focus on the smallest magnitude entanglement
energy, the ε which is closest to zero and has the most
contribution to the EE [Eq. (5)]. We change the boundary
condition from PBC to APBC and measure the magnitude of
shift in the lowest magnitude entanglement energy |δε| (and
the corresponding |δζ |). For the RD model we plot this shift as
a function of φb in Fig. 4. Whereas this shift in the delocalized
phase (i.e., when φb < 2) is large, it is zero in the localized

FIG. 4. Left panel: disorder average of magnitude of shift in the
smallest magnitude entanglement energy < |δε| > when we change
PBC to APBC for RD model as function of φb. States are delocalized
when φb < 2 and are localized when φb > 2. System size N = 1000.
Disorder average is over 1000 samples. Standard deviation of |δε|
is plotted in lower inset plot. Upper inset plot is the corresponding
change in ζ . Right panel: magnitude of shift in the smallest magnitude
entanglement energy |δε| when we change PBC to APBC for AA
model as function of λ. States are delocalized when λ < 1 and are
localized when λ > 1. Inset plot is the corresponding change in ζ .
N = 2000.
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FIG. 5. Left panel: spectrum of the Hamiltonian of Eq. (6) with the on-site energies of Eq. (7). The mobility edges which are determined
by Eq. (8) are plotted in red. Middle panel: magnitude of shift in the entanglement entropy |δEE| when boundary condition changes from PBC
to APBC for the whole spectrum and for α between −1 and 1. Right panel: magnitude of shift in the smallest magnitude entanglement energy
|δε|. N = 500. Colorbars are plotted in log scale.

phase (it is on the order of 10−13 for the chosen system size);
also for the AA model |δε| (and corresponding |δζ |) plotted in
Fig. 4. The same behavior of |δε| is seen in this model as well.

For both models, we see the shift in the smallest
magnitude of the entanglement energy sharply determines
the phase-transition point. In the delocalized phase, |δε|
is nonzero and at the transition point to localized phase it
sharply goes to zero. Calculation of the |δε| to determine the
phase-transition point is numerically more economical than
calculation of the |δEE|—where we have to obtain the entire
spectrum—especiallysince there are numerical packages
(such as ARPACK) by which we can obtain the smallest
eigenvalue efficiently.

Next, we consider a model that has mobility edges (contrary
to RD and AA models we have considered up to now). Namely,
we consider Hamiltonian of Eq. (6) with the on-site energies of
Eq. (7). Mobility edges are determined by Eq. (8), and we set
t = −1. We calculate the shift in the entanglement energies to
see howwell this shift can locate the mobility edges. The results
are plotted in Fig. 5. We go though α from −1 to 1 and calculate
the eigenenergy spectrum at each point. For the allowed
eigenenergies we calculate the change in the entanglement
entropy |δEE|, and the change in the smallest magnitude en-
tanglement energy |δε|. The mobility edge between extended
and localized states can be located by |δ EE| and |δε| fairly
well. This provides additional evidence for our conjecture that
|δ EE| and/or |δε| can provide us with important information
about localization properties of a given system.

IV. CONCLUDING REMARKS

We examined the effect of the change in the boundary con-
ditions on the entanglement properties of the system. Namely,

we changed the boundary conditions from PBC to APBC
and studied the change in the spectrum of the entanglement
Hamiltonian and also in the entanglement entropy. By using
one-dimensional free fermion models which have LD phase
transition, we showed numerically that in the delocalized
phase the spectrum of the entanglement Hamiltonian and thus
entanglement entropy changes, but in the localized phase the
shift is negligible. We also studied the shift in one of the
eigenvalues of the entanglement Hamiltonian, the smallest
magnitude entanglement energy, and we showed that this
shift is enough to determine the phase-transition point: shift
|δε| is nonzero in the delocalized phase and sharply goes to
zero in localized phase. Thus we verified that the shift in the
entanglement Hamiltonian spectrum can be identified as a new
phase-detection parameter.

We studied the LD phase transition by examining the
ground-state entanglement Hamiltonian instead of original
Hamiltonian of the system. The next question would be:
Can we obtain the conductance properties of the system
by examining the entanglement Hamiltonian rather than
Hamiltonian of the system? In addition, δε as a phase-detection
parameter deserves more studies for models with randomness.
For example, it is interesting to study δε and its distribution
in two- and three-dimensional Anderson models with weak
localization and localization-delocalization phase transitions.
Clearly, such issues would be of interest, and we intend to
address these in the future.
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