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Chiral anomaly and longitudinal magnetotransport in type-II Weyl semimetals
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In the presence of parallel electric and magnetic fields, the violation of a separate number conservation laws for
the three-dimensional left- and right-handed Weyl fermions is known as the chiral anomaly. The recent discovery
of Weyl and Dirac semimetals has paved the way for experimentally testing the effects of chiral anomaly via
magnetotransport measurements, since chiral anomaly can lead to negative longitudinal magnetoresistance (LMR)
while the transverse magnetoresistance remains positive. More recently, a type-II Weyl semimetal (WSM) phase
has been proposed, where the nodal points possess a finite density of states due to the touching between electron
and hole pockets. It has been suggested that the main difference between the two types of WSMs (type I and
type II) is that in the latter, chiral-anomaly-induced negative LMR (positive longitudinal magnetoconductance)
is strongly anisotropic, vanishing when the applied magnetic field is perpendicular to the direction of tilt of Weyl
fermion cones in a type-II WSM. We analyze chiral anomaly in a type-II WSM in a quasiclassical Boltzmann
framework, and find that the chiral-anomaly-induced positive longitudinal magnetoconductivity is present along
any arbitrary direction. Thus, our results are pertinent for uncovering transport signatures of type-II WSMs in
different candidate materials.
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I. INTRODUCTION

The celebrated massless Dirac and Weyl equations were
originally introduced for describing fundamental particles
in high-energy physics [1]. However, in recent years they
have transcended the barrier of high-energy physics and
become relevant for describing emergent, linearly dispersing,
low-energy excitations of several condensed matter systems
[2–9]. The Weyl equation captures the touching of two
nondegenerate bands at isolated points in the momentum
space, and these diabolic points act as the source and sink
of Abelian Berry curvature. Consequently, Weyl semimetals
violate spatial inversion (SI) or time reversal (TR) symmetry
[6–9]. The low-energy effective Hamiltonian around a Weyl
point K in the momentum space can be written as

Hk = h̄

3∑
j=1

vj (kj − Kj )σj , (1)

where σj s are three Pauli matrices, and χ = sgn(v1v2v3) = ±1
captures the chirality or the monopole strength of the Weyl
fermions. Due to a “no-go theorem” of Nielsen-Ninomiya
[10,11], the Weyl points of opposite chirality always come in
pairs (except on the surface of a four-dimensional topological
insulator) and the net monopole charge vanishes. Since the
Weyl points of opposite chirality remain separated in the
momentum space, the nodal separation vector introduces a
preferred inertial frame. Consequently, a Weyl semimetal
always lacks Lorentz invariance [12] (even if their velocity
was equal to the speed of light c), despite exhibiting the
z = 1 (E ≈ |k|) scaling of the energy-momentum relation.
The violation of Lorentz invariance and the existence of
nontrivial Berry curvature lead to many anomalous transport
and optical properties such as large anomalous Hall effect and
optical gyrotropy, the most peculiar one being the negative

longitudinal magnetoresistance due to the chiral or Adler-Bell-
Jackiw anomaly [7–22].

In the absence of any gauge or gravitational field coupling,
the numbers of right- and left-handed Weyl fermions is
separately conserved. However, in the presence of background
gauge fields, such as externally imposed parallel electric and
magnetic fields, the separate number conservation laws are
violated due to subtle quantum mechanical effects [13,14],
leaving only the total number to be conserved. This effect
is succinctly described by ∂μjχ

μ = −χ e2

h2 E · B, and a field
configuration with E · B �= 0 can induce charge pumping from
one Weyl node (χ = 1) to the other (χ = −1) node. An
important criterion for the existence of chiral anomaly is the
unbounded linear dispersion of the quasiparticles, and in the
continuum theory the particles from one Weyl point transfer
to the other through the infinite Dirac sea. In a solid-state
system, in addition to the externally applied electric field
there is always a periodic electric field due to the crystal,
and the dispersion relations are bounded. Hence, it will seem
impossible to observe any tangible effects of chiral anomaly
in any solid-state system. But, in the presence of a relaxation
mechanism, the scattering rate cuts off the effects of periodic
electric field (Bloch oscillations), thus allowing the effects
of anomaly to manifest in longitudinal magnetotransport
measurements. For weak magnetic fields (when disorder
broadening wipes out Landau quantization) semiclassical
calculations [17,18] suggest that the E · B term can lead to
a positive longitudinal magnetoconductance (LMC) while
the transverse magnetoresistance remains positive. Similar
conclusions are also reached from the calculations in the
quantized Landau-level basis, particularly in the quantum limit
[20]. Recently, several experimental groups have found the
evidence of chiral-anomaly-induced positive LMC in Dirac
and Weyl materials [23–29].
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FIG. 1. Band dispersion for a lattice model of Weyl semimetal
governed by Eq. (11). Top panel: Weyl semimetal of type I when
γ = 0. The Weyl cones are highlighted with black (solid) lines. The
chemical potential is placed at E = 0 indicated by the pink (dashed-
dotted) line. Nodal points exist at the intersection of the pink (dashed-
dotted) line with the cones. Bottom panel: Weyl semimetal of type
II when γ = 0.15 [see Eq. (11) for definition of γ ]. The Weyl cones
around (±k0,0,0) are tilted and the Weyl nodes exist at the boundary
of electron and hole pockets. The other parameters used are m = 0.15,
t = −0.05, and 2k0 = π .

For a Weyl node given by Eq. (1), the Fermi surface is point-
like with a conical spectrum along any two dimensions. The
spectrum becomes anisotropic when the cone is tilted along a
given direction in the momentum space. The Hamiltonian of a
linearized tilted Weyl node can be written as [30,31]

H
χ

k = χh̄vF (k − K) · σ +
∑

i∈{x,y,z}
(cikiσ0). (2)

The energy dispersion around the Weyl node K is now
given by E(k) = ±h̄vF |k| + T (k), with T (k) = ∑

i ciki . If
the anisotropy is small enough, the Fermi surface of the
Weyl node is still pointlike. However, if along a particular
direction uk in momentum space T (uk) > h̄vF |k|, then a
Lifshitz transition leads to a new phase which has been
classified as the Weyl semimetal of type II [31]. Figure 1
shows the energy dispersion for a lattice model of Weyl
semimetal (type I and type II with tilted cones). Unlike the
type-I Weyl nodes, the type-II Weyl nodes exist at the boundary
of electron and hole pockets, and the topological response
functions associated with type-II Weyl semimetal (WSM) are
expected to be different from a type-I WSM. Specifically, it has

been suggested [31] that on application of an external magnetic
field, in a type-II WSM the zeroth chiral Landau level is absent
if the magnetic field is applied perpendicular to uk. Therefore,
chiral anomaly and the associated LMC are expected to show
a strong anisotropy in the direction of the applied magnetic
field [31], i.e., chiral anomaly, and LMC is only expected to
exist when the magnetic field is directed within a cone around
the tilt axis uk. In this work we examine the effects of chiral
anomaly on longitudinal magnetotransport in a type-II WSM
by performing quasiclassical Boltzmann formalism and show
that chiral-anomaly-induced positive LMC exists along all
directions. Experimental signatures of type-II WSM have been
reported for MoxW1−xTe2, MoTe2, LaAlGe [32–34], making
our study of chiral anomaly and LMC particularly pertinent
for upcoming experiments.

II. QUASICLASSICAL DESCRIPTION

The presence of nontrivial Berry curvature is well known
to substantially modify electronic properties, giving rise to
anomalous transport [35,36]. In earlier works the topological
structure of chiral anomaly was introduced into the Boltzmann
formalism [17]. A topological E · B term appears in the
dynamics of quasiparticles which experience a nonvanishing
Berry curvature effect [see Eq. (6)]. This term acts as an
additional pseudoforce (apart from the standard Lorentz force)
and is the source of chiral anomaly. In the present work we
examine anomaly-related transport phenomena in a generic
Weyl semimetal phase (type I and type II) from a quasiclassical
Boltzmann formalism [17,18,37–39]. The imbalance between
two chiral species (left- and right-handed Weyl fermions) is
equilibrated by backscattering between two Weyl points, and
for smooth impurity potentials the backscattering time larger
than the forward scattering time causes positive LMC. We
compute the longitudinal conductivity (σuu) for a linearized
description of WSM and examine the anisotropy in contri-
butions from the B-dependent chiral anomaly term. We then
extend this approach to the lattice model of a WSM with a
naturalized ultraviolet cutoff.

Since impurities cause typical τ ≈ 10−12 s, only for intense
electric fields E ≈ 107V/m lattice periodicity effects are
important, and they can be safely ignored for small external
perturbations and relaxation time scales. Similarly, the periodic
effects of crystal for magnetic field problems are important
when the lattice constant is comparable to magnetic length,
which happens for B ≈ 104–105 T. For low magnetic fields
(vτ � lB , where lB = √

h̄/(eB) is the characteristic magnetic
length for cyclotron motion, v and τ−1 are the velocity
and the impurity scattering rate of the Weyl excitations,
respectively), when Landau quantization can be neglected,
a quasiclassical description of the electron motion remains
valid, provided the localization effects due to disorder are not
important. Depending on the physical system (as measured
by the magnitude of Dingle temperature) this approximation
can be valid up to a few teslas. After incorporating the Berry
curvature effects [35,36], the equations of motion become

ṙn = vn,k + k̇n × �n,k, (3)

h̄k̇n = eE + e

c
ṙn × B. (4)
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Here vn,k = ∇kεn,k/h̄ is the group velocity (εn,k being the
quasiparticle energy dispersion for the nth band with n = ±),
and �n,k represents the Berry curvature for the nth band. By
solving these coupled equations [Eqs. (3) and (4)] one obtains

ṙn =D(B,�n,k)

[
vn,k + e

h̄
(E × �n,k) + e

h̄c
(vn,k · �n,k)B

]
,

(5)

h̄k̇n =D(B,�n,k)

[
eE + e

c
(vn,k × B) + e2

h̄c
(E · B)�n,k

]
,

(6)

where D(B,�n,k) = [1 + e(B · �n,k)/(h̄c)]−1. The factor
D(B,�n,k) also modifies the invariant phase space volume ac-
cording to dkdx → D(B,�k)dkdx [40]. The above equations
are generally valid for quasiparticles endowed with Abelian
Berry curvature, and the E · B term in Eq. (6) captures the
effects of chiral anomaly. This remains valid irrespective of
whether the system is a type-I or type-II WSM, as the Berry
curvature is determined only by the coefficients of three Pauli
matrices.

In the presence of impurity scattering, the semiclassical
dynamics of quasiparticles is described by the Boltzmann
equation [41](

∂

∂t
+ ṙn · ∇rn

+ k̇n · ∇kn

)
fn,k = Icoll{fn,k}, (7)

where Icoll{fn,k} is the collision integral and fn,k is the electron
distribution function. We will only consider elastic scattering
due to the impurities and employ the relaxation time ap-

proximation Icoll{fn,k} = − fn,k−f 0
n,k

τn,k
= − gn,k

τn,k
, where f 0

n,k is the
equilibrium distribution function, τn,k is the phenomenological
relaxation rate, and gn,k measures the deviation from the
equilibrium in the steady state. We will further simplify the
calculations by ignoring the explicit momentum dependence
of τn. In the calculation based on the lattice model of a WSM,
we will also assume τ+ = τ−.

Using Eqs. (5) and (6), the Boltzmann equation [Eq. (7)] can
be solved for the distribution function fn,k in order to obtain
the conductivity σuu for the configuration when E = Eû and
B = Bû, where û is an arbitrary direction in real space. The
longitudinal conductivity σuu is obtained to be [18,37,38]

σuu =
∑

n

e2
∫

[dk]Dn

(
vu + eB

h̄
�n,k · vn,k

)2

τn

(
−∂feq

∂ε

)
,

(8)

where Dn ≡ D(B,�n,k). Comparing the above equation with
the regular expression for conductivity [41], the velocity vu

term is replaced by vu + eB
h̄

�n,k · vn,k accounting for chiral
anomaly. At zero temperature, −(∂feq/∂ε) = δ(ε − εk) in
Eq. (8), which just samples the integrand over the Fermi
surface.

III. LINEARIZED WEYL NODES

We now consider a generic Weyl node with dispersion

H
χ

k = h̄vF (χk · σ + Ckx), (9)
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FIG. 2. Left: σxx/σzz numerically computed for a generic lin-
earized Weyl semimetal [Eq. (9)] with two Weyl nodes as a function
of the tilt parameter C, plotted at a magnetic field of B = 0.5 T.
For C = 0, σxx = σzz with no anisotropy. Right: log(�σB/σB=0) as a
function of tilt parameter C. Note that there are no qualitative changes
in the behavior of the conductivities at C = 1, where the Hamiltonian
in Eq. (9) passes from type-I to type-II WSM.

where the C is the tilt parameter chosen to be nonzero only
along the kx direction. When |C| > 1 (|C| < 1), we have
type-II (type-I) Weyl node. The Berry curvature for the Weyl
node given above does not depend on the tilt parameter C

(�k
χ = χk/4|k|3). For C �= 0, the Fermi surface at a finite

chemical potential is no longer spherical and is marked with the
appearance of Fermi pockets for |C| > 1. Therefore, analytic
evaluation of the conductivity becomes intractable, and we
resort to numerical computation of σuu. We directly compute
the conductivities from Eq. (8), with an upper ultraviolet cutoff
beyond which the linearized description is no longer valid.
For numerical computation, the Fermi velocity was chosen to
be vF = 106m/s and the upper energy cutoff to be ∼0.3 eV.
Further, for our calculations we consider two Weyl nodes
(with chiralities χ and −χ , and tilt parameters C and −C)
and add their respective contributions. Figure 2 shows σxx/σzz

numerically computed for a generic linearized Weyl semimetal
[Eq. (9)] with two Weyl nodes as a function of the tilt parameter
C, plotted at a specific nonzero magnetic field. Figure 2 also
shows log[�σ (B)/σB=0], where �σ (B) = [σ (B) − σB=0],
for both conductivities along the tilt direction (i.e., σxx) and
perpendicular to the tilt direction (σzz). We note that there are
no qualitative changes in the behavior of the conductivities at
C = 1 where the system changes from type-I to type-II WSM.
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FIG. 3. Longitudinal magnetoconductivity σuu(B) computed nu-
merically for a linearized Weyl semimetal with two Weyl nodes with
C = ±1.2 (type II) and C = ±0.7 (type I), as a function of the
magnetic field of B, applied along x and z directions for computation
of σxx (right) and σzz (left), respectively. The conductivity σ 0

xx/zz is
the value at zero magnetic field.
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Figure 3 shows σxx and σzz as a function of magnetic
field B. The behavior is quadratic (linear) in B for σzz(σxx)
for both type-I and type-II WSMs. This again illustrates the
fact that chiral-anomaly-related positive LMC phenomena
does not differentiate type-I from a type-II WSM, at least
within the low-field quasiclassical approximation. Further,
our calculations suggest that the B dependence of LMC is
approximately B linear when the applied magnetic field is
along the tilt axis and quadratic in B when the applied magnetic
field is perpendicular to the tilt direction.

IV. LATTICE MODEL OF A WSM

It is advantageous to consider a lattice model of Weyl
fermions with the lattice regularization providing a physical
ultraviolet smooth cutoff to the low-energy spectrum. We
now consider a prototype TR-breaking Hamiltonian which
produces two Weyl nodes at K± = (±k0,0,0) [42]:

HI (k) = [(cos ky + cos kz − 2)m + 2t(cos kx − cos k0)]σ1

− 2t sin kyσ2 − 2t sin kzσ3. (10)

The nodes at K± can be tilted in the kx direction by adding a
term as follows:

HII (k) = HI (k) + γ (cos kx − cos k0)σ0, (11)

where σ0 is an identity matrix. Figure 1 shows the en-
ergy dispersion for the lattice model given in Eq. (11).
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FIG. 4. Top panels: B-dependent longitudinal conductivities
computed for the lattice model of a Weyl semimetal given by Eq. (11),
for γ = 0.15 (type II) and γ = 0.07 (type I). For computing σxx

(top-right panel) and σzz (top-left panel) the external B field is applied
along the x and z directions, respectively. σxx shows a linear B

dependence, while σzz is quadratic in B. Further, σ 0
xx/zz represents the

conductivity at zero magnetic field. Bottom panels: σ (θ ) (in arbitrary
units) as a function of θ measured from the z axis for a constant
magnetic field of magnitude B = 1T , but rotating in the xz plane
from θ = 0 to θ = π . When θ = π/2 the conductivity σ (π/2) = σxx

reaches a maxima. The parameter t was chosen to be t = −0.05. Note
that these plots essentially drive out the qualitative behavior of LMC
and do not make accurate quantitative predictions.

Linearizing near the nodal points, the Hamiltonian HII (k) can
be reduced to Hlin(K± ± k) ≈ ∓2t(sin k0kx)σ1 − 2t(kyσ2 +
kzσ3) + γ (∓ sin k0kx)σ0. When γ �= 0, the lattice Hamiltonian
produces two Weyl nodes which are tilted along the kx

direction and oppositely oriented to each other. When γ > |2t |,
the type-II WSM phase emerges, also illustrated in Fig. 1.

Using Eq. (8) we now compute the B-dependent longitu-
dinal conductivities along x̂ (parallel) and ẑ (perpendicular)
directions. Figure 4 plots the computed conductivities for the
case γ = 0.07 (type I) and γ = 0.15 (type II). In both cases,
σzz has a nonvanishing B dependence (which arises from the
chiral anomaly E · B term). Thus even if the magnetic field
is applied perpendicular to the tilt direction (along x in the
present case), one finds a positive LMC. The approximate B

dependence along the tilt direction is B linear. Perpendicular
to the tilt direction the B dependence is quadratic. We also plot
σ (θ ) as a function of θ measured from the z axis in Fig. 4. When
θ = π/2 the conductivity σ (π/2) = σxx reaches a maxima on
account of the B-linear term. We therefore conclude that in a
type-II WSM longitudinal magnetoconductivity is finite at all
angles from the tilt direction.

V. DISCUSSION AND CONCLUSIONS

The argument in Ref. [31] is relevant in the strong-
magnetic-field regime when Landau quantization is important.
In Ref. [31], the authors have calculated the Landau-level
structure within a linearized approximation for H = C(kz −
eAz) + v(k − eA) · σ , and argue that chiral zeroth Landau
level is absent when the magnetic field makes an angle larger
than some critical angle determined by the ratio C/v. Based
on this it has been concluded that chiral-anomaly-induced
LMC should be seen only for a restricted range of angle
between the tilt direction and the magnetic field. We make a
few comments about this calculation: (i) When the angle
between the magnetic field and the tilt direction exceeds the
threshold, all Landau levels for the above linearized theory
disappear (not just the lowest Landau level), which actually
capture some pathological properties of the gauged-linearized
model. This happens as for a type-II system (when C > v) as
for type I (C < v), and the linearized theory does not correctly
capture the closed Fermi pockets, from which we are supposed
to obtain quantized levels by employing Onsager’s formula. (ii)
It is important to retain higher-order particle-hole anisotropic
terms (which cause tilting) to obtain the correct description
of cyclotron orbits or Landau levels. On a qualitative ground
consider the situation where particle hole anisotropy is the
most dominant term in the Hamiltonian described by k2/(2m)
in an effective mass approximation. In the presence of external
magnetic field it produces familiar cyclotron orbits or Landau
levels, and spin-dependent parts act as small perturbations.
Then following the calculations of Ref. [20], one would expect
an anomaly-induced LMC along all directions for both type-I
and type-II Weyl semimetals.

In the current work we analyzed WSMs of type I and type
II using a quasiclassical Boltzmann formalism. Our prediction
of a B-linear magnetoconductivity along the direction of tilt
in a tilted Weyl semimetal is novel and can be directly tested
in experiments. In addition, we prove, using quasiclassical
Boltzmann transport theory, that in a type-II WSM longitudinal
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magnetoconductivity is finite at all angles from the tilt
direction. In particular, we find that, in contrast to the claims
made in Ref. [31], the LMC is nonzero and quadratic in the
applied magnetic field if the latter is applied perpendicular to
the tilt direction. In light of a number of recent experiments
claiming to have observed type-II WSMs, our results on
chiral anomaly and longitudinal magnetoconductivity are
particularly pertinent for uncovering transport signatures of
type-II Weyl semimetals.

Note added. (i) During the completion of this manuscript
we became aware of a recent preprint [43] that also found a
B-linear magnetoconductivity along the direction of tilt in

a tilted Weyl semimetal. (ii) Very recently there has been
an experimental observation of Adler-Bell-Jackiw anomaly
in type-II Weyl semimetal WTe crystals at the quasiclassical
regime [44], consistent with our theoretical prediction of the
existence of B-dependent LMC both perpendicular and parallel
to the tilt directions.
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