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The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon
suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low
temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is
still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth
extrapolation of the characteristic temperature T ∗ for the strange normal state well above the superconducting
transition temperature. However, recently the T ∗ within the superconducting dome was reported to unexpectedly
exhibit back-bending likely in the cuprate Bi2Sr2CaCu2O8+δ . Here we show that the original and revised phase
diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity
and a pseudogap state such as d-density or spin-density wave, based on both Ginzburg-Landau theory and the
realistic t-t ′-t ′′-J -V model for the cuprates. We further found that the calculated temperature and doping-level
dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. In
particular, the T ∗ back-bending can provide a simple explanation of the observed anomalous two-step thermal
evolution dominated by the superconducting gap and the pseudogap, respectively. Our results imply that the
revised phase diagram is likely to take place in high-temperature superconductors.
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I. INTRODUCTION

The rich phase diagrams of correlated electron materials
are a central concern in both condensed matter physics and
technological applications [1–3]. One archetypical example is
the emergence of superconductivity (SC) upon suppression of
a “parent” electronic order typically by doping. This generally
yields a dome structure of the SC critical temperature Tc

as a function of the doping level x. The parent competing
order (CO) ranges from the antiferormagnetic spin order in
cuprates [4–8] and heavy-fermion rare-earth compounds [9], to
the ferro-orbital and antiferormagnetic spin dipolar/quadruplar
orders in iron pnictides/chalcogenides [10–13], and to the
charge order in titanium oxypnictides [14] and transition-
metal dichalcogendies [15]. A particularly interesting case
is the cuprate high-temperature superconductors, where the
parent and SC phases do not appear to coexist but the phase
competition is actually intensified by the emergence of a
“strange metal” normal state with pseudogap opening at a
temperature T ∗ well above Tc in the underdoped regime [5].
The origin of the pseudogap has been controversial, being
attributed to the pre-formation of Cooper pairs [16–21] or
a hidden CO such as a d-density wave (DDW) [22–27],
spin-density wave (SDW) [28–31], loop-current [32], nematic
or stripe order [33–38], pair density wave [39,40], etc. It has
been observed that upon doping, T ∗ decreases gradually in
the normal state above the Tc dome, and enters into the SC
dome near the optimal doping level at xOP. To date, how T ∗
evolves with doping under the Tc dome is a key missing piece
of the pseudogap puzzle [6,7]. The conventional notion [4,5]
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is that T ∗ follows smoothly its normal-state behavior and ends
(T ∗ = 0) at the quantum critical point (QCP) xQCP > xOP in
the overdoped regime [see Fig. 1(a)].

However, a revised phase diagram was suggested by
some recent angle-resolved photoemission spectroscopy
(ARPES) measurements in Bi2Sr2CaCu2O8+δ (Bi-2212)
cuprates [41,42]: at slight overdoping, the system seems to
change from a coexisting pseudogap-SC state to the pure
SC state as temperature decreases to zero, leading to a
back-bending behavior of T ∗ as a function of x under the Tc

dome [cf. Fig. 1(b)]. This possibility stimulates new thinking
about the phase competition in the high-Tc superconductors.
For example, can the existence or nonexistence of the T ∗ back-
bending be able to confirm or rule out some proposed COs as
the pseudogap state? Interestingly, a similar back-bending phe-
nomenon and revised phase diagram was clearly established
in the iron-based high-Tc superconductor Ba(Fe1−xCox)2As2

(Ba-122) [43–45], where the QCP is located at the underdoped
region, i.e., xQCP < xOP [see Figs. 1(c) and 1(d)], although
undoped iron pnictides are bad metals rather than Mott
insulators like cuprates.

Theoretically, a back bending of T ∗ was obtained in a
simple Landau theory for certain competition between two
orders [46]. Thus the revised phase diagram can happen, in
principle, but whether it does take place in real materials or
the realistic microscopic models for them remains elusive.
A mean-field-type theory of the t-J model for the cuprates
[26,27] predicted a “pre-back-bending” of T ∗ due to DDW,
namely it starts well above the Tc dome and even exists without
SC, in disagreement with what was suggested above by the
Landau theory and the ARPES data.

The ultimate detection and comprehensive understanding
of the revised phase diagram demand a study of how it
is related to the many unusual spectroscopy observations.
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FIG. 1. Phase diagrams of the competing SC (yellow), CO (cyan),
and coexisting (pink) states in Ginzburg-Landau theory. (a) The
original type, where xQCP > xOP, for q = 1. (b) The revised type,
where xQCP < xOP, for q = 0.2. The other parameters are αs(x) =
10(x − 0.3), αd (x) = 27(x − 0.22), β = 2, and g = 1.2 used in
Ref. [46] for cuprates. Lower panels are our fits to the experimental
data (various symbols) on Ba-122 iron-pnictides [43–45] using
(c) Eq. (3) with αs(x) = 10(x − 0.13), αd (x) = 50(x − 0.068), q =
0.23, β = 2, g = 1.1, and (d) Eq. (4) with αs(x) = 10(x − 0.125),
αd (x) = 26(x − 0.079), q = 0.4, p = 0.3, β = 2, g = 1.4.

For example, previous ARPES measurements showed clear
evidence that the antinodal gap is enhanced with temperature
at optimally doped Bi2Sr2CuO6+δ (Bi-2201) [47,48] and
La2−xSrxCuO4 (La-214) [49]. A recent study on Bi-2201
further reported that the anomalous temperature dependence
of the measured gap, from slight underdoping to slight
overdoping, extends to temperatures above Tc (below T ∗)
[50]. In comparison, the gap remains nearly unchanged below
Tc in the deeply underdoped region where the pseudogap
dominates, but follows the traditional BCS-like temperature
dependence in the heavily overdoped region where the SC
gap dominates. Moreover, the gap evolution can be clearly
detected by electronic Raman scattering (ERS) as well. By
choosing the incident and scattered light polarization vectors,
one can probe the gap magnitude in different regions of the
Brillouin zone (BZ). In particular, the B1g and B2g channels
measure the gap features of the antinodal and nodal regions,
respectively [51]. The antinodal and nodal gaps, considered to
be pseudogap and SC dominated, respectively, exhibit distinct
doping dependence [52–58]. Their temperature evolution in
slightly underdoped cuprates is rather unexpected; the gap
extracted from the B1g channel remains nearly unchanged or
even increases as temperature increases toward Tc, rather than
decreasing to zero as predicted by the standard BCS theory
for d-wave SC. Similar enhancement in the ERS signals was
discovered in lightly underdoped iron-pnictide Ba-122 [59],
further indicating a close connection between the cuprate and
iron-pnictide high-Tc superconductors.

Here, we carry out a systematical study of the phase
competition between SC and a CO using both Ginzburg-
Landau theory (Sec. II) and different mean-field theories
of the extended t-J model for the cuprates (Sec. III). We

show that the revised and original phase diagrams in high-Tc

superconductors can be established with the moderate and
weak competitions, respectively. In the latter microscopic
model, the nearest-neighbor Coulomb interaction V as well
as the second and third nearest-neighbor hopping integrals t ′
and t ′′ are included to tune the competition. We found that the
back-bending of T ∗ under the Tc dome is quite robust against
those parameter tunings but t ′ is necessary to prevent the
pre-back-bending of T ∗ in the absence of SC. Inclusion of the
much neglected feedback effect of SC on pseudogap can push
the back-bending point from optimal doping to the overdoped
regime, in better agreement with the experiments [41,42].
In Sec. IV, we calculate out the ARPES and ERS spectral
functions in mean-field theory of the realistic t-t ′-t ′′-J -V
model to reveal that the back-bending of T ∗ can provide a
simple explanation of the observed anomalous temperature
dependence of the antinodal gap via a two-step evolution
where the SC and CO dominate low- and high-temperature
regions, respectively. In Sec. V, we consider SDW and show
that it produces a less severe back-bending of T ∗ and worse
agreement with ERS than DDW. The implications of our
results are discussed in Sec. VI and the paper is summarized
in Sec. VII.

II. GINZBURG-LANDAU THEORY

To evaluate the competition between SC and a CO, we start
with the standard free energy [46,60]:

F = αs(x,T )|ψ |2 + βs

2
|ψ |4 + αd (x,T )φ2

+ βd

2
φ4 + g|ψ |2φ2, (1)

where ψ and φ are the order parameter for SC and the CO,
respectively; g is the interaction constant between them. Here
we use the critical temperature Td for the CO to approximate
T ∗ for the pseudogap.

For simplicity, we set βs = βd = β and assume that
αs,d (x,T ) are the only parameters that bear the x and T

dependence, taking the form

αs,d (x,T ) = αs,d (x) + γ
(1)
s,d T + γ

(2)
s,d T 2. (2)

In particular, the pure quadratic T dependence introduced by
Wu et al. [46] to reproduce the desired form of αs(x,T ) �
2βTc(T − Tc) near Tc reads

αs(x,T ) = αs(x) + βT 2,

αd (x,T ) = αd (x) + qβT 2. (3)

When the two orders are decoupled, Tc = √−αs(x)/β and
Td = √−αd (x)/qβ. Here the q factor describes the CO’s
relative tolerance to thermal suppression: the smaller q, the
more tolerant the CO than SC [46]. It is shown that decreasing
q can change the phase diagram from the original type
realized for q > g/β [Fig. 1(a)] to the revised type realized
for q < g/β < 1 [Fig. 1(b)].

The phase diagram also depends sensitively on g, the
interaction strength, as it is equally fair to read that increasing
g can change the phase diagram from the original type
realized for g < qβ [Fig. 1(a)] to the revised type realized
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FIG. 2. Phase diagrams of the competing SC (yellow), CO (cyan),
and coexisting (pink) states in Ginzburg-Landau theory using Eq. (3)
for fixed q = 0.4. (a) The original type, where xQCP > xOP, for
g = 0.6. (b) The revised type, where xQCP < xOP, for g = 1.2.
(c) Complete phase separation for g > 2. The other parameters
are αs(x) = 10(x − 0.13), αd (x) = 65(x − 0.069), β = 2. (d) Phase
diagram in terms of interaction αd (x,T )/αs(x,T ) vs g/β. The light
gray, and heavy gray arrows demonstrate phase transition, which
occurs in the underdoping (overdoping), and in the intermediate
doping region of revised phase diagram, respectively.

for qβ < g < β [Fig. 1(b)], providing q < 1 and Eq. (3). This
is further shown in Fig. 2 for fixed q = 0.4. For strong enough
competition (g � β), the two phases cannot coexist [Fig. 2(c)].
Therefore the original and revised types of phase diagrams
can also be generated by the weak and moderate competition
between SC and other COs, respectively.

To understand the relationship between q and g, we
examine the phase diagram in terms of αd (x,T )/αs(x,T )
versus g/β using Eq. (3) [see Fig. 2(d)]. For negative g, the
coexistence of SC and CO is the only solution, which means
that the attractive interaction can generate neither the original
nor the revised type of the phase diagrams found in high-Tc

superconductors. On the other hand, for strong competing
interaction g > β, the two orders cannot coexist and the
phase boundary is determined by αd (x,T )/αs(x,T ) = 1. For
0 < g < β, there are two phase boundaries in Fig. 2(d).
The first one between the coexisting (pink) and CO (cyan)
phases is set by αd (x,T )/αs(x,T ) = β/g > 1, and the second
one between the SC (yellow) and coexisting (pink) phases
is set by αd (x,T )/αs(x,T ) = g/β < 1. When q = 1, the
value of αd (x,T )/αs(x,T ) will increase as T goes up if
αd (x,0)/αs(x,0) > 1, inducing the transition across the first
phase boundary, as indicated by the upper gray arrow in
Fig. 2(d). This corresponds to the underdoping scenario
in the original phase diagram. Likewise when q = 1, the
value of αd (x,T )/αs(x,T ) will decrease as T goes up if
αd (x,0)/αs(x,0) < 1, inducing the transition across the second
phase boundary, as indicated by the lower gray arrow in
Fig. 2(d). This corresponds to the overdoping scenario in the
original phase diagram. To produce the revised phase diagram

FIG. 3. Schematic of the DDW order. Solid and hollow circles
are for the A and B sublattice, respectively. Signs of the DDW orders
are denoted by the arrows as described in the Appendix.

where the phase undergoes pure SC, coexisting, and pseudogap
state as T goes up, it requires that αd (x,T )/αs(x,T ) increases
from smaller than g/β to larger than β/g, as indicated by the
black arrow in Fig. 2(d). Such behavior can be produced only
by q < g/β < 1.

We also fit the phase diagram in Ba-122 iron-pnictide
though many properties of iron-based compounds differ from
cuprates. However, the observed phase diagram of Ba-122
iron-pnictides [43] suggests a linear T dependence of αd (x,T ).
Indeed, Eq. (3) does not fit quite well [Fig. 1(c)] and a better
fit [Fig. 1(d)] results from using

αs(x,T ) = αs(x) + 1 − p√
1 + p

√
−2αs(x)βT + 2p

1 + p
βT 2,

αd (x,T ) = αd (x) + qβT , (4)

by which αs(x,T ) � 2βTc(T − Tc) near Tc is still satisfied
for 0 � p < 1. Here, Tc = √

(1 + p)/2
√−αs(x)/β in case of

decoupling, similar to the form with the quadric T dependence.
This revised phase diagram also resembles the recently discov-
ered phase diagram in Bi-2212 cuprates [41,42], suggesting
a possible linear T dependence of pseudogap in cuprate
superconductors.

III. MICROSCOPIC DESCRIPTION IN THE EXTENDED
t- J-V MODEL

We proceed to study how the revised phase diagram can
emerge in a microscopic theory. We focus on the t-J -type
model, which was widely used to describe the low-energy
physics of the cuprates [4]. In particular, we examine the
competition between SC and DDW/SDW. The commensurate
DDW state (see Fig. 3) or incommensurate DDW state
were shown to be the leading possible charge instability
in some theories for the extended t-J -V model, where V

is the nearest-neighbor Coulomb interaction [22–27,61,62].
V is known to stabilize the DDW state with respect to
phase separation [26]. Following the knowledge gained from
the above Ginzburg-Landau theory, we also include the V

term to tune the robustness of the COs and the interaction
strength between different orders. V is chosen to reproduce the
qualitative phase diagram in cuprates and its magnitude is in
the same order as reported in first-principle studies of cuprates
[63]. Considerable V can originate from three sources, which
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will be discussed later in Sec. VI. The extended t-J -V model
reads

H = −
∑
i,j,σ

tij c
†
iσ cjσ + J

∑
〈i,j〉

(
�Si · �Sj − 1

4
ninj

)
− μ

∑
i

ni

+ V
∑
〈i,j〉

ninj , (5)

where c
†
iσ and ciσ are electron creation and annihilation

operators, respectively, at the ith lattice site with the constraint
of single occupation. tij is the hopping integral between the
ith and j th sites. J is the antiferromagnetic superexchange
coupling constant between nearest-neighbor spins. We also
consider the first, second, and third nearest-neighbor hopping
integrals (t , t ′, and t ′′, respectively) for tij to tune the shape of
the Fermi surface, which is a fundamental microscopic factor
underlying the phase competition.

We introduce the mean-field order parameters as 〈c†i cj 〉 =
χ ± iD and 1

2 〈ci↑cj↓ − ci↓cj↑〉 = ±
 with χ , D, and 
 are
the uniform bond, DDW, and d-wave SC order, respectively
(see Appendix for details). For simplicity, we adopt the
slave-boson method [23], which directly projects the original
Hamiltonian into the single occupation space via reducing the
hopping terms by a factor of x. The order parameters can be
self-consistently determined by minimizing the free energy

F = −2T

N

′∑
k,η=±

ln

(
2 cosh

βE
η

k

2

)
− μ(1 − x)

+ (4Vdχ
2 + 4VdD

2 + 4Vc

2) (6)

with

Vd = 1
2J + V,

Vc = J − V. (7)

Here, E±
k =

√
ξ±2
k + 
2

k is the Bogliubov quasiparticle disper-
sion in momentum space, and


k = 2Vc
(cos kx − cos ky),

Dk = 2VdD(cos kx − cos ky). (8)

t has been set as the energy unit. Here we use Dk to stand for
the pseudogap and the DDW critical temperature Td for T ∗.

Similar to the above macroscopic study, a revised phase
diagram in hole-doped cuprates is well established within
the present microscopic model. We define an intermediate
doping region ranging from xQCP to xOP [0.135 < x < 0.165
in Fig 4(a)], where the back-bending of Td under the Tc

dome is found. The ground state is a pure SC state. As T

increases, the coexistence of the SC and DDW states emerges
when the SC order parameter is sufficiently suppressed at
Td , which is below the Tc dome. The magnitudes of the
DDW and SC gaps are comparable in this special region. Our
theoretical phase diagram qualitatively agrees with the recent
laser-ARPES measurements on Bi-2212 and may also explain
the discrepancy of xQCP extrapolated by various measurements
[41,42].

The Td back-bending suggests that the role of SC in
the intermediate doping region has been underestimated for

FIG. 4. Phase diagram of the extended t-J -V model in the color
codes of yellow (SC), cyan (DDW), pink (coexisting). (a) Results in
the slave-boson approximation for t ′ = −0.25, t ′′ = 0.1, J = 0.35,
and V = 0.12; (b) Results in the renormalized mean-field theory
approximation for t ′ = −0.2, t ′′ = 0.1, J = 0.3, and V = 0.095.
Besides the conventional underdoping (UD) and overdoping (OD)
region, an intermediate doping (ID) region where the back-bending
of Td occurs is marked out.

decades. In Fig. 4(b), we show the phase diagram in the
renormalized mean-field approximation, which takes into
account the feedback effect of SC for the renormalization of
the model parameters [64,65] (see Appendix 2). A similar
back-bending phenomenon and revised diagram are obtained,
indicating that the revised phase diagram is quite robust
against the theoretical approximation we chose. Moreover,
the DDW enters the Tc dome now at slightly overdoping,
in better agreement with experiments on Bi-2212 cuprates
[41,42]. This suggests that the feedback effect of SC be
necessary to quantitative explanation of the experimental
data.

Figure 5 shows that the presence of the Td back-bending
is qualitatively robust against the variations in the model
parameters, viz. t , t ′, t ′′, J , and V . According to Eq. (7),
V directly enhances the DDW order parameter and weakens
SC; DDW emerges at low doping for V > J/4. Indeed, the
calculated maximum Tc decreases as V increases (see the four
top panels of Fig. 5). xOP − xQCP remains nearly unchanged
for small V up to 0.135 (where the maximum Tc drops by
half); then, it decreases as V increases. This behavior is
different from the g or q effect shown in Ginzburg-Landau
theory and is attributed to the direct tuning of αs,d (x,T ) by
V . Figure 5(bottom) shows that the back-bending weakens as
t ′ increases from a negative value (which means hole doping)
to a positive one (which means electron doping), while the
maximum Tc remains nearly unchanged. Thus the revised
phase diagram could also appear in the electron-doped cuprates
but it is more difficult to be detected.

A mean-field-type theory of the t-J -V model with t ′ = 0
[26,27] predicted a “pre-back-bending” of Td in the absence of
SC. This behavior is reproduced in our calculations for t ′ = 0,
as shown in Fig. 6(a) for the decoupled SC and DDW orders.
We further found that the coupling of the SC and DDW orders
suppresses the back-bending for t ′ = 0, as shown in Fig. 6(c).
The pre-back-bending is almost entirely removed by inclusion
of t ′ = −0.35 [Fig. 6(b)]. In this case, the coupling of the SC
and DDW orders drives the back-bending of Td [Fig. 6(d)].

045110-4



PHASE COMPETITION AND ANOMALOUS THERMAL . . . PHYSICAL REVIEW B 96, 045110 (2017)

FIG. 5. Model parameter dependence of the phase diagram in the color codes of yellow (SC), cyan (DDW), pink (coexisting). (Top) The
V dependence for t ′ = −0.25. (Bottom) The t ′ dependence for V = 0.12. t ′′ = 0.1 and J = 0.35 for all the figures.

Whether the back-bending occurs above the Tc dome for
t ′ = 0 [26], as shown in Fig. 6(c), depends on the model
parameters. For a smaller V , the back-bending starts right at
Tc for t ′ = 0 [see Fig. 7(c)], while the other features of Fig. 6
remain unchanged in Fig. 7.

Incommensurate DDW. It is previously reported that for
t = 0, the pre-back-bending of Td in the absence of SC
vanishes upon inclusion of the incommensurate DDW, yielding
a continuous decreasing of Td upon doping [27]. We also

FIG. 6. The effects of t ′ on the pre-back-bending of Td in the
extended t-J -V model. The DDW and SC orders are decoupled for
(a) t ′ = 0 and (b) t ′ = −0.35. They are coupled for (c) t ′ = 0 and
(d) t ′ = −0.35. T′

d is the characteristic temperature for the incommen-
surate DDW as discussed in main text. t ′′ = 0, J = 0.3, and V = 0.15
for all.

check whether the back-bending is suppressed by the incom-
mensurate DDW. To determine the phase boundary of the
incommensurate DDW state, we study the charge instability
under the random phase approximation (RPA) (see Appendix
for details).

The pre-back-bending in the normal state is removed when
the incommensurate DDW is further considered as shown
in Fig. 6(a) where only the nearest-neighbor hopping is
considered, consisting with the previous results obtained by

FIG. 7. The effects of t ′ on the pre-back-bending of Td in the
extended t-J -V model. The DDW and SC orders are decoupled for
(a) t ′ = 0 and (b) t ′ = −0.25. They are coupled for (c) t ′ = 0
and (d) t ′ = −0.25. T′

d is the characteristic temperature for the
incommensurate DDW as discussed in main text. t ′′ = 0.1. J = 0.35,
and V = 0.12 for all.
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large-N expansion method [27]. Such an incommensurate
DDW state remains for weak SC [Fig. 6(c)]. However,
the incommensurate DDW is strongly suppressed by the
next nearest-neighbor hopping t ′ as shown in Fig. 6(b).
Furthermore, the incommensurate DDW state is also sup-
pressed by strong SC [Figs. 6(d) and 7(c)]. Especially, the
incommensurate DDW state is fully suppressed for the realistic
parameters [Figs. 7(b) and 7(d)]. Therefore the back-bending
of Td under Tc dome presented here is driven by the interplay
of SC and commensurate DDW. However, the back-bending
phenomenology is parameter dependent, which may be the
reason why its manifestation is found only in limited cuprates.

IV. ANOMALOUS THERMAL EVOLUTION OF
ELECTRONIC SPECTRAL FEATURES

To explore whether and how the revised phase diagram is
related to the observed anomalous temperature dependence
of the antinodal gap and Raman response, we calculate these
quantities in the microscopic theory.

A. The quasiparticle spectral functions

First, we focus on the SC and DDW order parameters 
k

and Dk [see Eq. (8)] and the quasiparticle spectral functions,
which are the observable in ARPES measurements. Figure 8
shows the results at k = (kf ,0), the normal-state Fermi-surface
momentum along the antinodal line, for three typical doping
levels. For underdoping x < 0.13 [Fig. 8(a)], the magnitude
of the “pseudogap” Dk is much larger than that of the SC gap

k . 
k decreases but Dk increases as temperature increases
for T < Tc. On the other hand, the gaps evaluated from
the spectral functions (see Appendix) differ from the two
order parameters. There exist two peaks with different weight
factors below the Fermi level [cf. Fig. 8(d)]; the one with
substantially stronger intensity used to represent the measured
gap. In the underdoped region, the high-energy peak (HEP)
has much stronger intensity than the low-energy peak (LEP)
and remains nearly unchanged below Tc. This reflects the
fact that pseudogap dominates the underdoping region. In the
overdoping region, the temperature dependence of gap follows
the traditional BCS behavior since the pseudogap is absent
[Fig. 8(b)]. These findings agree with our common knowledge
and various ARPES measurements [50].

On the contrary, in the intermediate doping range
[Fig. 8(c)], the “pseudogap” Dk does not emerge unless the
SC gap 
k is suppressed sufficiently at Td , similar to the
previous theoretical suggestions [66–68]. On the other hand,
the measured gap exhibits a pronounced two-step evolution.
It evolves from the SC dominating at low temperature to the
DDW dominating at high temperature [Figs. 8(c) and 8(d)].
The most important feature is that the measured gap exhibits
clear enhancement as temperature increases above Td (under
the Tc dome), especially for slight underdoping. Therefore we
find a special temperature region in the intermediate doping
region where the measured gap shows anomalous temperature
dependence, in good agreement with ARPES measurements on
various families of cuprates [47–50]. The present explanation
also differs from the previous illustrations that attribute the
anomalous temperature dependence of the measured antinodal

FIG. 8. Thermal evolution of the SC and DDW order param-
eters and measured antinodal gap for three distinct doping levels:
(a) underdoping x = 0.11, (b) overdoping x = 0.18, and (c) interme-
diate doping x = 0.135. The legends of SC and DDW indicate the
SC- and DDW-dominated regions, respectively. Solid lines are for the
SC (black) and DDW (green) order parameters at the Fermi surface
along the antinodal line. The open circles are for the peak energies
extracted from the spectral functions; HEP and LEP stand for the high-
and low-energy peaks, respectively. The size of the circles scales with
the peak intensity. (d) Temperature evolution of the spectral functions
at the intermediate doping x = 0.135. The peak positions are marked
by triangles with red for HEP and blue for LEP. The model parameters
are t ′ = −0.25, t ′′ = 0.1, J = 0.35, and V = 0.12. The Fermi energy
is fixed at 0.

gap to either the Fermi function [69] or the weakened SC gap
[70]. Our results show that the SC gap near the borderline
between the SC- and DDW-dominated regions [dotted line in
Fig. 8(c)] only slightly weakens, in agreement with the ARPES
measurements on near optimally doped Bi-2212 [42].

We noted that the measured gap remains increasing even
above Tc as revealed by ARPES data [50]. This may be due
to the pre-pairing of superconductivity. Although the super-
conducting gap and pseudogap come from different origin, the
electrons may have been paired above Tc as indicated by the
ARPES [47] and other experimental measurements [71–73].
Therefore the back-bending phenomenon, and the region of
intermediate doping, is expected to be more pronounced due
to strong superconducting gap magnitude.

B. The Raman response

Furthermore, we study the relationship between the revised
phase diagram and the anomalous temperature dependence of
ERS in the cuprates. The Raman response was calculated from
using the density-density correlation function (see Appendix).
The B1g and B2g channels are contributed mainly from
the Fermi surface around the antinodal and nodal regions,
respectively [53,54]. The peak energy corresponding to the
B2g response was found to track the temperature evolution of
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FIG. 9. Thermal evolution of the Raman response in the B1g

channel at intermediate doping x = 0.135. (a) The results for
the broadened resolution of η = 0.04. The peak positions are
indicated by the triangles. (b)–(d) is Raman response at three
typical temperature with high resolution η = 0.003. T = 0.3Tc for
(b), T = 0.7Tc for (c), and T = 0.9Tc for (d). The intraband and
interband components Rtra and Rter is denoted by blue, and red
dashed lines, respectively. R is the sum of Rtra and Rter denoted
by solid black line. (e) Temperature dependence of the energy of
B1g Raman response peak. The circles track the peak energy shown
(b)–(d) with high resolution, the intensity is marked by size. The
solid line is the peak energy with broadened resolution extracted
from (a). SC and DDW denote the SC- and DDW-dominated regions,
respectively, as described in text. (f) Theoretical results under broad-
ened resolution at different doping, together with the experimental
Raman data in cuprate Hg-1201 [53,54] and near optimally doped
iron-pnictide Ba-122 [59]. t ′ = −0.25, t ′′ = 0.1, J = 0.35, and
V = 0.12.

the d-wave SC order due to the absence of pseudogap near the
nodal region.

On the other hand, the Raman response in the B1g channel
is much more complicated. In the underdoped region, the
peak energy in the Raman response remains nearly unchanged
with increasing temperature. It decreases monotonically with
temperature and goes to zero at Tc in the overdoping region,
following a simple BCS-like temperature evolution. On the
contrary, the peak energy of the Raman response in the
intermediate doping region [Fig. 9(a)] clearly enhances upon
increasing temperature toward Tc. These behaviors are qualita-
tively consistent with our calculated temperature dependence
of the measured quasiparticle gap and the ERS measurements
[53–55], where a slight upward shift of the antinodal gap
component was detected in the slightly underdoped Hg1201
and Bi2212 as Tc is approached. The discrepancy in the
temperature evolution of the B1g and B2g ERS would favor
the two-gap scenario.

The above single peak was obtained from using the broad-
ened resolution of η = 0.04. It is resolved into multipeaks with
η = 0.003 owing to the intraband (blue) and interband (red)
contributions [Figs. 9(b)–9(d)]. At low temperature (T � Tc)

where SC dominates [Fig. 9(b)], the Raman response comes
from the intraband scattering due to the near degeneracy of
the lower and upper bands. Two peaks can be found: the
high-energy one originates from Van Hove singularity [74]
and the low-energy one from the SC gap opening along
the Fermi surface. At intermediate temperature [Fig. 9(c)],
both SC and DDW orders play significant roles. Apart from
the intraband contribution, the interband contribution, which
is dominated by DDW, develops gradually. At high enough
temperature where DDW dominates [Fig. 9(d)], the interband
contribution takes over and the intraband contribution is
invisible. In Fig. 9(e), we combine the information about
the peak positions and the peak intensities as a function
of temperature. It is clear that the temperature evolution of
Raman response exhibits a two-step pattern with an anomalous
enhancement near the transition from the SC-dominated region
to the DDW-dominated region.

To complete, in the heavily overdoped region, the Raman
peak energy follows the BCS prediction and decreases to zero
as T approaches Tc. The above results qualitatively agree with
the experimental data on HgBa2CuO4+δ (Hg-1201) [53–55],
as summarized in Fig. 9(f).

Most importantly, we found that the anomalous temperature
enhancement of the peak energy in the B1g Raman response
as T → Tc near xQCP is intimately related to the back-bending
of Td below the Tc dome. It is nearly invisible for weak
back-bending of Td and disappears in the original phase
diagram. This may suggest the possible existence of the revised
phase diagram in Hg-1201 where the anomalous temperature
dependence of ESR peak energy is detected.

V. SPIN-DENSITY WAVE AS A COMPETING ORDER

We have presented the results for the CO being DDW, which
has the d-wave symmetry. We also considered the competition
between the SC and an s-wave-like order such as SDW. Unlike
DDW, the SDW order can be stabilized at low doping for
V = 0. Increasing V will once again suppress the SC dome
according to Eq. (7), as shown in Fig. 10.

Figure 11(a) presents a revised phase diagram that looks
similar to the case of DDW as a CO. However, the SDW case
exhibits considerably weakened Td back-bending under the Tc

dome in the intermediate doping range. The back-bending even
disappears for certain parameters, giving rise to an original
phase diagram. Meanwhile, the anomalous thermal evolution
in the measured antinodal gap and in B1g Raman channel is
also suppressed [Fig. 11(b)], consisting with the results found
in DDW case. This may be understood as the case that DDW
competes with SC more fiercely than SDW in the antinodal
region. Hence the pseudogap in the hole-doped cuprates is
more likely to be a manifestation of DDW than SDW based
on the mean-field theory, although it should be attested by
rigorous numerical techniques.

VI. DISCUSSION

In the Landau theory, the revised and original phase
diagrams in high-Tc superconductors can be established with
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FIG. 10. The V dependence of the phase diagram in the color
codes of yellow (SC), cyan (SDW), pink (coexisting) for t ′ = −0.25,
t ′′ = 0.1, and J = 0.35.

the moderate and weak competitions, respectively. Thus the
question turns out to be whether the revised phase diagram does
take place in real materials. In the basic t-J model for cuprate
superconductors, the pairing gap increases as the doping
level decreases, promoting the notions of the pseudogap as
a manifestation of preformed pairs and the Tc dome as a
manifestation of superconducting phase decoherence at low
doping [16–19]. Inclusion of the nearest-neighbor Coulomb
interaction V favors DDW as the pseudogap state against
SC in the underdoped region, leading to the formation of
the Tc dome structure in the phase diagram [22–27]. There
are three possible sources for considerable V : (i) strongly
correlated metals are generally bad metals with large resistivity
of the order of m · cm and small optical Drude peak.
Therefore the electrostatic screening does not work well in
those systems [14,75–78]. (ii) In mean-field theory, the local
constraint of no-double occupancy at each site is reinforced
only globally. As a result, the expectation value of 〈ninj 〉

FIG. 11. (a) Phase diagram and (b) Raman response in the
extended t-J -V model with an s-wave-like pseudogap SDW instead
of the d-wave-like DDW. Symbols in (b) are experimental data
extracted from cuprates Hg1201 [53,54]. t ′ = −0.25, t ′′ = 0.1, J =
0.25, and V = 0.

is substantially greater than one for the undoped case. In
this sense, V acts to minimize this side effect of mean-field
theory. (iii) More interestingly, upon mapping multiorbital real
materials into a one-band effective low-energy Hamiltonian, a
vacuum-fluctuation-induced effective interaction in the exactly
same form as V appears together with J [63,79]. Like
the superexchange J term, the new “super-repulsion” V

term comes from virtual electron-hopping processes, which
can hardly be screened electrostatically. The strength of
super-repulsion V is strongly material dependent, since the
apical atoms are involved in the intermediate state of the
vacuum charge fluctuation: V/t was estimated to be 0.28,
0.12, and 0.08 for apical oxygen (in La2CuO4), chlorine (in
Sr2CuO2Cl2), and fluorine (in Sr2CuO2F2), respectively [63].
Our present calculations using this range of V yield a revised
phase diagram and electronic spectra consistent with ARPES
and ERS measurements, indeed. Moreover, the realistic value
of t ′ ∼ −0.3 is found to remove the pre-back-bending of Td .
Thus it is necessary to include V and t ′ in addressing the phase
diagram of the real cuprate materials. The strong material
dependence of V renders the stability of DDW to be a material
specific issue.

Following the above argument, V in terms of effective
low-energy Hamiltonian should be considerably strong in
correlated electron systems in general. Like in the cuprates,
V may promote charge instabilities in the iron-based su-
perconductors [78] in competition with SC. We notice that
similar anomalous temperature dependence of ERS in the
B2g channel was discovered in slightly underdoped Ba-122
iron-based superconductor [59] [open circles in Fig. 9(f)].
Together with the similar phase diagrams [Figs. 1(c) and 1(d)],
this suggests the existence of strong competition between
superconductivity and competing orders in iron-pnictide high-
Tc superconductors. Although the cuprates and iron pnictides
appear very different from each other, e.g., in the properties
of their parent materials, Fermi surface topology, forms of
interactions, etc., they both exhibit strong phase competition.
In fact, the active orbital physics in iron pnictides make the C2

and C4 competition more apparent in K-doped BaFe2AS2 or
Na-doped SrFe2AS2 [80–84].

It is noteworthy that the present work has focused on the
competition between SC and DDW/SDW. DDW was shown
to be the leading possible charge instability in the one-band
t-t ′-J -V model [27]. The recent Hall effect measurements
on YBa2Cu3Oy conducted at strong magnetic fields up to
88 tesla to suppress SC suggest that the pseudogap phase is
disconnected from the charge-density wave (CDW) observed
in the underdoped regime but linked to the antiferromagnetic
Mott insulator [6]. This is not inconsistent with the DDW
scenario, as DDW is not an ordinary CDW state whose order
parameter is proportional to 〈c†i ci〉 or real 〈c†i cj 〉 driven by
Fermi surface instability, but a flux or bond-charge-phase
order in terms of complex 〈c†i cj 〉 due to the Mottness. For
some other well-known COs such as loop-current order [32]
and intraunit-cell nematic orders [35], the three-band Emery
model is an appropriate starting point. And it is yet to be
seen whether the competition between SC and any other CO
can produce a revised phase diagram and electronic spectra
consistent with ARPES and ERS measurements in a realistic
microscopic model.
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VII. SUMMARY

We have shown in Ginzburg-Landau theory that the revised
and original phase diagrams in high-Tc superconductors can be
established with the moderate and weak phase competitions,
respectively. We further show that the revised phase diagram
can result from the competition between DDW and SC or
between SDW and SC in mean-field theory of the realistic
t-t ′-t ′′-J -V model. Inclusion of the much neglected feedback
effect of SC on pseudogap can push the back-bending
point from optimal doping to the overdoped regime. The
calculated ARPES and ERS spectral functions reveal that
the back-bending of T ∗ can give a simple explanation of the
observed anomalous temperature dependence of the antinodal
gap via a two-step evolution where the SC and DDW dominate
low- and high-temperature regions, respectively. Our results
imply that it is likely to realize the revised phase diagram in
cuprate superconductors.
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APPENDIX: SOLVING THE EXTENDED t- J-V MODEL

The extended t-J -V model is solved in mean-field-type
theories with the order parameters defined as follows. (i) The
d-wave SC order 1

2 〈ci↑cj↓ − ci↓cj↑〉 = ±
 with + for the
x direction and − for the y direction, (ii) the uniform bond
order and the DDW order 〈c†i cj 〉 = χ ± iD with + for the
x direction of the A sublattice and the y-direction of the B

sublattice, and − otherwise (see Fig. 3), and (iii) the SDW order
1
2 〈c†i↑ci↑ − c

†
i↓ci↓〉 = (−1)im. The interacting terms HJV =

J
∑

〈i,j〉 (�Si · �Sj − 1
4ninj ) + V

∑
〈i,j〉 ninj are decoupled into

the particle-particle and particle-hole channels [23]:

HJV = −Vc

∑
〈i,j〉

[
(c†i↓c
†
j↑ − c

†
j↓c

†
i↑) + H.c.]

−Vd

∑
〈i,j〉

[(χ ± iD)(c†j↑ci↑ + c
†
j↓ci↓) + H.c.]

+ 2Jm
∑

i

(−1)i(c†i↑ci↑ − c
†
i↓ci↓), (A1)

where Vc = J − V and Vd = J/2 + V .

1. Slave-boson approximation

In the slave-boson approximation, the physical electron
operators ciσ = b

†
i fiσ are represented by slave bosons bi

carrying the charge and fermions fiσ representing the spin σ

with the constraint
∑

σ f
†
iσ fiσ + b

†
i bi = 1 [85]. In mean-field

theory, bosons condense bi → 〈bi〉 = √
x with x the hole

concentration. The mean-field Hamiltonian is then expressed
in momentum space as

H =
∑

k

ψ
†
k

⎛
⎜⎜⎜⎝

εk −iDk 
k 0

iDk εk+Q 0 −
k


k 0 −εk −iDk

0 −
k iDk −εk+Q

⎞
⎟⎟⎟⎠ψk , (A2)

where ψk = (fk↑ fk+Q↑ f
†
−k↓ f

†
−k−Q↓)

T
with Q = (π , π )

being the antiferromagnetic wave vector. εk = −2(xt+
Vdχ )(cos kx + cos ky) − 4xt ′ cos kx cos ky − 2xt(cos 2kx+
cos 2ky) − μ with t , t ′, and t ′′ being the nearest-,
next-nearest-, and third-nearest-neighbor hopping con-
stants, respectively. Dk = 2VdD(cos kx − cos ky), and 
k =
2Vc
(cos kx − cos ky). The summation is restricted in the
magnetic Brillouin zone.

The order parameters can be self-consistently determined
by minimizing the free energy

F = −2T

N

′∑
k,η=±

ln

(
2 cosh

βE
η

k

2

)
− μ(1 − x)

+ (4Vdχ
2 + 4VdD

2 + 4Vc

2). (A3)

Here, E
η

k =
√

(ξη

k )2 + 
2
k with ξ

η

k = ( εk+εk+Q

2 ) +
η

√
( εk−εk+Q

2 )
2 + |Dk|2 (η = 1 and −1 for upper and lower

band, respectively) is obtained by unitary transformation with
the 4 × 4 matrix Uk [86].

When the incommensurate DDW order is included, the
phase boundary is determined by the charge order instability
under the random phase approximation (RPA). The RPA
charge susceptibility for DDW is

χRPA(iν,q) = χ0(iν,q)

1 − (
J
4 + V

2

)
χ0(iν,q)

. (A4)

Here, the bare charge susceptibility for DDW is χ0(τ,q) =
〈Tρq(τ )ρ†

q(0)〉0 with ρq(τ ) = ∑
kσ i(sin(kx − qx

2 ) − sin(ky −
qy

2 ))f †
k+qσ (τ )fkσ (τ ). The charge instability is therefore judged

from the divergency of the RPA charge susceptibility at
zero frequency, yielding the simple criterion of D(q) =
1 − ( J

4 + V
2 )χ0(0,q) = 0 with D(q) the denominator at zero

frequency. Here, q = (π,π − δq) with δq = 0, and δq �= 0 for
the commensurate, and incommensurate DDW, respectively.

Figure 12 shows some relevant results at low enough
temperature. The data containing only the nearest-neighbor
hopping are shown in Fig. 12(a). The instability of the
commensurate DDW order occurs at doping density about
x = 0.123 where D(q) = 0 with dq = 0. In comparison, the
incommensurate DDW instability occurs at about x = 0.135
with dq ∼ 0.1π [also see Fig. 6(c) in main text]. This is
well consistent with the previous results obtained by large-N
expansion in absence of superconductivity [27], manifesting
the existence of the incommensurate DDW order. It had
been shown that the incommensurate DDW order is strongly
weakened by introducing the next-nearest-neighbor hopping
[27] [Fig. 6(b) in main text]. Furthermore, the incommensurate
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FIG. 12. (a) The denominator of RPA DDW charge susceptibilityD(q) with different parameters. (a) t ′ = 0, t ′′ = 0, J = 0.3, and V = 0.15;
(b) t ′ = −0.35, t ′′ = 0, J = 0.3, and V = 0.15; and (c) t ′ = −0.25, t ′′ = 0.1, J = 0.3, and V = 0.12. The temperature is fixed at 1 × 10−4.

DDW order may be further suppressed by SC as shown in
Fig. 12(b) [also Fig. 6(d)], no instability of the incommensurate
DDW state is found when the superconductivity is included.
The DDW instability in the SC state with the parameters
presented in the main text is shown in Fig. 12(c), only the
commensurate DDW instability occurs at about x = 0.135.

The spectral function A(k,ω) = − 1
π
�G11(k,iωl → ω +

i�) is calculated with the Matsubara Green function

Gnm(k,iωl) =
4∑

j=1

(Uk)nj
1

iωl − E
j

k

(U †
k )jm. (A5)

The Raman response is described by the following Matsub-
ara correlation function [74]

Rγ (q,τ ) = −〈Tργk
(q,τ )ργk

(−q,0)〉, (A6)

where ργ (q,τ ) = ∑
k f

†
k+q/2(τ )γkfk−q/2(τ ) with the vertex

γk = 1
2 ( ∂2εk

k2
x

− ∂2εk

∂k2
y

) for the B1g channel and γk = ∂2εk

∂kx∂ky
for

the B2g channel. At the zero-momentum transfer, Rγ (0,iωl)
corresponds to what ERS experiments measure

Rγ (0,iωl) =
∑
k,n,m

f
(
En

k

) − f
(
Em

k

)
iωl + Em

k − En
k

|(U†
kγ kUk)nm|2 (A7)

with f (En
k ) the Fermi-Dirac function.

2. Renormalized mean-field theory

The renormalized mean-field theory (RMFT) projects the
Hamiltonian by Gutzwiller factors. The expectation value of
the projected Hamiltonian is

〈H 〉 = −
∑
ijσ

gt tij 〈χ + iD〉 − μ
∑
iσ

〈nσ 〉

− 2

[(
1

2
gxy + 1

4
gz

)
J − V

] ∑
〈i,j〉

〈
〉〈
〉∗

− 2

[(
1

2
gxy + 1

4
gz

)
J + V

] ∑
〈i,j〉

(χ + iD)∗(χ + iD)

+ gzJ
∑
〈i,j〉

〈mi〉〈mj 〉, (A8)

where χ , D, 
, and m are variational parameters (their
sign rules are the same as those specified in the last
subsection). gt , gxy , gz are the Gutzwiller factors for
hopping, transverse and longitudinal spin-exchange terms,
respectively. The expectation value of an operator O in
the projected state is gO〈O〉 with 〈O〉 is the expectation
value in the unprojected state and gO is the Gutzwiller
factor for operator O. Here, g
 = (gt )2, gm = √

gz,
gχ,D = gt .

In fact, the simplest Gutzwiller approximation [17] does
not reproduce the results obtained by variational Mon-
ter Carlo method. For example, the resulting antiferro-
magnetic state extends to high doping density. It can be
improved by taking the feedback effect of the order parameters
into account [64,87]. The modified Gutzwiller factors are

gt (i,j ) = 2x

1 + x
, gxy = gz =

(
2

1 + x

)2

a−7, (A9)

where a = 1 + 4X
(1−x2)2 with X = 2x2(
2 − |χ + iD|2) +

2(|χ + iD|2 + 
2)2.
At finite temperature, one should minimize the free

energy F = 〈H 〉 − T S instead. 〈H 〉 is straightforward by
using finite temperature Wicks theorem. S = S0 + δS with
S0 = −∑

n[f (En) ln f (En) + (1 − f (En)) ln(1 − f (En))] is
the entropy in the mean-field trial state, f is the Fermi-Dirac
distribution function, and δS is the entropy which losses under
projection as [65]

δS = −N

(
x ln

4x

(1 + x)2 + 4m
+ (1 − x) ln

2(1 − x)

1 − x2 + 4m

)
.

(A10)

For the nonmagnetic case, δS is temperature independent and
thus can be ignored.
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