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Quantum hydrodynamic modeling of edge modes in chiral Berry plasmons
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A quantum hydrodynamic model is used to study the edge modes of chiral Berry plasmons in two-dimensional
materials with nonzero Berry flux. A quantum effect of collective electron motions appears in systems with a
high electron density. For the considered edge plasmon, the transcendental equation of the dispersion relation is
solved nonlinearly and semianalytically. We predict a one-way chiral edge state in the presence of the quantum
statistical effect and quantum diffraction effect. Indeed, the plasmon frequencies for counterpropagating edge
modes exhibit different long-wavelength limits. The quantum effect can enhance the chirality of edge plasmons
and their spatial confinement.
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I. INTRODUCTION

Edge plasmons were first discovered in a two-dimensional
electron gas (2DEG) system confined in a liquid-helium
surface [1,2] and under magnetic fields. For edge magnetoplas-
mons (MPs), Aleiner and Glazman have found a new acoustic
edge mode of a 2D electron liquid [3]. Resonant edge MPs in
graphene have been investigated by high-frequency electronic
measurements [4], promoting the use of graphene for quantum
transport experiments and plasmonic applications. Recently,
Jin et al. [5] have revealed the topological origin of edge MPs
and predicted a new type of one-way edge MP in a 2DEG
system modulated by opposite magnetic domains. Topological
plasmons have also been predicted in metallic nanoparticles
[6], which are relevant for manipulating light at the nanoscale.

Edge plasmons without magnetic field have been reported
in graphene systems. In patterned graphene nanoribbons fab-
ricated with high-quality chemical-vapor-deposited graphene
on Al2O3 substrates, peculiar one-dimensional modes propa-
gating along the edges have been observed experimentally [7].
In graphene disks and rectangular nanoresonators, a near-field
optical experiment [8] has justified the larger confinements
of the edge modes compared to surface plasmons, which
could have potential applications in the development of highly
sensitive spectroscopy and detection [9]. Strain in graphene
films acts as a pseudomagnetic field which has opposite signs
for electrons from different valleys. For strained graphene with
time-reversal symmetry, Principi et al. [10] have predicted that
two charged counterpropagating acoustic edge modes exist at
the boundary.

In gapped graphene and transition-metal dichalcogenide
monolayers, there exists a finite net Berry flux when the Fermi
energy lies in the conduction or valence band [11,12]. For
2DEG systems with nonzero Berry flux, Song et al. [13]
have reported theoretically that counterpropagating charge
density waves exist on the boundary and exhibit split energy
dispersions. These edge plasmon acoustic modes are regarded
as chiral Berry plasmons (CBPs) [13]. In gapped graphene

*binguo@whut.edu.cn
†weijiang@hust.edu.cn

with Fermi energy inside the band gap, a pumping with
circularly polarized light can generate a net Berry flux and thus
CBPs [14]. Chiral edge plasmons in the absence of magnetic
field are appealing for realizing optical nonreciprocity at the
subwavelength scale [15,16].

In a high-density 2DEG, a quantum effect (QE) of collective
electron motions is expected to appear. One basic collective
property of a plasma is the tendency for quasineutrality due
to the shielding of any excess charge in the system. It is
evident that the shielding is a collective effect due to a large
number of particles surrounding the charged particle. Haas
has predicted that the classical screening effect still holds in
the quantum (degenerate) case, with the replacement kBT →
EF (thermal energy → Fermi energy) [17]. In a 2DEG, the
shielding length is λF = (2πn0)(−1/2), which is not zero even
at zero temperature due to the Pauli exclusion principle,
compared to a classical plasma. The collective effects are
important in quantum plasmas when the characteristic size
of the system L � λF . Therefore, for a dense plasma, the
collective effects (quantum effects of the collective motion)
become important. There has been great interest in the study
of collective plasma modes with QE [18–21]. Haas et al. have
introduced the quantum hydrodynamic (QHD) theory based on
the nonlinear Schrödinger-Poisson or Wigner-Poisson kinetic
models [18,19]. It has been reported that QEs can stabilize a
classically unstable mode, while sufficiently large QEs tend to
suppress the instability [20]. The reason is that the QE inhibits
the spreading of energy among different waves. Marklund et al.
have predicted a quantum spin effect on the dispersion relation
of a linear wave in plasmas with high densities [21]. Very
recently, the QE on an ion stopping power of dense plasmas
has been reported experimentally [22].

In this paper, we examine the QE on a dispersive relation
and the transverse confinement of edge plasmons propagating
along the boundary of a 2DEG with nonzero Berry flux. By
solving the QHD model coupled with the anomalous velocity
induced by the Berry curvature, we find that in the presence of
QE, acoustic edge plasmons propagate unidirectionally. This
result is in contrast to that of Ref. [13], where frequencies
for oppositely directed edge modes exhibit symmetric long-
wavelength limits. Under the QE, the plasmon frequen-
cies for counterpropagating edge modes exhibit different
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long-wavelength limits. In addition, for the edge plasmon
modes, the QE can also generate direction-dependent fre-
quency gaps and enhance transverse confinement. The outline
of the paper is as follows. Section II presents the QHD model
to describe chiral Berry plasmons with a finite Berry flux. In
Sec. III, we derive the dispersion relation for the edge plasmon
and give the long-wavelength limits of oppositely directed
edge modes. In Sec. IV, the nonlinear and semianalytical
results of the dispersion relation and the transverse confine-
ment are shown and discussed. In Sec. V, the experimental
realization of these theoretical results is briefly discussed.
Finally, a short conclusion is made in Sec. VI.

II. QUANTUM HYDRODYNAMIC MODEL

The system under consideration is a 2DEG in an (x,y)
plane with a finite Berry flux. Candidate materials in-
clude 2D gapped Dirac materials such as graphene and
transition-metal dichalcogenide monolayers [11,12]. Similar
to Refs. [13,14,23], our work considers massive quasielectrons
in materials such as gapped graphene. It has been reported
theoretically [24] and experimentally [25] that graphene on a
proper boron nitride substrate has a gap due to the breaking of
sublattice symmetry. The collective excitations of the 2DEG
at zero temperature (T = 0) are described by the linearized
QHD model [18,19]

∂ne1

∂t
+ n0∇ · V = 0, (1)

∂ue

∂t
= e

m
∇φ − πh̄2

m2
∇ne1 + h̄2

4m2n0
∇(∇2ne1), (2)

φ(r,t) =
∫

d2r′W (r − r′)ne1(r′,t). (3)

Here, ∇ = ∂
∂y

ey + ∂
∂x

ex, ne1 = ne − n0 is the 2D perturbed
electron density with respect to the equilibrium density n0, m

is the effective electron mass, e is the elementary charge, h̄ is
the Planck constant, φ is the electrostatic potential induced
by the electron density fluctuations ne1, W (r − r′) is the
Coulomb interaction, and ue is the normal fluid velocity. Gauss
units are adopted throughout this paper without specification.
The velocity field V includes not only the ordinary plasmon
velocity ue but also an additional anomalous velocity Va due
to the Berry flux [13],

V = ue + Va, Va = eF

h̄
[(∇φ) × ez]. (4)

Here, F = ∑
i

∫
d2k�i(k)f 0

i (k)/(2π )2 is the dimensionless
Berry flux [11,13], where f 0

i (k) is the equilibrium band i

occupancy [13], and �i(k) is the Berry curvature for band i

[11]. Based on Ref. [13], we take 0 � F � 1. Note that the
final two terms on the right-hand side of Eq. (2) are regarded
as QE [18,19], which are respectively the quantum statistical
effect (QSE) and quantum diffraction effect (QDE) due to
the Bohm force. In degenerate electron gas, the QSE comes
from the Fermi-Dirac pressure due to the Pauli exclusion
principle [17]. The QDE is a quantum force associated with the
Bohm–de Broglie potential, which causes wave dispersion at
the nanoscale [17,26]. In addition, at absolute zero temperature

x

yn = 0e  V = 0
0

ω+edge
ω-edge

(a) (b)

FIG. 1. (a) Schematic illustration of a metal-vacuum interface.
Chiral Berry plasmons propagate along the edges of a two-
dimensional metal surface with a finite Berry flux. (b) Electron density
fluctuations for edge plasmons, where surface charge accumulation
near the boundary x = 0 results from the anomalous velocity flow
(white solid lines).

considered here, the damping effect is neglected in Eq. (2) due
to Pauli blocking [19,27].

It is necessary to discuss the justification of Eq. (2). Based
on Refs. [10,28,29], graphene has been assumed to be in the
Fermi-liquid regime and is regarded as a perfect fluid, where
the electron density, velocity, and pressure can be described
by linearized QHD equations [19]. The QHD is derived from
the Wigner-Poisson system, where the first three moments of
the Wigner function integrated over the velocity space give the
definitions of fluid density, velocity, and pressure. Then, the
continuity and the momentum balance equations are obtained.
These fluid equations are closed by the pressure term including
the quantum statistical pressure and the quantum diffraction
pressure term. The last term in Eq. (2) is the quantum diffrac-
tion pressure term. It originates from the Wigner distribution
for a quantum mixture of states ψα = √

ne exp(iSα/h̄), where
α is the occupation band, Sα is a phase related to the fluid
velocity, and

√
ne is the amplitude for assuming all amplitudes

are the same. The quantum diffraction pressure is obtained
as PQ = h̄2/(2m)[(∇√

ne)2 − √
ne∇2√ne]. The last term in

Eq. (2) is derived in the linearized model with ne = ne1 + n0

and ne1 � n0.

III. EDGE MODES

To illustrate the features of edge plasmons, we consider
a boundary of the 2DEG at x = 0, as shown in Fig. 1(a).
Outside the 2DEG (x < 0), the electron density ne(r,t) and
total velocity V(r,t) are zero, while ne(r,t) �= 0 and V(r,t) �= 0
inside the 2DEG region (x � 0). For a given edge plasmon
mode, we plot in Fig. 1(b) the surface charge accumulation
near the boundary x = 0 which is caused by an anomalous
velocity flow. For this edge plasmon propagating as a plane
wave along the y axis with frequency ω and wave vector q,
the potential, perturbed density, and velocity can be written as

φ(r,t) = φq(x) exp(iωt − iqy),

ne1(r,t) = ne1q(x) exp(iωt − iqy),

ue(r,t) = ueq(x) exp(iωt − iqy),

V(r,t) = Vq(x) exp(iωt − iqy), (5)

respectively. Accordingly, Eq. (1) becomes ne1(r) = −n0∇ ·
V(r,t)/iω. Further, using the steplike property of V(r,t)
[V(r,t) �= 0 for x � 0 and V(r,t) = 0 for x < 0], a jump
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condition for the x derivative of φq(x) can be obtained [13],
which reads

∂φq

∂x

∣∣∣∣
x=0+

− ∂φq

∂x

∣∣∣∣
x=0−

= 1

iω

(
∂Wq

∂x

∣∣∣∣
x=0−

− ∂Wq

∂x

∣∣∣∣
x=0+

)
n0Vx

∣∣∣∣
x=0+

. (6)

Here, Vx |x=0+ = uex |x=0+ + Vax |x=0+ and Wq = −e
∫

dk exp
(ikx)/

√
q2 + k2.

Following Refs. [2,13], we focus only on the long-
wavelength limit q � kF = √

2πn0 with kF the Fermi wave
number, where Wq can be simplified as

Wq(x) ≈ −4πe

∫
dk

2π

|q|
k2 + 2q2

exp(ikx)

= − 4πe

2
√

2
exp(−

√
2qx). (7)

By substituting the simplified Wq(x) into Eq. (3), we find

φq(x) =
∫

dx ′Wq(x − x ′)ne1q(x ′). (8)

By means of the convolution theorem, we obtain a differential
equation of φq(x) on either side of the boundary (x = 0),

(
∂2
x − 2q2)φq(x) = 0, x < 0,(

∂2
x − 2q2

)
φq(x) = 4πe|q|ne1q (x), x � 0. (9)

This equation has bounded solutions,

φq(x) = φ1 exp(κ1x), x < 0,

φq(x) = φ2 exp(−κ2x), x � 0, (10)

where κ1 = √
2|q| and the decaying wave vector κ2 > 0 are

determined as follows. Applying ∂/∂t to the continuity relation
in Eq. (1) and substituting ∂V

∂t
= ∂ue

∂t
+ ∂Va

∂t
into Eq. (1), we get

∂2ne1

∂t2
= − e

m
n0∇2φ + πh̄2n0

m2
∇2ne1 − h̄2

4m2
∇2(∇2ne1).

(11)

Using the plane-wave forms of ne1(r,t) and φ(r,t) and the
relation between ne1q and φq in Eq. (9), we can express ne1(r,t)
on the 2DEG side (x � 0) as

ne1(r,t) = φ2

4πe|q|
(
κ2

2 − 2q2
)
e−κ2xeiωt−iqy . (12)

Substituting this expression into Eq. (11) we yield

1 = 2ω2
P (q)

ω2

κ2
2 − q2

κ2
2 − 2q2

− AS

κ2
2 − q2

ω2
+ AD

(
κ2

2 − q2
)2

ω2
,

(13)
where ωP (q) =

√
2πn0e2|q|/m is the bulk plasmon frequency

[2] without QE and Berry flux, and AS = πh̄2n0/m2 and AD =
h̄2/4m2 are the coefficients of the QSE- and QDE-related
terms.

To determine the dispersion relation of edge plasmons we
need another equation derived from the continuity condition

of φ and the jump boundary condition Eq. (6),
√

2|q| + κ2

= 2ω2
p(q)

ω2
κ2 − AF

q2 sgn(q)

ω

−AQ

κ2
(
κ2

2 − 2q2
)

ω2
+ AD

κ2
(
κ2

2 − 2q2
)(

κ2
2 − q2

)
ω2

.

(14)

Here, AF = 4πe2F/h̄ is the coefficient of the chiral Berry
term. The two coupled nonlinear equations, Eqs. (13) and (14),
are solved semianalytically to obtain the decaying wave vector
κ2 and frequency ω for a given wave vector q. From Eq. (14)
one can see that the dispersion relation of edge plasmons
depends on the propagating direction. We denote the frequency
of forward-propagating (backward-propagating) edge modes
with q > 0 (q < 0) as ω−edge (ω+edge). Without QE, ω+edge

has a faster propagation than ω−edge and merges with the bulk
plasmon at a threshold frequency [13].

We can obtain the limits of both ω and κ2 for q → 0− and
q → 0+ for a finite AF ,

κ2|q → 0− = O(q4),

ω|q → 0− = 2.1ω2
p/(AF |q|),

κ2|q → 0+ = 0.7q,

ω|q → 0+ = 0.35AF q. (15)

Without QE or AF = 0, one has the long-wavelength limit
ω|q → 0 = √

2/3ωp(q). Therefore, the QE in CBPs with a
finite Berry flux turns the bidirectional acoustic edge plasmon
into a unidirectional one. Note that the propagating velocity of
unidirectional edge modes depends only on the Berry flux
through AF . The difference in long-wavelength limits for
the two propagating directions arises from the singularity of
nonlinear Eqs. (13) and (14) at q = 0.

For a two-dimensional bulk plasmon with perturbed elec-
tron density ne1 ∼ exp(iωt − iq · r), the dispersion relation
derived from Eqs. (1)–(3) reads ωq(bulk)2 = ω2

P (q) + ASq
2 +

ADq4. In the considered range of wave vector, there is only a
tiny difference between ωq(bulk) and ωP (q).

IV. RESULTS AND DISCUSSION

In the following, we present the semianalytical solutions of
Eqs. (13) and (14), where the MATLAB solver function is used to
solve the two coupled transcendental equations. The electron
density in equilibrium and the effective mass are taken to be
the same as in Ref. [13], n0 = 6 × 1010 cm−2 and m = 0.03me

as measured in graphene [30], with me the free-electron mass.
The plasmon frequency ω is in units of EF /h̄ with EF =
h̄2k2

F /2m the Fermi energy.
In Fig. 2(a), the dispersion relations of edge plasmons

in the presence/absence of QE are plotted as curves with
triangles/circles. The dimensionless Berry flux is set at F = 1.
Without the QE, acoustic edge plasmons appear in the long-
wavelength limit and exhibit a direction-dependent dispersion
(i.e., the chirality). This behavior agrees with that in Ref. [13].
The ω+edge acoustic mode has a threshold frequency ωth

at which it merges with the bulk plasmon mode. We find
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FIG. 2. (a) Dispersion of edge plasmons without (circles) and
with (triangles) the quantum effect (QE), compared to bulk plasmon
dispersion ωP (q) (squares). (b) Zoom-in of the dispersion near q = 0.
Note that different frequency scales are used in the left and right
panels. The inset in (b) shows ωP and ω±edge without the QE near
q = 0. The dimensionless Berry flux is fixed at F = 1.

that above ωth0 and for q < −0.0028kF the ω+edge mode
reappears, with a frequency notably higher than ωP (q). Such
a mode cannot be obtained in the first-order q approximation
(AF q � ωP ) in Ref. [13]. When the QE is considered, the

acoustic edge plasmon mode exists only for q > 0. The ω+edge

mode has a maximum frequency in the vicinity of q = 0,
and decreases with increasing |q| for |q|/kF � 0.0024. Both
ω+edge and ω−edge dispersion curves intersect the bulk plasmon
dispersion at the threshold frequency ωth = 0.19EF /h̄ and
q/kF = ±9.77 × 10−4 and have a frequency gap within
0.0024 < |q|/kF � 0.0033.

The dispersion curves near q = 0 are shown more clearly in
Fig. 2(b), which confirms the limit behaviors in Eq. (15). With-
out the QE, ω+edge and ω−edge are symmetric in the vicinity of
q = 0 with a

√|q| dependence and tend to ωP at q = 0 (see the
inset). In the presence of QE, the one-way acoustic edge mode
ω−edge has a linear dispersion rather than a

√|q| dependence.
This one-way edge plasmon mode is caused by the QE and
Berry flux, which presents some similar characters with the
one-way edge magnetoplasmon mode reported in Ref. [5]. The
ω+edge is constant in the considered q range. The chirality is
manifested in the splittings of the ω±edge mode for counterprop-
agating edge plasmons near q = 0. Such splittings have poten-
tial applications in subwavelength optical nonreciprocity [15].

The transverse confinements of these edge plasmon modes
are shown in Fig. 3 under the same parameters as in Fig. 2.
Without the QE, the ratio |q|/κ2 for the acoustic edge mode
ω+edge increases with |q| and diverges at q/kF = −0.0013. In
contrast, for the mode ω−edge, the ratio |q|/κ2 decreases with
|q| and tends to a constant. The presence of the QE enhances
the transverse confinement of the ω−edge acoustic mode for
q/kF > 4.9 × 10−4. For the ω+edge mode, the ratio |q|/κ2 is
divergent at q = 0− and decreases quickly with increasing |q|.
In the frequency range [0,ωth], the ω+edge mode has a strong
confinement. These features can be ascribed to the coupling of
the quantum terms and the chiral term shown in the following
equation for a finite AF ,

ω = ω2
P

(−2.1 + κ2/|q| + κ2
2 /q2

)
/(AF q)

+ AF

(
0.35q2 − 0.35κ2

2

)
/q

+ AS

(−0.7κ4
2 /q2 − κ3

2 /|q| + 1.3κ2
2

+ κ2|q| − 2.1q2
)
/(AF q)

+ AD

(
0.7κ6

2 /q2 + κ5
2 /|q| − 3.2κ4

2 − 3κ3
2 |q|

+ 4.6κ2
2 q2 + 2κ2q

2|q| − 2.1q4
)
/(AF q). (16)

FIG. 3. Transverse confinement length of an edge plasmon expressed as |q|/κ2 for (a) ω+edge and (b) ω−edge modes, without and with QE.
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FIG. 4. (a) Frequency and (b) transverse confinement length of
edge plasmons as functions of the dimensionless Berry flux F ,
without and with QE. The transverse confinement length is expressed
as |q|/κ2. |q|/kF is fixed at 0.0098.

This expression is regarded as a semianalytic dispersion
relation, where κ2 is determined from the solutions of two
coupled polynomial functions of the fourth and fifth orders
[Eqs. (13) and (14)]. The significantly enhanced transverse
localization is preferable for the realization of subwavelength
optical nonreciprocal devices in the THz range with no
magnetic field.

To demonstrate the effect of Berry flux F on the edge
plasmons, we plot in Fig. 4 the variation of frequency ω±edge

and transverse confinement length |q|/κ2 as a function of F .
The wave vector is fixed at q/kF = ±0.0098. Without the QE,
the splitting ω±edge modes and their confinement length agree
well with those in Ref. [13], expect for the reappearance of
ω+edge for F � 0.55. This ω+edge mode is a nonlinear solution
of Eqs. (13) and (14). Its frequency and confinement length
increase with F . Note that this ω+edge mode has a stronger
confinement than the corresponding ω−edge mode. When the
QE turns on, ω+edge vanishes for F < 0.55 while ω−edge

shows an oscillation (around the curve without QE) in both
the frequency and the confinement length. The complicated
features can be seen from Eq. (16), where the frequency
is a polynomial of the decay constant κ2 with F -dependent
coefficients.

Finally, we compare the chiral edge plasmons under the
QE with the MPs. Fetter [2] has investigated the MPs based
on a conventional hydrodynamic model. It was found that the
classical statistical pressure term with strength ∝sq has almost
no effect on the edge modes in the limit sq � ωP , where s2 =
m−1(∂p/∂n). In the QHD model, the effect of the conventional
pressure term becomes the QE including the QSE and QDE.
The QE changes greatly the features of the edge modes, even in
the limit sq � ωP (which becomes AQq2 � ω2

P and ADq4 �
ω2

P in the present work). The relative importance of QE for a
degenerate case is represented by the dimensionless quantum
coupling parameter, which is the ratio of the potential energy
and the kinetic energy �Q ∼ h̄ωP /EF [19,20], where kB is the
Boltzmann constant.

In the degenerate case considered here, the typical kinetic
energy of a particle is on the order of the Fermi energy and
is almost temperature independent [17]. Thus the quantum
coupling parameter is immune from the temperature effect.
The results presented in this work are not changed by finite
temperature effects in the degenerate case. The more electrons
are occupied in a fixed region, the more their wave functions
are restricted. This indicates that a high electron density will
lead to the enhancement of the Fermi pressure due to the
exclusion principle. When the density is high enough, �Q ∼ 1,
corresponding to a Landau length comparable to the de Broglie
wavelength. In this case the QE is expected to appear [19,20].
There are two points why the classical state and quantum
state differ significantly. First, the quantum statistical pressure
(�Q ∼ 1 and h̄ �= 0) is distinct from the classical statistical
pressure (�Q → 0 and h̄ → 0), because the phase-space
representatives of the quantum states are more restricted than
those of the classical state [31–33]. Second, the QDE is
responsible for quantum tunneling, which is a pure quantum
effect absent in classical statistical pressure [20].

V. EXPERIMENTAL REALIZATION

In gapped Dirac materials, a pumping with circularly
polarized light can generate a nonzero net Berry flux [13].
The finite Berry flux yields a chiral Berry edge plasmon as
shown in Fig. 1(b). When the QE is added to this chiral
Berry edge plasmon, the bidirectional acoustic edge plasmon
transmits to the unidirectional one. These one-way chiral edge
modes without magnetic fields propose different paradigms
for realizing optical nonreciprocity in the terahertz range
[15]. An edge plasmon mode has been determined by optical
absorption [13,34]. Near-field techniques [34], such as photon
scanning tunneling microscopy (PSTM), can be employed to
measure the optical absorption on a metal surface. PSTM is
employed to scan the near-field optical microscope and map the
near-field intensities with the sample grown on a glass prism.
Prism coupling has been used to enhance the momentum of
incident light [35]. Barnes et al. have predicted that the surface
plasmon dispersion relation can be directly imaged using a
modified prism coupling technique [34], where both the band
gap (indicated by a dark region) and the edge plasmon region
(more intensive light) can be seen in the optical absorption
image. This technique can be used to experimentally reveal
the existence of different one-way chiral edge modes with an
energy gap, obtained in this theoretical work. Therefore, we
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conclude that the phenomena discussed in this work are within
experimental accessibility.

VI. CONCLUSIONS

In summary, we have adopted a quantum hydrodynamic
theory to study chiral edge plasmons in a two-dimensional
electron gas with a finite Berry flux. The transverse decay
length and the edge plasmon frequency are obtained by
nonlinearly and semianalytically solving two coupled tran-
scendental equations. The presence of QE alters greatly the
dispersion and the transverse confinement of edge plasmons.
The acoustic edge plasmons propagate unidirectionally and
can have a stronger transverse confinement. The QE also leads

to frequency gaps for edge plasmons propagating in either
direction. The edge plasmon modes exhibit different long-
wavelength limits for forward- and backward-propagating
directions, which is in contrast to the case without the
QE. These one-way chiral edge modes without magnetic
field will elucidate different paradigms for realizing optical
nonreciprocity in the terahertz range, avoiding the current
requirement for large magnetic-based devices.
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