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Peculiar supersolid phases induced by frustrated tunneling in the extended Bose-Hubbard model
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By using a state-of-the-art tensor network state method, we study the ground-state phase diagram of an extended
Bose-Hubbard model on the square lattice with frustrated next-nearest-neighbor tunneling. In the hard-core limit,
tunneling frustration stabilizes a peculiar half-supersolid phase with one sublattice being superfluid and the other
sublattice being Mott insulator away from half filling. In the soft-core case, the model shows very rich phase
diagrams above half filling, including three different types of supersolid phases depending on the interaction
parameters. The considered model provides a promising route to experimentally search for a novel stable
supersolid state induced by frustrated tunneling in the region below half filling with dipolar atoms or molecules.
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I. INTRODUCTION

The investigation of frustrated systems [1] has received
sustained attention in the past due to its intimate association
with different branches of condensed matter physics. The
competition in frustrated systems usually greatly enriches
the phase diagrams and leads to various exotic quantum
phases, such as quantum spin liquids [2,3], magnetic domain
patterns [4], and high-Tc superconductivity [5,6]. Recently, the
experimental success of mimicking various theoretical models
using ultracold atoms [7–10] provides a new platform to study
the physics of the frustrated systems in a highly controllable
manner. For instance, the frustrated Bose-Hubbard model can
emerge when rotating optical lattices in the tight-binding
limit, or with the help of synthetic gauge fields imposed by
lasers [11]. These frustrated systems simulated by the neutral
particles [12–23] offer great opportunities to explore new
quantum phases.

Experimental searching for the supersolid (SS) phases is a
longstanding challenge and has also received great attention
recently. SS phases are characterized by the simultaneous
appearance of crystalline and superfluid orders. Although its
existence in 4He was predicted a long time ago [24–26],
experimental observation of the SS remains elusive [27].
Ultracold atoms offer another promising way; it is widely
believed that SS can be stabilized in the extended Bose-
Hubbard (EBH) model, which can be experimentally realized
by loading dipolar bosons [28–31] into an optical lattice.
It has been shown that a stable SS phase can exist in the
geometrically frustrated triangular lattice [32–34]. However,
in the square lattice, the SS phase becomes fragile resulting
in the phase separation (PS) in the hard-core limit [35–41],
especially when the filling factor ρ < 1/2, where the SS
phase is missing or only takes a very narrow parameter range
irrespective of anisotropic hoppings and interactions [42–44].
How the tunneling frustration changes the SS physics remains
largely unexplored because the standard quantum Monte Carlo
method may suffer from the sign problem.
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In this work, we investigate an EBH model with frustrated
next-nearest-neighbor (NNN) tunneling on square lattices. We
calculate the ground states of the model via a state-of-the-art
tensor network state (TNS) method. We identify a peculiar
half-SS (HSS) phase that is stable in a large parameter
space, where superfluid (SF) and Mott insulator (MI) are
simultaneously supported within different sublattices away
from half filling due to the presence of NNN hopping and
nearest-neighbor (NN) repulsion V . Increasing the NNN
tunneling can enlarge the portion of the HSS phase in the phase
diagram, which appears even with very small filling factors.
This is very different from the nonfrustrated case, where stable
SS is always missing in this limit. In the soft-core case, the
model shows very rich phase diagrams for ρ > 1/2, including
three different types of SS states depending on the relative
strength of different interaction parameters.

II. MODEL AND METHODS

The Hamiltonian considered in the paper reads,

H = −t1
∑
〈i,j〉

(b†i bj + h.c.) − t2
∑
〈〈i,k〉〉

(b†i bk + H.c.)

+ U

2

∑
i

ni(ni − 1) + V
∑
〈i,j〉

ninj , (1)

where
∑

〈i,j〉 and
∑

〈〈i,j〉〉 denote the summation of the nearest-
neighbor (NN) and the next-nearest-neighbor (NNN) sites with
hopping amplitude t1 and t2, respectively, ni = b

†
i bi is the

number operator for boson. U is the on-site interaction energy,
V denotes the interaction between NN sites. Without loss of
generality, we assume t1 = 1. When t2 < 0, the model shows
frustration effects.

The nonfrustrated EBH model has been extensively studied
using both theoretical and numerical methods [35–37]. It
has also been shown that in triangular lattices [32–34], the
geometric frustration can stabilize the SS states. However, the
previously studied systems have no tunneling frustration, and
therefore can be reduced to nonfrustrated models [45]. Only a
few studies concentrate on the corresponding SS physics with
frustrated tunneling [21,45–47], since the standard quantum
Monte Carlo simulation suffers from the notorious sign
problem, which prevents a detailed numerical investigation.
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We investigate the EBH model via a tensor network state
(TNS) method [48–50], in which the many-particle wave
functions can be represented by the products of tensors.
The TNS wave functions are unbiased and are systematically
improvable by increasing bond dimensions D. The method is
free of the sign problem and therefore ideal for the frustrated
EBH model. In this work, we use a special TNS, known as
the string-bond state (SBS) [50]. More details of the method
can be found in Ref. [51] and in Appendix A. We simulate the
EBH model on a 10 × 10 square lattice with periodic boundary
condition. We use the virtual bond dimension for the tensors
up to D = 10, which converges the total energies with errors
less than 10−2 per site for the phase separation states, and 10−3

per site for other phases.

III. RESULTS

A. Numerical results in the hard-core limit

To verify our method, we first reproduce the phase diagram
for the case of t2 = 0, which has been extensively investigated
by QMC [35–37]. Our results are in good agreement with
the previous QMC results (see Appendix B). Particularly,
both QMC and our results show that in the hard-core limit,
doping ρ = 1/2 with additional particles or holes leads to
phase separation, which is a mixture of SF and checkerboard
crystal (CBC), instead of a SS state.

We then apply the TNS method to study the model with t2 <

0. Figure 1 shows a typical phase diagram of hard-core boson
with frustrated t2 = −0.3 in the ρ-V plane for ρ � 0.5. The
phase diagram has a mirror symmetry about ρ = 0.5, because
of the particle-hole symmetry. The most drastic change of
the phase diagram is that a nontrivial half-SS (HSS) phase

FIG. 1. (a) The ground-state phase diagram of the frustrated EBH
model in the hard-core limit with t2 = −0.3. Four phases have been
identified including a superfluid (SF) phase, a half-supersolid (HSS)
phase, phase separation (PS) consisting of SS and SF, and PS*
consisting of SF and HSS. (b) The schematic plot of the on-site 〈ni〉
for the HSS and PS* state. The empty circles represent 〈ni〉 = 0. The
± signs in the blue circles indicate the on-site boson phase arg[〈bi〉].

with the checkerboard pattern emerges at ρ ∈ (0.4,0.5) and
V > 3, compared to the phase separation regime in the t2 = 0
case. The presence of t2 provides another hopping channel
to lower the energy of the system for doped holes (particles)
within the occupied (unoccupied) sublattice. Since t2 hopping
only happens within one sublattice, the checkerboard pattern
is preserved. This is very different from the t2 = 0 case, where
doped holes form a planar domain wall due to NN hopping t1,
which destroys the uniform CBC background and results in
phase separation.

To illustrate the nontrivial properties of such a HSS phase,
we schematically show the on-site boson density 〈ni〉 =
〈b†i bi〉 of the HSS phase in Fig. 1(b), in which 〈ni〉 forms
two sublattices (the detailed numerical results are given in
Appendix B). Interestingly, in one of the sublattices both
〈ni〉 and 〈δni〉 are uniformly distributed, which corresponds
to a uniform SF phase, and the other sublattice is either
fully unoccupied (ρ < 1/2) or occupied (ρ � 1/2) with one
particle per site, which is precisely a MI. Since the two
interlaced sublattices result in a checkerboard-type density
distribution, the whole system possesses both crystalline and
SF orders, and can be viewed as some kind of SS phase.
However, the simultaneous existence of SF and MI phases in
different sublattices makes it very different from traditional
checkerboard SS in the lattice, in which both sublattices have
SF order but with different densities. Since SF order exists
only within one sublattice, we call this phase a HSS.

The HSS phases are further distinguished from usual SS
phases by their nontrivial phase patterns arg[〈bi〉], as shown
in Fig. 1(b). The HSS phase is composed of the equal
superposition of two strip orders with �k = (π,0) and (0,π ).
For each site i in the MI sublattice, the summation

∑
i〈bi〉

over all NN sites within the SF sublattice vanishes due to the
phase patterns shown in Fig. 1(b). There is no net particle
tunneling between the two sublattices even in the presence
of the nonvanishing NN hopping t1, and therefore, the MI
sublattice is stabilized even away from half filling.

The PS* phase in Fig. 1 consists of both the HSS phase
and the SF phase that are separated in the real space, as
schematically shown in Fig. 1(b). The phase boundaries
between the SF and HSS are determined by the real-space
distribution of 〈ni〉 and 〈δni〉 shown in Appendix B. In the
SF region, both 〈ni〉 and 〈δni〉 distribute almost uniformly, in
sharp contrast with the HSS region. The usual PS (CBC+SF)
appears only when V is small. In addition, there exists a
direct first-order transition from PS to HSS. This is somehow
different from the mean-field treatment, where the PS* is
always sandwiched between them as shown in Appendix C.
Within numerical precisions, the critical point (Vc = 10)
between PS and PS* is almost independent of the filling
factor ρ, which is consistent with the mean-field predictions
discussed in Appendix C.

To further characterize the properties of the different phases,
we calculate the static structure factor at �k = (π,π ) as

Sn(�k) = 1

M

∑
i,j

〈ninj 〉e−i�k·(�ri−�rj ), (2)

which can be used to identify the diagonal long-range order in
the system. Here M is the total number of lattice sites. The SF
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FIG. 2. Order parameters Sn(π,π ), Sa(0,0), and Sa(0,π ) as
functions of the filling factor ρ at V = 12 and t2 = −0.3 in the
hard-core limit. The system shows SF to PS* and PS* to HSS phase
transitions as ρ increase from 0–0.5.

orders are measured by the correlation function defined by

Sa(�k) = 1

M

∑
i,j

〈b†i bj 〉e−i�k·(�ri−�rj ). (3)

While generally the SF phase is characterize by the sharp peak
of Sa(�k) around �k = (0,0), SS phase is identified by the pres-
ence of both Sa[�k = (0,0)] and Sa[�k = (π,π )] accompanied
by a nonzero structure factor Sn[�k = (π,π )], which indicates a
crystal order. The HSS phase has equal Sa(�k) around �k = (π,0)
and (0,π ) along with the presence of the long-range density
wave order as explained previously, especially when ρ > 1/2,
the occupied MI sublattice induces a strong background signal
to all Sa(�k), which clearly discriminates such peculiar HSS
states from the usual checkerboard SS phase.

Figure 2 displays the calculated order parameters Sn(�k)
and Sa(�k) of the ground state as a function of ρ for fixed
V = 12 and t2 = −0.3. When the filling factor ρ is small,
the ground state is a SF characterized by nonzero Sa(0,0)
and vanishing Sn(π,π ). Increasing ρ across a critical value
(ρ ≈ 0.2), SF is unstable towards an intermediate PS* region
composed of HSS and SF. For ρ � 0.4, the SF component
disappears, and the system becomes a uniform HSS state with
nonzero Sn(π,π ) and Sa(π,0) [and Sa(0,π )]. Approaching half
filling, all the order parameters Sa(π,0) [and Sa(0,π )] vanish
except Sn(π,π ), which corresponds to the CBC phase.

To see if the HSS phase is stable in the thermodynamic
limit, we calculate the order parameters Sa(0,0), Sa(0,π ), and
Sn(π,π ) with t2 = −0.3, V = 12, on the L × L lattices, where
L = 6, 8, 10, 12, at ρ ≈ 0.46, and perform finite-size scaling.
The results are shown in Figs. 3(a), 3(b), and 3(c), respectively.
As L → ∞, we have Sa(0,0) = 0, whereas both Sa(0,π ) and
Sn(π,π ) are finite. These results suggest that the HSS phase is
indeed stable in the thermodynamic limit.

To show how the presence of frustration, t2, affects these
phases, we also plot the phase diagram in the t2-ρ plane for
fixed V = 16, as shown in Fig. 4. For small t2, PS appears
immediately as we dope the crystal at ρ = 1/2 with holes.
Increasing t2 makes it more energetically favorable for the
additional holes hopping within the occupied sublattice to form
the uniform HSS. Meanwhile the usual PS is replaced with PS*
when |t2| � 0.24. The calculation indicates that HSS should
dominate the phase diagram while the PS* region shrinks as we
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FIG. 3. The order parameters (a)Sa(0,0), (b) Sa(0,π ), and (c)
Sn(π,π ) as functions of 1/L, for L = 6, 8, 10, 12, with t2 = −0.3,
V = 12, and ρ ≈ 0.46. As L → ∞, Sa(0,0) = 0, whereas both
Sa(0,π ) and Sn(π,π ) are finite, suggesting that the HSS phase is
stable in the thermodynamic limit.

approach the critical point at |t2| = t1/2. This is very different
from the nonfrustrated case, where stable SS is missing for
ρ < 1/2 even for the soft-core case. Therefore introducing the
frustration hopping term is a promising route to observe the
(H)SS phase.

B. SS phases in the soft-core case

When going beyond the hard-core limit, the EBH model
shows far more rich phase diagrams depending on the values
of the on-site interaction strength U . In the absence of NNN
hopping, previous results show that doping ρ = 1/2 with

FIG. 4. The ground-state phase diagram of the hard-core frus-
trated EBH model in the t2-ρ plane, with V = 16.
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FIG. 5. The ground-state phase diagram of the soft-core frustrated
EBH model in the ρ-V plane with t2 = −0.3 and U = 40.

additional particles may lead to a stable SS phase [37]. The
key issue here is how this general picture changes due to the
presence of HSS phase for t2 	= 0.

Intuitively, when 2� = zV − U ∼ 0, the doped particles
can be placed on either of the two sublattices due to the
vanishing energy difference. Therefore, particles can hop
around the whole lattice due to NN hopping, which results
in the usual checkerboard SS. When � < 0, it is more
energetically favorable for the additional particles to occupy
the empty sublattice, while the other one remains to be a MI.
This indicates that the HSS state discussed above should be
more robust for large U , and is consistent with those discussed
in the hard-core limit. For � > 0, the additional particles tend
to locate on the occupied lattice site while the empty sublattice
remains unchanged. Therefore, there should also exist another
kind of HSS phase (HSS1) in this limit (see Appendix C for
details).

Figure 5 depicts the phase diagram with a constant on-site
interaction U = 40 and t2 = −0.3. The result for ρ < 0.5 is
almost the same as the hard-core limit, and therefore is not
shown. For these parameters, a stable conventional SS does
exist whereas the HSS phase completely disappears above the
half filling. The PS* phase consisting of HSS and SF is also
missing for parameters we used here. However, the region of
SS phase is greatly shrunk due to t2 	= 0 compared with usual
extended BH model. Moreover, the PS regime extends up to
the critical line zV = U , and is sandwiched between SS and
SF phases. When the filling factor ρ → 1, the system is a SF
state below the critical line zV = U . Above zV > U , a new
HSS1 phase dominates the phase diagram for all ρ. HSS1 is
different from the HSS state in the ρ > 0.5 region, which has
particle-hole symmetry to the HSS state in the ρ < 0.5 region,
i.e., it has one sublattice that is fully occupied by one boson
per site, without fluctuation, and the other sublattice is SF.
The HSS1 also have two sublattices with one sublattice being
unoccupied, and the other one being SF with the occupation
number larger than one per site. Interestingly, there is a MI
transition in one sublattice going from the SS phase to the
HSS or the HSS1 phases.

To see how the HSS phase that presented in the hard-core
limit disappears at U = 40, we show in Fig. 6 the order
parameters Sa(π,0) as functions of U for different ratios
zV/U = 0.8 and 0.5 respectively at ρ = 0.55. At large U , the
HSS phase does exist, but it undergoes a transition to the SS
state as U decreases. The transition from HSS to SS is located

30 40 50 60 70 80
U

0.000

0.005

0.010

0.015

0.020

0.025

0.030

S
a(π

,0
)

4V/U=0.5
4V/U=0.8

HSS

SS

FIG. 6. The order parameters Sa(π,0) as functions of U at t2 =
−0.3, ρ = 0.55, for different ratios zV/U = 0.8 and 0.5 respectively.

at U ∼ 50 for zV/U = 0.5 and U ∼ 65 for zV/U = 0.8.
The SS and HSS phases can coexist in the phase diagram
for U ∈ (50,60). These results suggest that for a given U ,
the region with larger V will become SS state first, whereas
the region with smaller V can still be HSS. When U = 40, the
SS-HSS transition may happen at a rather small V . However,
in this case, a PS phase would be more stable, and therefore
no HSS phase appears in Fig. 5.

IV. DISCUSSION

Experimentally, frustrated NNN hopping can be realized us-
ing spin-dependent lattice via Raman process, as demonstrated
in Ref. [22]. The effective NN repulsion can be implemented
using dipolar bosons [29–31] or molecules with tunable ratio
V/U via Feshbach resonance. Finally, the predicted phases
can be identified from their typical density and momentum
distributions shown in Table I, which can be detected using
the time-of-flight (TOF) imaging method combined with the
in situ detections.

V. SUMMARY

We have studied the phase diagram of the extended
Bose-Hubbard models with frustrated hoppings via the TNS
method. We show that a peculiar HSS phase can be stabilized
below half filling even in the hard-core limit, which is absent
from the usual nonfrustrated Bose-Hubbard models. For the
soft-core model, the competition of on-site interaction and
frustration leads to different types SS phases above half filling.
The frustrated models proposed here can be implemented in
current experimental systems with no fundamental challenge.
In this work we focus on the case |t2| < t1/2, but it would

TABLE I. Characteristic order parameters for different supersolid
phases discussed in the paper, where �k0 = (0,0), �k1 = (π,0), �k2 =
(0,π ), and �k3 = (π,π ). S ′

a describes the background noise for all �k
due to the presence of Mott-insulator sublattice above half filling.

HSS (ρ < 1
2 ) or HSS1 HSS (ρ > 1

2 ) SS

Sa(�k) Sa,�k1
= Sa,�k2

	= 0 Sa,�k1
= Sa,�k2

	= 0, Sa,�k0
	= 0

and S ′
a = 1

2 Sa,�k3
	= 0

Sn(�k) Sn,�k0
= Sn,�k3

	= 0 Sn,�k0
	= 0 Sn,�k0

	= 0
Sn,�k3

	= 0 Sn,�k3
	= 0
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be interesting to see how these predicted phases change when
approaching the limit |t2| ∼ t1/2, where a spin-liquid state is
predicted to exist.
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APPENDIX A: STRING-BOND STATE METHOD

Recently developed tensor network states (TNS) methods,
including the matrix product states (MPS) [48,52,53], the
projected entangled pair states (PEPS) [49], string-bond states
(SBS) [50], and the multiscale entanglement renormalization
ansatz (MERA) [54], etc. provide a promising scheme to
solve the longstanding quantum many-body problems. In this
scheme, the variational space can be represented by polyno-
mially scaled parameters instead of exponential ones. Once
we have the TNS representation of the many-particle wave
functions, the ground-state energies, as well as corresponding
wave functions, can be obtained variationally.

In this paper, we investigate the ground-state properties of
the extended Bose-Hubbard model using SBS [50]. The wave
functions represented in SBS form can be written as

|�〉 =
d∑

s1···sN

∏
p∈P

Tr

⎡⎣∏
k∈p

A
sk

p,k

⎤⎦|s1 · · · sN 〉, (A1)

where P is a certain string pattern, which contains a set of
strings p. The product of matrices A

sk

p,k with virtual bond
dimension D over k ∈ p means over the sites k in the order
appearing in the string p, and d is the dimension of the physical
indices sk on site k. In this case, d is the possible boson
occupation number at each site. We use d = 2 for the hard-core
boson, and d = 4 in the soft core case (i.e., the maximum
allowed boson on each site is 3). We use two long strings as
shown in Fig. 7. This type of SBS satisfies area law [50,55],
and the results can be systematically converged by increasing
the bond dimension D.

For a given a Hamiltonian H , the total energy of the system
is a function of the tensors at each lattice site A

sk

p,k , i.e.,
E = E({Ask

p,k}). We recently developed an efficient algorithm
to obtain the ground-state wave function and corresponding
energy, by mapping the problem to optimizing the total energy
of a classical mechanical system, in which the elements
a

sk

ij (p,k) of the tensor A
sk

p,k are treated as the generalized
coordinates of the system. The ground-state wave function
and total energy is then obtained via a replica-exchange
molecular dynamic simulation. Details of the method are
presented in Ref. [51]. The replica-exchange (also known
as parallel tempering) [56,57] MD method can effectively
avoid the system being trapped in local minima, which is very

FIG. 7. The string-bond states (SBS) pattern used in the calcula-
tions, which is made up of two long strings.

important for accurate simulation of complex states such as
phase separations.

In our simulations, we use M = 48 temperatures. Initially,
the temperatures distribute exponentially between the highest
(1/β0 = 0.01) and lowest (1/βM−1 = 10−6) temperatures. For
each temperature, we start from random tensors. During the
simulations, we adjust the temperatures after configuration ex-
change for ten times, whereas there are 300 MD steps between
the two configuration exchanges, with a step length �t = 0.01.
For each MD step, we sample about 40000 configurations.
The energies used for temperature exchange are averaged
over 250 MD steps. After we finish the replica-exchange MD
optimization, we further decrease the temperature to 10−7 to
obtain more accurate results.

Figures 8(a), 8(b) show the convergence of total energy
per site with increasing bond dimension D in for two typical
parameter sets. When D = 10, the total energies converge to
less than 10−2 per site for the phase separation states, and 10−3

per site for pure phases.

APPENDIX B: SOME DETAILED NUMERICAL RESULTS

1. Results for t2 = 0 model

To benchmark our method, we first calculate the phase
diagrams for t2 = 0 model, which has no tunneling frustration,
and compare the results to those obtained from quantum Monte
Carlo (QMC) simulations for the hard-core bosons [36] and
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FIG. 8. The total energy per site as functions of bond dimension
D for (a) the hard-core limit, with V = 1, t2 = −0.3, ρ = 0.32, which
is in the SF phase; and (b) the soft-core case with U = 40, V = 12,
t2 = −0.3, and ρ = 0.55, which is in the HSS1 phase.
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FIG. 9. The structure factors Sn(π,π ) and Sa(0,0) as functions of
density ρ for the t2 = 0, V = 3 hard-core Bose-Hubbard model on a
8 × 8 lattice.

soft-core bosons [37]. In Fig. 9, we plot the structure factors
Sn(π,π ) and Sa(0,0) as functions of filling density ρ for
the hard-core model. The results are obtained on a 8 × 8
lattice with V = 3. The structure factors and phase boundaries
obtained using the SBS are in good agreement with those
obtained from QMC with the same parameters (see Fig. 1 of
Ref. [36]). In Fig. 10, we compare the V -ρ phases diagrams for
ρ � 0.5 with t2 = 0, U = 20 on a 10 × 10 lattice calculated
by the SBS method (red dashed lines) with those obtained
from QMC method with the same parameters (black solid
lines extracted from Ref. [37]), which have good agreement.

2. Density distribution and fluctuation of different phases

The various phases emerge from the frustrated EBH model
can be distinguished from their density distributions 〈ni〉 =
〈b†i bi〉 and density fluctuations 〈δni〉 in real space. We show
in Fig. 11 the typical on-site density distribution 〈ni〉 (top
panel) and corresponding density fluctuation 〈δni〉 (bottom
panel) for the frustrated Bose-Hubbard model in the hard-core
limit and filling ρ < 0.5, including the superfluid (SF), half-
supersolid (HSS), phase separation (PS), and PS* phases. The
SF phase has almost uniformly distributed density 〈ni〉 and
so does the density fluctuation 〈δni〉 on each site. The HSS
phase clearly shows two sublattices, with one sublattice fully

FIG. 10. The phase diagrams of the extended Bose-Hubbard
model with U = 20, t2 = 0 on 10 × 10 lattice in the V -ρ plane. We
show only the region of ρ > 0.5. The red dashed lines are calculated
by SBS method, whereas the black solid lines are extracted from
Ref. [37]

unoccupied and absent of 〈δni〉. The other sublattice is SS,
with nonvanishing boson density and density fluctuation. The
PS phase shows distinct regions in real space with one being
SF, and the other being CBS, whereas in the PS* phase, there
are also two distinct regions with one being SF, and the other
being HSS.

Figure 12 shows the typical density distribution 〈ni〉 (top
panel) and corresponding density fluctuation 〈δni〉 (bottom
panel) for the frustrated EBH model in the soft-core case and
filling ρ > 0.5, including PS, SS, HSS, and HSS1 phases. The
PS phase is composed of the SF and CBS phase. The SS phase
clearly has both solid order and SF order. It has two sublattices,
both have nonvanishing density distribution 〈ni〉 and density
fluctuation 〈δni〉 on each site, which is different from those
of the HSS phase. In the soft-core case with ρ > 0.5, there
are two HSS phase, namely HSS and HSS1. When ρ > 0.5,
one of the sublattice of HSS is fully occupied, with occupation
number equal one. The other sublattice is SF. This phase can
be viewed as a particle-hole mirror image of the HSS phase
for ρ < 0.5. The HSS1 phase also has two sublattices, but it
is different from the HSS phase as it has one fully unoccupied
sublattice, and the other one being SS with the occupation
number larger than one.

FIG. 11. Top: Typical boson density distribution 〈ni〉=〈b†
i bi〉 for (a1) superfluid (SF), (b1) phase separation (PS), (c1) PS*, and (d1)

half-supersolid (HSS) phases in the hard-core limit and filling ρ < 0.5. Bottom: (a2)–(d2) Corresponding density fluctuation 〈δni〉 for each
phase.
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FIG. 12. Top: Typical boson density distribution 〈ni〉 for (a1) PS, (b1) SS, (c1) HSS, and (d1) HSS1 phases in the soft-core case and filling
ρ > 0.5. Bottom: (a2)–(d2) Corresponding density fluctuation 〈δni〉 for each phase.

APPENDIX C: RESULTS FROM MEAN-FIELD THEORY

Since the standard mean-field calculation cannot capture
the main physics related to phase separation, we employ
the method introduced by Kimura [58], which combines the
Gutzwiller variational wave function and linear programming
method. It has been proved that such method can effectively
describe the phase diagram within a canonical ensemble with
fixed total boson number, especially in the hard-core limit.
Specifically, we assume the total free energy of the system can
be written as the combination of two different phases Et =
γEA + (1 − γ )EB with γ the area ratio of phase A in the entire
system. To obtain the ground state, we minimize Et subject
to the particle-number condition as Nt = γNA + (1 − γ )NB .
When γ = 0 or 1, the system stays in a uniform phase B or
A without phase separation. While for γ ∈ (0,1), a mixture of
phases A and B occurs, which indicates the existence of phase
separation.

In the case of t2 = 0, the corresponding phase diagram
has been widely studied using standard quantum Monte Carlo
method. The calculation shows that when U/|t1| → ∞, the
supersolid state is unstable due to the presence of PS into a
mixture of uniform SF and crystal. This is because away from
half filling, the additional holes for ρ < 0.5 tend to to form
a planar domain wall with the energy gain �E1 ∼ −ct1 per
holes. While for an isolated hole, the kinetic energy gain is only
estimated as �E′

1 ∼ −4t2
1 /3V . This leads to the instability of

the crystal phase at ρ = 1/2 when doped with holes, which
finally develops into the mixture a uniform superfluid and the
checkerboard solid. In the other limit with t1 = 0, the presence
of NNN hopping t2 provides another channel to lower the
energy of the system away from half filling. The additional
holes can hop around the background of a checkerboard
density wave with the energy gain determined by �E2 ∼ −4t2.
In this case, the superfluid can exist for ρ < 1/2 accompany
with a checkerboard density wave, which is the characteristic
feature of supersolid (SS) phases. Since we have t2 < 0, the
interference effect ensures that particles only reside within
one sublattice. Such half-SS (HSS) state is different from the
usual SS state when t2 > 0, where additional holes can jump
between the two sublattices.

In the presence of both t1 and t2, the competition of above
two mechanisms leads to a rich phase diagram in the ρ-V
plane. The system can be in a HSS state or PS depending
closely on the relative strength of t1, t2, and V respectively. The
total energy gain of PS can be estimated as �E1 ∼ −ct1 + dV

taking into account the interaction between neighboring lattice
sites. When both t2 and V are comparatively small, the PS state
has much lower energy, which excludes the possibility of SS
state away from half filling. However, in the opposite case,
we have �E2 < �E1, which indicates that the SS phase is
stabilized by the NNN hopping and NN repulsive interaction.
To obtain the boundaries of various phases, we employ a
perturbation analysis using the canonical ensemble.

1. Phase separation into SF and HSS state from HSS

For relatively larger V , the presence of NNN hopping t2
can stabilize the HSS phase away from half filling, where SF
exists only within one sublattice. While in the opposite limit
with ρ ∼ 0 or (1 − ρ) ∼ 0, a uniform SF state has much lower
energy. It is expected that in the intermediate regime, there
exists a PS* state composed of the mixture of the SF state
and HSS state. This is very different from the normal case
with t2 = 0, where PS occurs immediately when the system is
doped with additional holes or particles in the background of
CB solid at half filling.

In the hard-core limit, we assume the Gutzwiller wave
functions of HSS and SF phases to be

|ψhss〉 = d0|0〉 + d1|1〉, and |ψsf〉 = c0|0〉 + c1|1〉.

The total number of particles per site can be expressed as

ρ = (1 − γsf)(ρ − δρ) − γsfρsf, (C1)

where we have set γsf the ratio of SF phase. The coefficients of
wave functions |ψhss〉 and |ψsf〉 are related to the mean number
of particles through |d0|2 = 1 − |d1|2 = 2(ρ − δρ) and |c0|2 =
1 − |c1|2 = 1 − ρsf . Near the transition boundary, we have
δρ � γsf(ρsf − ρ). The total variational energy of the system
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is obtained as

Et = (1 − γsf)Ehss − γsfEsf

� 2zt2(ρ − 2ρ2) + γsf
{
2[V + 2(t1 + t2)]ρ2

sf

+ 4( − t1 − (2 − 4ρ)t2)ρsf + 8ρ2t2
}
. (C2)

The transition point can then be found by setting the coefficient
of γsf to be zero. This is achieved when ρsf = 4ρt2/[4ρt2 −
(t1 + 2t2)] for t1 + 2t2 > 0. The corresponding critical values
of V and ρ are obtained as

Vc = −2t2 − (t1 + 2t2)[t1 + 2t2 − 8t2ρ(1 − ρ)]

4ρ2t2
, and

ρc = (t1 + 2t2)

2
√|t2|(

√
V + 2t1 + 2t2 − 2

√|t2|)
. (C3)

Therefore, for given total number of particles per site, we have
a HSS state for V > Vc while PS occurs for V < Vc. The same
argument applies to ρc, where PS phase appears when ρ < ρc

for fixed NN repulsive interaction V . In the case of half filling,
we have Vc = −2(t1 + t2) − t2

1 /t2.

2. PS into HSS and SF phases from SF

For larger NN repulsive interaction V , an increase of the
total particle number leads to the transition from a SF state to
the mixture of SF and HSS states. The boundary can also
be obtained using a similar method discussed above. The
constraint of total number of particles per site leads to

ρ = (1 − γ )(ρ − δρ) + γρhss (C4)

with γ and ρhss corresponding to the ratio and mean number
of particles in HSS phase, respectively. The total variational
energy of the system can be derived as

Et = (1 − γ )Esf + γEhss

= −z(t1 + t2)ρ(1 − ρ) + zV

2
ρ2

+ γ
z

2

{
Aρ2 − 4t2ρ

2
hss − 2[Aρ − (t1 + 2t2)]ρhss

}
(C5)

with A = V + 2(t1 + t2). Due to the internal symmetry, here
we only concentrate on the case with ρ ∈ [0,1/2]. Similar
argument applies by replacing ρ with (1 − ρ) when ρ ∈
(1/2,1].

The boundary can be solved by looking at the minimal of
coefficient associated with γ

f (ρhss) = Aρ2 − 4t2ρ
2
hss − 2[Aρ − (t1 + 2t2)]ρhss. (C6)

Since phase separation occurs only when f (ρhss) < 0, the
critical Vc and ρc can be obtained by setting f (ρhss) = 0 within
the regime ρ ∈ [0,1/2]. Generally, it is easy to check that
f (ρhss) reaches its minimal

f (Nhss)min = Aρ2 − 4|t2|ρ2
hss

when ρhss = −[Aρ − (t1 + 2t2)]/4t2, which is less than 1/2
only when V > −2(t1 + t2) − t2

1 /t2. Setting f (ρhss)min = 0,
we obtain ρhss = (t1 + 2t2)/2(

√
A|t2| − 2|t2|). The corre-

FIG. 13. Phase diagrams in the hard-core limit in the ρ-V plane
for different (a) t2 = −0.1, (b) t2 = −0.3, and (c) t2 = −0.5 with
fixed t1 = 1. (d) shows the critical Ṽc = −2(t1 + t2) − t2

1 /t2 as a
function of t1 and t2.

sponding critical ρ and V read

ρc = t1 + 2t2

A − 2
√

A|t2|
, and

Vc = 1 − 2ρ

ρ
(t1 + 2t2) + 2

√
t2

(
t2 − t1 + 2t2

ρ

)
. (C7)

When ρhss = 1/2, the critical NN repulsive interaction reduces
to Ṽc = −2(t1 + t2) − t2

1 /t2 with ρ̃c = |t2|/t1. When V <

−2(t1 + t2) − t2
1 /t2, f (ρhss) reaches its minimum only when

ρhss = 1/2. In this case, the boundary is given by

Vc = ρ2 + (1 − ρ)2

ρ(1 − ρ)
(t1 + t2), and

ρc = 1

2

(
1 −

√
V − 2(t1 + t2)

V + 2(t1 + t2)

)
. (C8)

The mean-field phase diagrams can then be obtained based on
the above analysis, which are depicted in Fig. 13. When t2 = 0,
it has been shown that doping the crystal at ρ = 1/2 with
additional holes or particles leads to the PS between the CB
solid state and SF state. The presence of t2 greatly suppresses
the regime of this usual PS phase, where the HSS phase with
additional PS* state between SF and HSS regimes appears
on the top of the diagram. The boundary between the two
different PS states is determined by Ṽc = −2(t1 + t2) − t2

1 /t2.
Interestingly, at the mean-field level, such boundary also
overlaps with the lower tip of the HSS phase at ρ = 1/2. We
note that in the TNS results, this boundary shifts upwards,
as shown in Fig. 1, which indicates that the mean-field
calculation overestimates the lower boundary of Ṽc. Moreover,
the HSS states gradually dominate the phase diagram as |t2|
approaches the highly frustrated point |t2| = t1/2, suggesting
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FIG. 14. ρ versus μ for fixed t2 = −0.3 and different (a) V =
1.5 and (b) 5, respectively, in the hard-core limit. The vertical lines
show the locations where phase separation occurs, which is similar
to the curve obtained from the Maxwell construction for canonical
ensembles.

that the SS state can be stabilized for arbitrary ρ < 1/2, which
is unattainable in the usual Bose-Hubbard model without
frustrated hopping.

We would like to note that although the above results are
obtained within the constraints of fixed total particle numbers,
the approximation based on the Gutzwiller wave function make
it different from the usual particle-number-conserved system.
In addition, the optimization procedure employed during the
calculation also excludes the possibilities of finding uniform
phases within the PS regime. To show this, we also plot the
ρ-μ curves by sweeping ρ across the PS regime in Fig. 14. The
appearance of vertical lines indicates that the whole system is
the mixture of two different phases, similar to that obtained
from the usual Maxwell construction for canonical ensembles.

3. Fate of SS state in the soft-core case

In the soft-core case, the breakdown of particle-hole
symmetry around ρ = 1/2 results in different phases when
the additional holes and bosons are introduced. For ρ < 1/2,
the doped holes can hop within the occupied lattices to
reduce the kinetic energy, which leads to the HSS phase and is
very similar to the hard-core limit U → ∞. When ρ > 1/2,
the additional bosons can be placed on either sublattice. The
system can be in different phases depending on the relative
ratio of t1, t2, U , and zV , respectively.

Specifically, when zV < U , there are two different ways to
lower the energy of the system. In the first case, the particles are
located within the unoccupied sublattice, which can then hop to
the NNN site due to the presence of t2. This is a HSS state where
superfluid exists only within one sublattice. The total energy
gain per particle can be estimated as �E′

2 = zV − 4|t2|. On
the other hand, when the bosons can hop between the occupied
and unoccupied sites, the energy gain is given by the lowest
eigenvalue of the following coupling matrix as

(
U + 2z|t2|

√
2zt1√

2zt1 zV + z|t2|
)

(C9)

and reads

�E− = U + � + 3z|t2|/2 −
√

2(zt1)2 + (z|t2|/2 − �)2,

(C10)

FIG. 15. Phase diagrams in the ρ-V plane for t2 = −0.2 with
different (a) U = ∞ and (b) U = 60. There are two different HSS
state for zV < U and zV > U , respectively, when ρ > 1/2.

where 2� = zV − U . The ground-state configuration can then
be determined by the difference

δE = �E− − �E′
2

= −� + 5z|t2|/2 −
√

2(zt1)2 + (z|t2|/2 − �)2, (C11)

which corresponds to a HSS phase when �E− > �E′
2, and a

SS phase when �E− < �E′
2. Many interesting features can

be obtained from the above formula and we summarize them
as follows.

(i) It is easy to check that for very small NNN hoppings
|t2| � 0, we always have δE = −� −

√
2(zt1)2 + �2 < 0,

therefore the SS phase is favored for all � when we dope
the crystal at ρ = 1/2 with particles.

(ii) When |�| � max(|t1|,|t2|), we find δE ∼ 8(|t2| −
2t2

1 /|�|) > 0, which leads to the stabilization of HSS phase in
this case. We note that in the hard-core limit, since |�| → ∞,
such HSS phase is always more stable than the SS phase, and
consistent with the previous discussion.

(iii) On the other side with |�| ∼ 0, we have δE ∼
5z|t2|/2 −

√
2(zt1)2 + (z|t2|/2)2 < 0 for all |t2| < t1/2. The

ground state is described by a SS state.
(iv) The boundary between the SS phase and HSS

phase can be estimated from δE = 0, which gives |�c| =
2[(t1/t2)2 − 3]|t2|.

The above arguments can also be extended to zV > U

with

δE = �E− − �E′′
2

= � + 5z|t2|/2 −
√

2(zt1)2 + (z|t2|/2 − �)2, (C12)

where � > 0 and �E′′
2 = U − 4|t2| is the total energy of a

single boson delocalized within the occupied sublattice due to
t2. In the case |�| � max(|t1|,|t2|), we have δE ∼ 4(3|t2| −
4t2

1 /|�|) > 0, which indicates that the HSS state is favored.
When � ∼ 0, we still have δE < 0. Therefore, the SS state also
exists only within a very smaller regimes around the zV = U .
This is very different from the nonfrustrated case, where SS
state is stabilized almost for all zV > U .

Figure 15(b) depicts the phase diagram in the ρ-V plane
for t2 = −0.2 with finite U = 60. Since U � (|t1|,|t2|), the
phase diagram is only slightly changed on the ρ < 1/2 side
compared with the hard-core case [Fig. 2(a)]. When ρ > 1/2,
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there are two HSS states on the different side of the critical
line zV = U . When zV > U , all particles locate within one
sublattice to reduce the interaction energy due to the presence
of frustrated hoppings. This corresponds to the HSS1 state
where the mean occupation number is larger than one. In
the opposite case with zV < U , the additional particles take
place the unoccupied lattice to form a sublattice SF state, while
the remaining sublattice is still a CB solid state. Therefore,
the whole system is composed of a uniform mixture of solid
and SF states, which is the usual particle-hole counterpart of
the HSS state in the regime ρ < 1/2. Similarly, the PS state
between the HSS phase and SF phase can be viewed as the
mixture of the two phases.

Further decreasing U makes it energetically more favorable
for additional bosons hopping over both occupied and unoc-
cupied sites. Such effect is very apparent when |t2| � t1/2,
where the SS state dominates the phase diagram, as shown in
Fig. 16. Meanwhile, an intermediate PS occurs between the
SS and SF phases. When |�| � 0, �E− can be larger than
�E1 as increasing |t2|. This leads to the stabilization of HSS
and HSS1 phases for large |�|. In addition, the regime of SS
state shrinks and exists only around the critical point zV = U

above half filling.
The above mean-field results have also been checked by our

numerical calculation using TNS. Comparatively speaking,
the results suggest that the HSS phase above half filling is
more fragile than that predicted based on such mean-field
treatment. For the same parameters used in Fig. 16(b), the
HSS phase is completely missing when ρ > 1/2, as shown in
Fig. 4 in the main text. To show the competition between SS
and HSS phase as we decrease the on-site interaction U , we
also plot the transition points along with U for different ratios
zV/U = 0.5 and 0.8 using TNS, as shown in Fig. 5. The
results indicate that along with the decreasing of U , the SS
phase appears first around zV ∼ U , and dominates the phase

FIG. 16. Phase diagrams in the ρ-V plane for U = 40 with
different (a) t2 = −0.2, (b) t2 = −0.3, and (c) t4 = −0.4. The SS
phase becomes more stable as decreasing the on-site interaction U .
While the HSS state can be favored by increasing |t2|, SS exists
only within a relatively smaller regime around zV = U by doping
additional particles. (d) shows the phase diagram for U = 20 and
t2 = −0.2.

diagram as decreases, which is consistent with the above
discussions. U We also note that no phase-separation regimes
composed of the mixture of SS and SF phases are found during
the TNS calculation.
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