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Phase boundaries of power-law Anderson and Kondo models: A poor man’s scaling study
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We use the poor man’s scaling approach to study the phase boundaries of a pair of quantum impurity models
featuring a power-law density of states ρ(ε) ∝ |ε|r , either vanishing (for r > 0) or diverging (for r < 0) at the
Fermi energy ε = 0, that gives rise to quantum phase transitions between local-moment and Kondo-screened
phases. For the Anderson model with a pseudogap (i.e., r > 0), we find the phase boundary for (a) 0 < r < 1/2,
a range over which the model exhibits interacting quantum critical points both at and away from particle-hole
(p-h) symmetry, and (b) r > 1, where the phases are separated by first-order quantum phase transitions that are
accessible only for broken p-h symmetry. For the p-h-symmetric Kondo model with easy-axis or easy-plane
anisotropy of the impurity-band spin exchange, the phase boundary and scaling trajectories are obtained for
both r > 0 and r < 0. Throughout the regime of weak-to-moderate impurity-band coupling in which poor
man’s scaling is expected to be valid, the approach predicts phase boundaries in excellent qualitative and good
quantitative agreement with the nonperturbative numerical renormalization group, while also establishing the
functional relations between model parameters along these boundaries.
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I. INTRODUCTION

The Kondo problem—the question of how an impurity
local moment becomes screened at low temperatures by
the conduction electrons of a host metal—has been highly
influential in stimulating the development of theoretical and
numerical methods for treating strongly correlated condensed
matter [1]. Perturbative treatments of the spin-flip scattering
between local and delocalized spins necessarily break down
below a characteristic Kondo temperature scale, giving rise to
a complex many-body problem. Nonetheless, much valuable
understanding of the Kondo problem has come from per-
turbative renormalization-group (RG) [2,3] and perturbative
scaling [4,5] approaches. These were distilled into their
simplest form in the poor man’s scaling of Anderson [5].

In poor man’s scaling, electron states far from the Fermi
energy are progressively eliminated as the effective bandwidth
is reduced with a compensating adjustment of a dimensionless
measure of the effective impurity-band exchange coupling.
The evolution of this coupling to ever larger values with
decreasing bandwidth is suggestive of approach to a fully
screened strong-coupling fixed point, although the scaling
approach breaks down once the effective bandwidth drops
below the order of the Kondo temperature. More sophisticated
but generally less intuitive methods (the first historically being
the numerical renormalization group or NRG [6]) were devised
to confirm that the infrared fixed point indeed corresponds to
infinite exchange [1]. Poor man’s scaling was subsequently
extended to the Anderson model with impurity Coulomb
interaction U = ∞ [7,8] and the n-channel Kondo model [9],
where it correctly predicts the existence of a stable RG fixed
point at an intermediate value of the exchange coupling that
lies within the perturbative domain for n � 2.
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More recently, there has been much interest in Kondo
physics in settings where the band density of states has a
power-law variation ρ(ε) ∝ |ε|r in the vicinity of the Fermi
energy ε = 0. Pseudogaps described by exponents r > 0 can
be found in a variety of materials including heavy-fermion
and cuprate unconventional superconductors [10,11], zero-gap
bulk [12] and engineered [13] semiconductors, and various
(quasi-)two-dimensional systems such as graphite [14,15] and
graphene [16]. An exponent r = − 1

2 arises near a band edge in
one-dimensional leads, while values −1 < r < 0 can describe
disordered Dirac fermions in two dimensions [17,18]. Several
theoretical techniques that have proved powerful for describing
quantum impurities in metallic hosts, including the Bethe
ansatz, bosonization, and conformal field theory, cannot be
applied for a power-law density of states. However, power-law
variants of the Kondo impurity model and the corresponding
Anderson model have been extensively studied using other
techniques such as perturbative scaling [19–23], large-N
approaches [19,24–27], the NRG [22,28–35], the perturbative
RG [36–38], and the local-moment approach [39–41]. Due to
the depletion of the conduction-band density of states near
the Fermi energy, these pseudogap models feature quantum
phase transitions [19] between a local-moment phase for weak
impurity-band couplings, in which the impurity spin survives
unscreened down to zero temperature, and one or more strong-
coupling Kondo phases in which the impurity spin undergoes
complete or partial many-body screening (depending on the
presence or absence of particle-hole symmetry) [31].

Of all the techniques so far applied to the pseudogap
Anderson and Kondo models, only the NRG has proved
capable of capturing all the key features of the phase diagram,
including the existence of four qualitatively different ranges
of the band exponent r [31]. However, as is true for many
computational methods, the NRG’s reliability comes at the
price of laborious implementation and a loss of physical
transparency. Together, these make it difficult to obtain simple
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intuition about how two fundamentally opposing tendencies—
growth of host correlations engendered by a local dynamical
degree of freedom, and the weakening of host-impurity
interaction due to depression of the low-energy density of
states—compete to create nontrivial temperature dependencies
of physical properties and to shape phase boundaries. The
local-moment approach [42] reproduces rather well the phase
boundaries of the pseudogap Anderson model with band
exponents 0 < r < 1, but its analytical insights are confined to
situations of strict particle-hole symmetry [39,40] or the limit
r → 0+ [41].

It is highly desirable to identify another primarily analytical
approach that can shed light more widely on the functional
relations describing the phase boundaries in challenging quan-
tum impurity problems that feature both (i) more than one inde-
pendent coupling that flows under the reduction of the effective
bandwidth, and (ii) unstable quantum critical points arising
from competing flows in the multidimensional parameter space
of effective couplings. A promising candidate is poor man’s
scaling [5], which has previously been established to account
well for the possible ground states of many quantum impurity
problems and to provide an approximate description of the
physics on different energy/temperature scales in terms of a
flow through a space of renormalized Hamiltonian couplings.
The method yields a set of ordinary differential equations
describing the renormalization of Hamiltonian couplings.
These differential equations can in some cases be integrated
in closed form; failing that, their solutions can be explored via
numerical iteration from different choices of bare couplings.

In this paper, we critically evaluate the adequacy of poor
man’s scaling for describing phase boundaries in the Anderson
model (with an arbitrary on-site repulsion U ) and in the
particle-hole-symmetric Kondo model with easy-axis or easy-
plane anisotropy of the impurity-band exchange coupling.
For each model, we generalize previous treatments to obtain
coupled differential equations for the evolution of effective
couplings under progressive reduction of the conduction
bandwidth. These equations are valid for any density of states
of the form ρ(ω) ∝ |ω|r , whether r is positive, negative, or
zero. (The case r = 0 describes conventional metallic hosts.)
We obtain analytical expressions for the locations of phase
boundaries for different parameter ranges of the pseudogap
(r > 0) Anderson and power-law (r �= 0) anisotropic Kondo
models. Comparison with nonperturbative NRG results shows
that throughout the perturbative regime where the method
is well founded, poor man’s scaling correctly captures the
functional relations between model parameters along various
parts of the phase boundaries, and also reproduces the absolute
location of the boundaries with good quantitative accuracy.
The availability of proven analytical expressions obviates the
need for further NRG calculations to understand and make
predictions about possible realizations of these models.

The rest of the paper is organized as follows. Section II
treats the Anderson model with a power-law density of states.
Section II A defines the model and summarizes the phase
diagram that has been established through previous work.
The poor man’s scaling equations are derived in Sec. II B.
Section II C compares analytic approximations for the phase
boundary with NRG results for superlinear (r > 1) densities
of states and various ranges of the other model parameters,

while Sec. II D does the same for 0 < r < 1. The anisotropic
Kondo model is the subject of Sec. III. Section III A presents
the poor man’s scaling equations along with a preliminary
analysis. Phase boundaries are analyzed for 0 < r < 1

2 and
−1 < r < 0 in Secs. III B and III C, respectively. Section IV
contains a brief discussion of strengths and weaknesses shown
by the poor man’s scaling approach.

II. POWER-LAW ANDERSON MODEL

A. Model Hamiltonian

The Anderson impurity model is described by the Hamil-
tonian [43]

ĤA = Ĥband + Ĥimp + Ĥhyb, (1)

where

Ĥband =
∑
k,σ

εkc
†
kσ ckσ (2)

with σ = ±1 (or σ = ↑, ↓) describes a noninteracting con-
duction band having dispersion εk;

Ĥimp = εd n̂d + Un̂d↑n̂d↓ (3)

with n̂d = n̂d↑ + n̂d↓ and n̂dσ = d†
σ dσ describes an impurity

having level energy εd and on-site Coulomb interaction U ; and
the hybridization term

H̃hyb = 1√
Nk

∑
k,σ

(Vkd
†
σ ckσ + H.c.) (4)

accounts for impurity-band tunneling. Nk is the number of unit
cells in the host metal, i.e., the number of inequivalent k values.
Without loss of generality, we take the hybridization matrix
element Vk to be real and non-negative. For compactness of
notation, we drop all factors of the reduced Planck constant h̄,
Boltzmann’s constant kB , and the impurity magnetic moment
gμB .

A mapping to an energy representation where

Ĥband =
∑

σ

∫
dε ε c†εσ cεσ , (5)

Ĥhyb =
∑

σ

∫
dε

√
�̄(ε)/π (εc†εσ dσ + H.c.) (6)

shows that the conduction-band dispersion εk and the hy-
bridization matrix element Vk affect the impurity degrees
of freedom only in combination through the hybridization
function [44]

�̄(ε) ≡ π

Nk

∑
k

V 2
k δ(ε − εk). (7)

To focus on the most interesting physics of the model, we
assume a simplified form

�̄(ε) = � |ε/D|r 	(D − |ε|), (8)

where 	(x) is the Heaviside function and � is the hybridization
width. The primary focus of this work is cases r > 0 in which
the hybridization function exhibits a power-law pseudogap
around the Fermi energy. We will also briefly discuss r = 0,
representing a conventional metallic host.
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FIG. 1. Schematic εd -� phase diagrams of the pseudogap An-
derson model [Eqs. (1)–(8)] for band exponents (a) 0 < r < 1

2 , (b)
r � 1

2 . Generically, the system falls into either a local-moment phase
(LM) or one of two asymmetric strong-coupling phases (ASC±).
However, there is also a symmetric strong-coupling phase (the line
labeled SSC) that is reached only for 0 < r < 1

2 under conditions of
strict particle-hole symmetry (εd = − 1

2 U ) and for sufficiently large
hybridization widths �.

One way that a hybridization function of the form of Eq. (8)
can arise is from a purely local hybridization matrix element
Vk = V � 0 combined with a density of states (per unit cell,
per spin orientation) varying as

ρ(ε) ≡ N−1
k

∑
k

δ(ε − εk) = ρ0|ε/D|r	(D − |ε|) (9)

with ρ0 = (1 + r)/(2D), in which case � = πρ0V
2. However,

all results below apply equally to situations in which the
k dependence of the hybridization contributes to the energy
dependence of �̄(ε).

The assumption that �̄(ε) exhibits a pure power-law
dependence over the entire width of the conduction band is a
convenient idealization. More realistic hybridization functions
in which the power-law variation is restricted to a region
around the Fermi energy exhibit the same qualitative physics,
with modification only of nonuniversal properties such as
the location of phase boundaries and the value of the Kondo
temperature.

In the metallic (r = 0) Anderson model, any value � >

0 places the system in its strong-coupling phase, where
the impurity degrees of freedom are completely quenched
at T = 0. The situation for pseudogapped hybridization
functions (r > 0) is much richer, as summarized in the
phase diagrams shown in Fig. 1 for cases U > 0 of on-site
Coulomb repulsion. The most notable feature is the existence
within a region −U < εd < 0, � < �c(r,U,εd ) of a local-
moment (LM) phase within which the impurity retains an
unquenched spin degree of freedom down to T = 0. There
are also three different strong-coupling phases, distinguished
by their ground-state electron number Q (measured from
half filling): a symmetric strong-coupling (SSC) phase with
Q = 0, reached only for 0 < r < 1

2 under the condition εd =
− 1

2U for strict particle-hole (p-h) symmetry; and a pair of
asymmetric strong-coupling phases ASC+ and ASC− having
Q = 1 and Q = −1, respectively. The ranges 0 < r � 1

2 and

r � 1
2 can both be further subdivided based on the nature

of the quantum phase transitions separating the phases. For
a compact summary, the reader is referred to Sec. II B1 of
Ref. [45].

B. Derivation of poor man’s equations

This section presents a poor man’s scaling treatment of
the Anderson Hamiltonian with a power-law hybridization
function. Jefferson [7] and Haldane [8] provided scaling
treatments of the metallic case r = 0 valid in the limit U � D.
These were subsequently extended to general values of U

(Ref. [1]), although the analysis neglected the renormalization
of U . Reference [21] presented scaling equations for the
pseudogap case r > 0 with U = ∞. Below, the scaling
analysis is generalized to arbitrary values of r and U . Two of us
have previously presented a similar poor man’s scaling analysis
of the Anderson-Holstein impurity model with a power-law
hybridization [45]. The treatment of the Anderson model is
somewhat simpler, and as we will see, the resulting scaling
equations are amenable to approximate integration in several
physically interesting limits.

We start with the Anderson Hamiltonian written in the form

Ĥ ′
A = Ĥband + Ĥimp + Ĥ ′

hyb, (10)

where Ĥband and Ĥimp are as defined in Eqs. (2) and (3),
respectively, but with Ĥhyb in Eq. (4) replaced by

Ĥ ′
hyb = 1√

Nk

∑
k,σ

{[V0,k(1 − n̂d,−σ )

+V1,k n̂d,−σ ]d†
σ ckσ + H.c.}, (11)

with hybridization functions

�̄τ (ε) = π

Nk

∑
k

V 2
τ,k δ(ε − εk) = �τ |ε/D|r 	(D − |ε|)

(12)
for τ = 0, 1 having the same power-law dependence as
�̄(ε) defined in Eq. (8). At the bare Hamiltonian level, one
expects the hybridization V0,k between the empty and singly
occupied impurity configurations to be identical to the matrix
element V1,k between the singly occupied and doubly occupied
impurity configurations. However, this degeneracy might be
broken under the scaling procedure.

Following Haldane [8], we focus on many-body states
|0〉, |σ 〉 = d†

σ |0〉, and |2〉 = d
†
↑d

†
↓|0〉 formed by combining the

conduction-band ground state (having Nk electrons of energy
εk < 0) with one of the four possible configurations of the
impurity level. Neglecting for the moment the effect of the
hybridization (Ĥ ′

hyb), the energies of these states are denoted
E0, E1 = E0 + εd , and E2 = E1 + εd + U = 2E1 − E0 + U .

We now consider the effect of an infinitesimal reduction in
the half-bandwidth from D to D̃ = D + dD, where dD < 0.
The goal is to write a new Hamiltonian H̃ ′

A similar in form
to Ĥ ′

A but retaining only conduction-band degrees of freedom
having energies |εk| < D̃ and with parameters ε̃d , Ũ , and Ṽτ,k
adjusted to account perturbatively for the band-edge states that
have been eliminated.

Let K+ be the set of wave vectors k describing particle-
like states having energies D̃ < εk < D, and K− be the
set of wave vectors describing hole-like state with energies
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−D < εk < −D̃. Virtual tunneling of an electron from a K−
state into the empty impurity level transforms the state |0〉 to

|0̃〉 = |0〉 +
∑

σ

1√
Nk

∑
k∈K−

V0,k

|εk| + E1 − E0
ckσ |σ 〉 + O(V 2)

(13)
with energy

Ẽ0 = E0 − 2

Nk

∑
k∈K−

V 2
0,k

|εk| + E1 − E0
+ O(V 3)

� E0 − |dD|
π

2�̄0(−D)

D + εd

+ O(V 3). (14)

Here, O(V n) schematically represents all processes involving
a product of least n factors Vτj ,kj

. Similarly, virtual tunneling
of an electron from the doubly occupied impurity level into a
K+ state transforms |2〉 to

|2̃〉= |2〉 +
∑

σ

σ√
Nk

∑
k∈K+

V1,k

εk + E1 − E2
c
†
kσ |−σ 〉 + O(V 2)

(15)

with energy

Ẽ2 = E2 − 2

Nk

∑
k∈K+

V 2
1,k

εk + E1 − E2
+ O(V 3)

� E2 − |dD|
π

2�̄1(D)

D − U − εd

+ O(V 3). (16)

Finally, virtual tunneling of an electron into the singly occupied
impurity from a K− state or from the singly occupied level into
a K+ state transforms |σ 〉 to

|σ̃ 〉 = |σ 〉 − σ√
Nk

∑
k∈K−

V1,k

|εk| + E2 − E1
ck,−σ |2〉

− 1√
Nk

∑
k∈K+

V0,k

εk + E0 − E1
c
†
kσ |0〉 + O(V 2) (17)

with energy

Ẽ1 = E1 − 1

Nk

∑
k∈K−

V 2
1,k

|εk| + E2 − E1

− 1

Nk

∑
k∈K+

V 2
0,k

εk + E0 − E1
+ O(V 3)

� E1 − |dD|
π

[
�̄1(−D)

D + U + εd

+ �̄0(D)

D − εd

]
+ O(V 3).

(18)

The O(V 2) terms in each of the above states |φ̃〉 include ones
required to enforce normalization, i.e., 〈φ̃|φ̃〉 = 〈φ|φ〉 = 1.

The modified energies can be used to define effective
Hamiltonian parameters ε̃d = Ẽ1 − Ẽ0 and Ũ = Ẽ2 + Ẽ0 −
2Ẽ1. At the same time, for each k in the retained portion of
the band (i.e., satisfying |εk| < D̃), the hybridization matrix
element V0,k must be replaced by

Ṽ0,k =
{√

Nk 〈0̃|ckσ Ĥ ′
A|σ̃ 〉, for εk > 0,

−√
Nk 〈σ̃ |c†kσ Ĥ ′

A|0̃〉, for εk < 0,
(19)

and V1,k must be replaced by

Ṽ1,k =
{−σ

√
Nk 〈σ̃ |ck,−σ Ĥ ′

A|2̃〉, for εk > 0,

σ
√

Nk 〈2̃|c†k,−σ Ĥ ′
A|σ̃ 〉, for εk < 0.

(20)

It is straightforward to show that

Ṽτ,k = Vτ,k + O(V 3). (21)

The leading corrections to Ṽτ,k involve numerous terms arising
from the V 2 terms in the states |φ̃〉. Since these corrections are
too small to be of much practical importance, we shall not
evaluate them here.

The infinitesimal band-edge reduction described in the
previous paragraphs can be carried out repeatedly to reduce
the half-bandwidth by a finite amount from D to D̃ < D.
Equations (14) and (18) indicate that during this process,
the effective impurity level energy ε̃d = Ẽ1 − Ẽ0 evolves
according to the scaling equation

dε̃d

dD̃
= 1

π

[
�̃0,+

D̃ − ε̃d

− 2�̃0,−
D̃ + ε̃d

+ �̃1,−
D̃ + Ũ + ε̃d

]
+ O(V 3),

(22)
where �̃τ,± is the rescaled hybridization function at the reduced
band edges ε = ±D̃. Taking into account Eq. (16) as well, one
sees that the effective on-site repulsion Ũ = Ẽ2 + Ẽ0 − 2Ẽ1

follows

dŨ

dD̃
= 2

π

[
�̃0,−

D̃ + ε̃d

− �̃0,+
D̃ − ε̃d

+ �̃1,+
D̃ − Ũ − ε̃d

− �̃1,−
D̃ + Ũ + ε̃d

]
+ O(V 3). (23)

The band-edge values �̃τ,± of the hybridization functions
�̄τ (ε) rescale both due to the replacement of D by D̃ in Eq. (8)
and due to the perturbative corrections to Vτ,k in Eq. (21),
leading to the scaling equation

d�̃τ,±
dD̃

= r
�̃τ,±
D̃

+ O(V 4). (24)

The scaling equations (22)–(24) have been derived to lowest
order in nondegenerate perturbation theory, and are strictly
valid only so long as |D̃ ± (ε̃d + τU )| � Ṽτ,k for each k such
that εk = ∓D̃.

Equation (24) shows that the band-edge values of the
hybridization functions �̄τ (ε) are irrelevant (in the RG sense)
for r > 0 and at most marginally relevant for r = 0. For the
p-h-symmetric bare hybridization functions considered in this
work, it is an excellent approximation to set �̃0,± = �̃1,± = �̃,
leading to the simplified scaling equations

d�̃

dD̃
= r

�̃

D̃
, (25)

dε̃d

dD̃
� �̃

π

[
1

D̃ − ε̃d

− 2

D̃ + ε̃d

+ 1

D̃ + Ũ + ε̃d

]
, (26)

dŨ

dD̃
� 2�̃

π

[
1

D̃ + ε̃d

− 1

D̃ − ε̃d

+ 1

D̃ − Ũ − ε̃d

− 1

D̃ + Ũ + ε̃d

]
. (27)
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Equations (25)–(27) with initial conditions ε̃d = εd , Ũ =
U , and �̃ = � represent the main results of this section. The
equations respect p-h symmetry in that

d
(
ε̃d + 1

2 Ũ
)

dD̃
� 2�̃

π

ε̃d + 1
2 Ũ(

D̃ − 1
2 Ũ

)2 − (
ε̃d + 1

2 Ũ
)2 , (28)

so bare couplings satisfying εd = − 1
2U inevitably lead

to rescaled couplings that satisfy ε̃d = − 1
2 Ũ . For r = 0,

Eqs. (25)–(27) reproduce the scaling equations for the metallic
Anderson problem [1], while for r > 0 in the limit U → ∞
of extreme p-h asymmetry, Eqs. (25) and (26) reduce to ones
presented previously [21] for pseudogapped systems.

Equation (25) clearly has the solution

�̃ = (D̃/D)r �. (29)

Substituting this expression for �̃ into Eqs. (26) and (27)
creates a pair of coupled differential equations for ε̃d and
Ũ . Analytical or numerical integration of these differential
equations allows one to follow the evolution of the rescaled
couplings under reduction of D̃ until one of the following
conditions is met, signaling entry into a low-energy regime
governed by a simpler effective model than the full pseudogap
Anderson model:

(1) If ε̃d , Ũ + 2ε̃d > D̃ > �̃, the system lies in the empty-
impurity region of the ASC− strong-coupling phase, in which
the ground-state impurity occupancy approaches zero. In this
case, T ∗ = min(ε̃d , Ũ + 2ε̃d ) sets the scale for crossover into
a low-energy regime of (for r > 0, generalized) Fermi-liquid
behavior.

(2) If −(Ũ + ε̃d ),−(Ũ + 2ε̃d ) > D̃ > �̃, the system be-
longs in the full-impurity region of the ASC+ strong-
coupling phase, in which the ground-state impurity occupancy
approaches two. Here, T ∗ = min (−(Ũ + ε̃d ),−(Ũ + 2ε̃d ))
marks crossover into the asymptotic (generalized) Fermi-
liquid regime.

(3) If −ε̃d , Ũ + ε̃d > D̃ > �̃, the system crosses over into
an intermediate-energy regime of local-moment behavior.
(This regime is distinct from the LM phase, which is defined
by its ground-state properties.) On entry to the LM regime, the
empty and doubly occupied impurity configurations are effec-
tively frozen out, and one can perform a generalization [31] of
the Schrieffer-Wolff transformation [46] to map the pseudogap
Anderson model to a pseudogap Kondo model

HK = Hband + 1

Nk

∑
k,k′

∑
σ,σ ′

c
†
kσ

[
J

2
Ŝ · σ σσ ′ + Kδσ,σ ′

]
ck′σ ′ ,

(30)
where Ĥband is as given in Eq. (2) with the power-law density
of states specified in Eq. (9), Ŝ is the spin- 1

2 operator for
the impurity, σ is a vector of Pauli matrices, the (isotropic)
exchange coupling J satisfies

ρ0J = 2�̃

π

(
1

|ε̃d | + 1

Ũ + ε̃d

)
, (31)

and the potential scattering K satisfies

ρ0K = �̃

2π

(
1

|ε̃d | − 1

Ũ + ε̃d

)
. (32)

For metallic hosts (r = 0), a system that reaches the LM regime
always lies in the strong-coupling phase of the Kondo model,
which constitutes another region of the strong-coupling phase
of the Anderson model. In pseudogap cases, by contrast, the
asymptotic low-energy behavior depends on the values of J

and K: the system may fall in one of three Kondo phases that
are associated with the SSC (for K = 0), ASC− (for K > 0),
or ASC+ (for K < 0) phases of the Anderson model; or it
may fall in the LM phase of both the Kondo and Anderson
models, in which the impurity retains a free twofold spin
degree of freedom down to absolute zero. In any of these
cases, the energy scale T ∗ for crossover into the asymptotic
low-energy regime is generally much smaller than the scale
min(−ε̃d , Ũ + ε̃d ) for entry into the LM regime. On approach
to a strong-coupling ground state, T ∗ coincides with the Kondo
temperature TK .

(4) If ε̃d ,−(Ũ + ε̃d ) > D̃ > �̃, Ũ + 2ε̃d (a situation that
arises only if the bare U is negative), then the system enters
the intermediate-energy local-charge regime. At this point, one
can perform a generalized Schrieffer-Wolff transformation to
a pseudogap charge-Kondo model. The system may lie in a
strong-coupling phase of the charge-Kondo model (yet another
region of an Anderson-model strong-coupling phase) or in the
local-charge phase of both models, where the impurity retains
a free twofold charge degree of freedom down to absolute
zero. Similarly to the situation in (3), the crossover to the
asymptotic low-energy regime is characterized by a scale
T ∗ � min (ε̃d ,−(Ũ + ε̃d )).

(5) If �̃ > D̃ > |ε̃d | and/or �̃ > D̃ > |Ũ + ε̃d |, then the
system enters a mixed-valence regime where the states |0̃〉,
|σ̃ 〉, and |2̃〉 are no longer all well defined. The scaling method
is unable to determine whether the system lies in the mixed-
valence region of the strong-coupling phase, or instead falls in
the local-moment or local-charge phase [47].

In the remainder of Sec. II, we specialize to ranges of the
band exponent r > 0 and the bare parameters U (henceforth
taken to be positive, representing on-site Coulomb repulsion),
εd , and � for which it possible to make analytical predictions
for the location of boundaries between LM and strong-
coupling phases. We compare these predictions with results
obtained using the nonperturbative numerical renormalization
group (NRG) method [48,49], as adapted to treat systems
containing a pseudogap density of states [30,31]. Throughout
the paper, we have set Wilson’s discretization parameter to
� = 3 and kept up to 600 many-body states after each iteration
of the NRG.

C. Phase boundaries for r > 1

Analysis of band exponents in the range r > 1 is simplified
because Eq. (29) means that �̃/D̃ = (D̃/D)r−1(�/D) de-
creases monotonically under reduction of the half-bandwidth.
In the physically most relevant range � < D, this decrease in
�̃/D̃ rules out the possibility of entry into the mixed-valence
regime under condition (5) of Sec. II B. Moreover, the decrease
of �̃ is so rapid that any entry to the local-moment regime and
subsequent mapping to the pseudogap Kondo problem [via
Eqs. (31) and (32)] will yield a subcritical exchange coupling
that assigns the system to the local-moment phase [31].
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Under these circumstances, the upper critical level energy
ε+
d,c(�,U ) separating the ASC− phase (in which ε̃d = D̃ is

satisfied at sufficiently low D̃) from the LM phase (in which
one eventually reaches ε̃d = −D̃) is effectively determined by
the condition ε̃d (D̃ = 0) = 0 that places the fully renormalized
impurity level precisely at the the Fermi energy. This picture
of the quantum phase transition as arising from a renormalized
level crossing is consistent with the observation of first-order
behavior for r > 1 [33,38]. By p-h symmetry, the boundary
between the LM and ASC+ phases is at the lower critical level
energy ε−

d,c = −U − ε+
d,c [see Fig. 1(b)].

The aforementioned boundary between the LM and ASC−
phases can be located by performing an approximate inte-
gration of Eqs. (26) and (27) using Eq. (29). For uniformity
of presentation, we express our result in the form of a
critical hybridization width �c(U,εd ). We will consider bare
parameters satisfying 0 < −εd � U + εd,D and (for reasons
that will become clear shortly) � � (r − 1)D. Cases U � D

and U � D will be considered separately.

1. LM-ASC− boundary for 0 < −εd � U and �, U � D

If U � D, then so long as |ε̃d |, Ũ + ε̃d � D̃, Eq. (27) can
be approximated by

dŨ

dD̃
� 4�̃Ũ

πD̃2
= 4�

πDr
ŨD̃r−2, (33)

where use has been made of Eq. (29). This differential equation
can be integrated to yield

Ũ (D̃) � U exp

[
− 4

(r − 1)π

(
�

D
− �̃

D̃

)]
, (34)

which for �/D � (r − 1)π describes a very weak downward
renormalization of Ũ with decreasing D̃.

During the same initial phase of the scaling, Eq. (28) can
be approximated by

d

dD̃
(ε̃d + 1

2 Ũ ) � 2�

πDr
(ε̃d + 1

2 Ũ )D̃r−2, (35)

and hence

ε̃d + 1
2 Ũ � (εd + 1

2U ) exp

[
− 2

(r − 1)π

(
�

D
− �̃

D̃

)]
. (36)

Equations (34) and (36) imply that

ε̃d − εd � 1

4

(
1 − 2εd

U

)
(U − Ũ ). (37)

In the case of present interest where |εd | � U , the level energy
scales upward in absolute terms by one-quarter the amount that
the on-site interaction scales down, but εd experiences a much
greater fractional shift than U .

Equations (33), (34), and (36) remain valid until (Ũ +
ε̃d )/D̃ rises to approach unity, a condition that occurs [for
the assumed ordering of the bare parameters, and for the
weak renormalization of U that holds for � � (r − 1)D] at
D̃ = D̃1 � U , at which point

ε̃d,1 ≡ ε̃d (D̃1) � εd + �U [1 − (U/D)r−1]

(r − 1)πD
. (38)

In the regime D̃ < D̃1, the doubly occupied impurity con-
figuration is essentially frozen out. Now Eq. (26) can be
approximated by

dε̃d

dD̃
� − �̃(D̃ − 3ε̃d )

πD̃2
= − �

πDr
(D̃ − 3ε̃d )D̃r−2, (39)

which has the solution

ε̃d � ε̃d,1 + �

rπ

[(
D̃1

D

)r

−
(

D̃

D

)r
][

1 + O

(
ε̃d,1

U

)]
. (40)

Using Eq. (38), this gives

ε̃d (D̃) � εd + �

(r − 1)π

[
U

D
− 1

r

(
U

D

)r

− r − 1

r

(
D̃

D

)r
]
.

(41)

A more careful treatment of scaling over the range of D̃

in which |D̃ − Ũ − ε̃d | � �̃ [invalidating the nondegenerate
perturbation theory used to derive Eqs. (25)–(27)] would likely
modify the numerical prefactor of (U/D)r � on the right-hand
side of Eq. (41). With this caveat, the equation should capture
the scaling of the impurity level energy until |ε̃d |/D̃ grows to
reach 1 at some reduced half-bandwidth D̃2. For D̃ < D̃2, the
system crosses over into the low-energy regime of the ASC−
phase (for ε̃d > 0) or that of the LM phase (for ε̃d < 0). The
only exception occurs for a combination of bare parameters
that places the system precisely on the boundary between the
two phases, in which case ε̃d (D̃ = 0) = 0. Recalling that we
are considering cases r > 1, Eq. (41) shows that the boundary
location ε+

d,c(U,�) is primarily determined by initial phase of
scaling (D̃1 < D̃ < D), and to leading order in U/D and �/D

satisfies

ε+
d,c � − �U

(r − 1)πD
. (42)

This relation can be recast as

�c � (r − 1)πD|εd |/U (43)

for −U/2 � εd < 0.
The phase boundary between the LM and ASC− phases

at �c(U,εd ) can be determined to the desired accuracy by
performing successive NRG runs to refine the value of �c

using the method of bisection. At the end of each run, the zero-
temperature limit of T χimp (temperature times the impurity
contribution to the static magnetic susceptibility) [50,51] is
used to determine whether the system is in the LM phase
(T χimp → 1/4) or in the ASC− phase (T χimp → 0), and thus
to modify the range of � values within which �c must lie.

Figure 2 shows the critical hybridization width plotted
as �c(U,εd )/|εd | vs U/D for r = 1.1 and 2. NRG results
(symbols) calculated for three different fixed ratios − 1

2 �
εd/U < 0 are compared with the scaling expression in Eq. (43)
(dashed lines). The numerics confirm the predicted linear
dependence of �c on εd . The U−1 variation of �c is also
well supported for r = 2, but for r = 1.1 is only approached
in the limit of very small U/D. This deviation from the
scaling theory likely arises because the latter band exponent
lies close to the value r = 1 that acts as an upper critical
dimension for the pseudogap Anderson and Kondo models and
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FIG. 2. Critical hybridization width plotted as �c/|εd | vs U/D,
comparing NRG data (symbols) with the scaling predictions of
Eq. (43) (dashed lines) and Eq. (45) (dotted lines). Results are for
r = 1.1 and 2 and for three values of |εd |/U shown in the legend.

at which there are logarithmic corrections to simple power-law
behaviors [25,33,38]. Results for 1.1 < r < 2 (not shown)
indicate that increasing r leads to a continuous improvement
in the accuracy with which Eq. (43) reproduces the NRG data.

2. LM-ASC− boundary for 0 < −εd,� � D � U

If the bare parameters of the Anderson Hamiltonian instead
satisfy U � D, then Eq. (39) applies from the outset of
scaling, and ε̃d satisfies Eq. (40) with D̃1 = D and ε̃d,1 = εd ,
i.e.,

ε̃d (D̃) � εd + �

rπ

[
1 −

(
D̃

D

)r
]
. (44)

Now the condition ε̃d (D̃ = 0) = 0 places the LM-ASC− phase
boundary at

�c � rπ |εd |. (45)

Figure 2 compares the prediction of Eq. (45) (dotted lines)
with NRG results obtained for U � D. The scaling approach
reproduces the numerical results very well for U � 10D,
and (in contrast to the behavior found for U � D) there is
no significant difference between r = 1.1 and r = 2 in the
accuracy of the analytical results.

D. Phase boundaries for 0 < r < 1

For r < 1, Eq. (29) implies that �̃/D̃ =
(D/D̃)1−r (�/D) � �/D. The system flows to mixed
valence [under condition (5) in Sec. II B] at a reduced
half-bandwidth

D̃� = �̃(D̃�) = (�/D)1/(1−r) D (46)

provided that |ε̃d (D̃�)| and |Ũ (D̃�) + ε̃d (D̃�)| both remain
smaller than D̃� . However, the system flows to a different
low-energy regime if |ε̃d |/D̃ or |Ũ + ε̃d |/D̃ reaches 1 at some
D̃ > D̃� .

1. LM-SSC boundary for �, U � D

We first consider cases εd = − 1
2U where the system

exhibits strict p-h symmetry, and focus on the universal
(large-bandwidth) limit �,U � D.

So long as 1
2 Ũ � D̃, Eq. (27) can again be approximated

by Eq. (33), which can be integrated to yield

Ũ (D̃) � U exp

[
− 4

(1 − r)π

(
�̃

D̃
− �

D

)]
. (47)

Equation (47) can be reexpressed as

(Ũ/2D̃)1−r � x̃ e−γ x̃ (48)

in terms of new variables

x̃(D̃) =
(

U

2D̃

)1−r

exp

(
4�

πD

)
� x ≡ x̃(D) (49)

and

γ =
(

2D

U

)1−r (
4�

πD

)
exp

(
− 4�

πD

)
(50)

that allow Eq. (29) to be recast exactly in the form

�̃/D̃ = π

4
γ x̃. (51)

Equation (48) shows that with increasing x̃ (or decreasing
D̃), Ũ/2D̃ initially rises, before peaking at x̃ = 1/γ , and then
dropping off exponentially for x̃ � 1/γ . The system will enter
its local-moment regime [under condition (3) in Sec. II B] if
there exists a reduced half-bandwidth D̃U > D̃� such that
Ũ (D̃U )/2D̃U = 1. The approximate scaling equation (33)
is valid only so long as Ũ/D̃ � 1. Equation (27) predicts
that Ũ experiences a stronger downward renormalization
once Ũ/D̃ approaches 2, a range in which the nondegen-
erate perturbation theory used to derive Eqs. (25)–(27) also
begins to break down. However, in this range of Ũ/2D̃,
physically one expects renormalization to slow to a halt as
charge fluctuations are progressively frozen out. Therefore, in
the spirit of Haldane [8], we apply Eq. (48) all the way to
the point where Ũ (D̃)/2D̃ = 1, and we seek x̃U defined to be
the smallest solution of

x̃ e−γ x̃ = 1. (52)

For γ > 1/e, Eq. (52) has no real solution, so the system
necessarily crosses over to mixed valence for D̃ � D̃� . For 0 �
γ � 1/e, by contrast, Eq. (52) has a solution x̃U (γ ) satisfying
1 � x̃U � e � γ −1. Since γ x̃U < 1, Eq. (51) gives �̃(D̃U ) <

D̃U , meaning that at D̃ = D̃U the system satisfies condition
(3) for crossover into its local-moment regime. Equation (49)
gives

Ũ

U
= 2D̃U

U
=

[
exp(4�/πD)

x̃U (γ )

]1/(1−r)

� e−1/(1−r) (53)

since x̃U � e. This implies, at least for r � 1
2 , that the rescaled

on-site interaction Ũ (D̃U ) remains of the same order as U .
A Schrieffer-Wolff transformation performed at D̃ = D̃U

yields a pseudogap Kondo model with [Eqs. (31) and (32)]

ρ0J = 8�̃(D̃U )

πŨ (D̃U )
= γ x̃U , ρ0K = 0. (54)
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FIG. 3. Ratio �c,NRG / �c,scal of the critical hybridization width
found using NRG to the scaling prediction given by Eq. (56), plotted
as a function of U/D for εd = −U/2 and band exponents r = 0.1,
0.2, and 0.3.

It is known that for ρ0K = 0, the critical exchange coupling
Jc separating the Kondo (J > Jc) and LM (J < Jc) phases
satisfies ρ0Jc = f (r) where f (r) � r(1 + r/2) for r � 1

2

(Refs. [19,20]) and f (r) → ∞ for r → 1
2

−
(Ref. [29]).

Combining this information with Eq. (54), one arrives at
the prediction that the boundary between the LM and SSC
phases is determined by the condition γc x̃U (γc) = f (r). Then,
Eq. (52) gives x̃c ≡ x̃U (γc) = exp[f (r)] and, hence, γc =
f (r)/x̃c = f (r) exp[−f (r)]. This means that the LM phase
occupies the parameter range U > Uc(�), where

Uc = 2D

{
exp[f (r)]

f (r)

4�

πD
exp

(
− 4�

πD

)}1/(1−r)

. (55)

For � � D, one can invert Eq. (55) to deduce that the LM
phase occupies the parameter range � < �c(U ), with

�c � D
πf (r)

4 exp[f (r)]

(
U

2D

)1−r

. (56)

A U 1−r variation of �c was found previously using the
local-moment approach [39], which yields a closed-form
expression for r → 0+ that is identical to the corresponding
limit of Eq. (56).

Figure 3 plots the ratio of the critical hybridization width
�c,NRG found using the NRG to the scaling prediction �c,scal

given by Eq. (56). For band exponents r = 0.1, 0.2, and 0.3,
this ratio is well converged for U/D � 0.1, implying that
the scaling analysis correctly captures the U 1−r dependence
of �c at the LM-SSC phase boundary. The absolute value
of �c,NRG/�c,scal falls as r decreases, and seems likely to
approach unity as r → 0+. We infer that Eq. (56) describes
the NRG results apart from a multiplicative correction factor
that depends solely on the band exponent r .

2. Kondo-mixed valence crossover for �, U � D

Poor man’s scaling not only can find the LM-SSC phase
boundary at � = �c, but also can locate a crossover within the
SSC phase at � = �MV between a Kondo region, in which only
the singly occupied impurity configurations have significant
occupation at low temperatures, and a mixed-valence region
also having significant ground-state occupancy of the empty
and/or doubly occupied impurity configuration(s). We have
seen [after Eq. (52)] that the system reaches mixed valence for
γ > e−1 (equivalent to � > �MV, a mixed-valence threshold
hybridization), and argued [before Eq. (55)] that it enters
the LM phase for γ < γc = f (r) exp[−f (r)]. Therefore, the
system exhibits fully developed Kondo physics (i.e., enters
its local-moment regime at intermediate values of D̃ and
then crosses over to the SSC ground state for D̃ � TK ) only
for γc < γ � e−1, equivalent to the condition �c < � � �MV

with

�MV � �c exp[f (r) − 1]/f (r). (57)

The Kondo region has a width �� = �MV − �c that narrows
rapidly with increasing r and turns out to be restricted to �� �
�c/4 for r � 1

3 . For band exponents in the range 1
3 � r < 1

2 ,
the SSC phase can be accessed only from mixed valence, while
for r � 1

2 this phase disappears altogether [30,31].
Within the NRG approach, we can define the mixed-valence

threshold hybridization width by examining the temperature
dependence of the impurity contribution to the magnetic
susceptibility χimp. We can identify the Anderson model as
being in its local-moment regime if T χimp > T χLM where
T χLM is a (somewhat arbitrary) cutoff chosen to lie between
the value T χimp = 1/4 corresponding to a free spin- 1

2 degree
of freedom and the high-temperature or mixed-valent limiting
value T χimp = 1/8. With this criterion, the system is in
the Kondo region of the SSC phase if with decreasing T ,
T χimp first rises above T χLM before dropping towards its
SSC value [31] of r/8. We therefore define �MV,NRG as the
smallest hybridization width � for which T χimp < T χLM at
all temperatures.

Figure 4 shows the ratio �MV,NRG /�MV,scal between the
mixed-valence threshold coupling found using NRG and the
scaling prediction of Eq. (57). The ratio is plotted vs band
exponent r for fixed U/D = 10−4 and four different cutoffs:
T χLM = 0.15,0.17,3/16, and 0.21. As one would expect,
increasing the value of T χLM creates a more stringent criterion
for the identification of Kondo physics, reduces the range of
exponents r over which Kondo-region behavior is found, and
for given r reduces the value of �MV. However, the ratio
�MV,NRG/�MV,scal is nearly independent of r except in the case
T χLM = 0.15. This confirms that the condition for reaching
mixed valence is correctly captured by Eq. (57) apart from a
multiplicative factor that depends on the value of the cutoff
T χLM.

3. LM-ASC− boundary for 0 < −εd � U + εd and � � D

We now turn to the limit 0 < −εd � U + εd,D of strong
p-h asymmetry on the impurity site. In order to locate the
boundary between the LM and ASC− phases, we will perform
an approximate integration of Eqs. (26) and (27) using Eq. (29).
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scaling. Results for fixed U = −2εd = 10−4D are plotted vs band
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(see text for details). For T χLM = 3/16 [0.21], it proves impossible
to find Kondo-region behavior for r � 0.2 [r � 0.15].

We first consider �,U � D. The situation where � � D �
U will be considered at the end of the section.

So long as |ε̃d |, Ũ + ε̃d � D̃, Eq. (27) can once more be
approximated by Eq. (33), leading to Eq. (47), and Eq. (28)
can again be approximated by Eq. (33), which yields

ε̃d + 1

2
Ũ �

(
εd + 1

2
U

)
exp

[
− 2

(1 − r)π

(
�̃

D̃
− �

D

)]
.

(58)

Equations (47) and (58) imply that

ε̃d + 1
2 Ũ � (εd + 1

2U )
√

Ũ/U. (59)

Equations (33), (47), and (58) remain valid until either
�̃/D̃ reaches 1 at D̃ = D̃� or (Ũ + ε̃d )/D̃ reaches 1 at D̃ =
D̃1. By writing Ũ + ε̃d = 1

2 Ũ + (ε̃d + 1
2 Ũ ), then employing

Eqs. (47), (48), and (58), the latter condition can be recast as

x̃e−γ x̃/2[η + e−γ x̃/2(1−r)]1−r = 1, (60)

with x̃ and γ as defined in Eqs. (49) and (50), and

η =
(

1 + 2εd

U

)
exp

[
− 2�

π (1 − r)D

]
� 1. (61)

Given Eq. (51), the conditions �̃(D̃1) < Ũ (D̃1) + ε̃d (D̃1) =
D̃1 are satisfied provided that Eq. (60) has a real solution
x̃ = x̃1(γ ) < 4/πγ . Such solutions exist for γ � γmax(r) =
(4/π ) e−2/π [η + e−2/π(1−r)]1−r . For η = 1, there is a mono-
tonic decrease in γmax with increasing r , from γmax(0+) �
1.030 to γmax(1−) � 0.674, while the solution to Eq. (60)
satisfies 2−(1−r) � x̃1 � 4/πγmax < 1.89.

In the regime D̃ < D̃1, entered with ε̃d = ε̃d,1, the doubly
occupied impurity configuration is essentially frozen out. Now
Eq. (26) can be approximated by Eq. (39), again yielding
Eq. (40). This second phase of the scaling continues until
one of the following conditions is met: (a) ε̃d = D̃, signaling

crossover into the empty-impurity region of the ASC− phase;
(b) �̃ = D̃, marking entry into the mixed-valence region of
the ASC− phase; (c) ε̃d = −D̃, marking entry into the local-
moment regime. In case (c), the system may be mapped onto
the pseudogap Kondo Hamiltonian described by Eqs. (30)–
(32), which may lie in (c)(i) the ASC− phase, or (c)(ii) the
LM phase. Integrating the poor man’s scaling equations with
sufficient accuracy to distinguish among all these possibilities
is in general a formidable challenge.

Progress on locating the LM-ASC− phase boundary can
be made in the limit γ � 1 of very weak impurity-band hy-
bridization, where D̃1 � U + εd and x̃1 = (1 + η)−(1−r)[1 +
O(γ )]. Focusing for simplicity on η → 1, one finds

ε̃d,1 � εd + �

(1 − r)π

(
U

D

)r

, (62)

and hence [via Eq. (40)]

ε̃d = εd + �

rπ

[
1

1 − r

(
U

D

)r

−
(

D̃

D

)r
]
. (63)

In this limit of small γ , one expects only a small fractional
change in the bare level energy εd to be required to drive the
system from case (a) to case (c)(ii) of the previous paragraph.
Under these circumstances, just as was done with greater rigor
for r > 1, one can approximate the location of the phase
boundary by the condition ε̃d (D̃ = 0) = 0, leading to

ε+
d,c � − �

r(1 − r)π

(
U

D

)r

. (64)

Equation (64) can be inverted such that the system is in the
LM phase if � < �c, where the critical coupling is given by

�c = r(1 − r)π |εd |
(

U

D

)−r

. (65)

For U � D, the evolution of ε̃d with D̃ is as described
by Eq. (44). For γ � 1, arguments similar to those given at
the end of the previous section lead to the conclusion that the
LM-ASC− boundary is given by Eq. (45).

Figure 5 shows the critical hybridization width plotted
as �c/|εd | vs U/D for band exponents r = 0.1, 0.2, and
0.3 and for two values of the ratio |εd |/U listed in legend.
NRG data (symbols) are compared with the poor man’s
scaling predictions. For U � D, �c/|εd | exhibits a (U/D)−r

dependence that is described very well by Eq. (65) (dashed
lines) apart from an overall multiplicative factor that grows
with increasing r . For U � D, �c/|εd | is almost (but not
quite) a constant as predicted by Eq. (45) (dotted lines). These
behaviors show that the poor man’s scaling approach provides
a good account of the phase boundary in the limit of strong
p-h asymmetry on the impurity site.

III. ANISOTROPIC POWER-LAW KONDO MODEL

In this section, we present a poor man’s scaling analysis
of the phase boundary between the Kondo and local-moment
(LM) phases of the Kondo model with distinct longitudinal
and transverse spin-flip couplings between the impurity and a
power-law-vanishing or power-law-diverging density of states.
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FIG. 5. Critical coupling �c found using NRG (symbols) plotted
as �c/|εd | against U/D for εd/U = −10−4 and −10−3 and for r =
0.1, 0.2, and 0.3. Also plotted are the poor man’s scaling prediction
of Eq. (65) for U � D (dashed lines) and Eq. (45) for U � D (dotted
lines).

The model is described by the Hamiltonian

ĤK = Ĥband + JzŜzŝz + 1
2J⊥(Ŝ+ŝ− + Ŝ−ŝ+), (66)

where Ĥband is as given in Eq. (2) with the den-
sity of states specified in Eq. (9), and Ŝ and ŝ =
N−1

k

∑
k,k′

∑
σ,σ ′ c

†
kσ

1
2σ σσ ′ck′σ ′ (with σ being a vector of

Pauli matrices) are, respectively, the spin- 1
2 operators for the

impurity and for conduction band electrons at the impurity site.
The properties of the model are invariant under J⊥ → −J⊥,
but for notational simplicity we will consider only J⊥ � 0.

Our focus is primarily on pseudogap cases r > 0, which
can arise, for example, due to the low-temperature freeze-out
of charge fluctuations in the Anderson-Holstein model with
a power-law density of states [45]. However, in Sec. III C we
briefly consider the range −1 < r < 0 describing bands with a
generalized Van Hove singularity at the Fermi energy [22,23].

A. Poor man’s scaling equations

By generalizing Anderson’s poor man’s scaling treat-
ment of the conventional (r = 0) Kondo problem [5], it
is straightforward to extend Withoff and Fradkin’s analysis
of the pseudogap Kondo problem to anisotropic exchange.
Under progressive reduction of the half-bandwidth from D to
D̃ = De−l , the exchange couplings (Jz, J⊥) evolve to (J̃z, J̃⊥)
according to

dJ̃z

dl
= −rJ̃z + ρ0J̃

2
⊥ (67a)

and

dJ̃⊥
dl

= −rJ̃⊥ + ρ0J̃zJ̃⊥. (67b)

On the right-hand side of each of these equations, the first term
reflects the change in the density of states at the band edge
(a single-particle effect), while the second term reflects the

lowest-order many-body effects and is independent of r . These
equations neglect all contributions beyond second-order in the
exchange, and are therefore restricted in validity to situations
where |ρ0J̃z| � 1 and ρ0J̃⊥ � 1.

Equations (67) can be combined to obtain

d

dl

(
J̃ 2

z − J̃ 2
⊥
) = −2r

(
J̃ 2

z − J̃ 2
⊥
)
, (68)

which can be integrated to yield

J̃ 2
z − J̃ 2

⊥ = (
J 2

z − J 2
⊥
)
e−2rl . (69)

One sees that exchange anisotropy is irrelevant for r > 0
(pseudogapped systems), marginal for r = 0 (conventional
metals), and relevant for r < 0 (describing a power-law
divergence of the host density of states at the Fermi energy).
Equation (69) can be inserted into Eq. (67a) to obtain

dJ̃z

dl
= −rJ̃z + ρ0J̃

2
z − ρ0

(
J 2

z − J 2
⊥
)
e−2rl . (70)

After the completion of the work reported in this paper,
we learned of a recent poor man’s scaling formulation of
the power-law Kondo model with a more general anisotropic
exchange coupling JxŜx ŝx + JyŜy ŝy + JzŜzŝz [52]. For the
case Jx = Jy = J⊥ considered here, the scaling equations of
Ref. [52] reduce to Eqs. (67) and yield scaling trajectories fully
equivalent in appearance to those plotted in Figs. 6 and 11 of
this paper.

B. Pseudogapped density of states

For r > 0, Eqs. (67) have two stable fixed points, both
isotropic as expected from Eq. (69): the weak-coupling or
LM fixed point J̃z = J̃⊥ = 0, and the strong-coupling or
Kondo fixed point J̃z = J̃⊥ = ∞ (which lies beyond the
range of validity of the equations but is known to exist
from nonperturbative studies). There is also a critical fixed
point ρ0J̃z = ρ0J̃⊥ = r that lies on the boundary between the
basins of attraction of the stable fixed points. The goal of
this subsection is to map out the location of this boundary
away from the point of SU(2) spin symmetry. In light of
Eq. (69), it is clear that any starting point on the boundary flows
under Eqs. (67) to the isotropic critical point first identified
by Withoff and Fradkin [19], which therefore governs the
low-energy physics.

For Jz �= 0, one can factorize out the variation of J̃z arising
from pure density-of-states effects [i.e., the effect of the
−rJ̃z term on the right-hand-side of Eq. (70)] through the
substitution

J̃z = j̃ (l) Jz e−rl , (71)

which converts Eq. (70) to

dj̃

dl
= [j̃ 2 − 1 + (J⊥/Jz)

2]ρ0Jz e−rl (72)

with the initial condition j̃ (0) = 1. For any antiferromagnetic
bare exchange Jz > 0 and any J⊥ > 0, Eq. (72) yields
dj̃/dl � 0 so that j̃ > 1 for all l > 0. If j̃ remains finite
as l → ∞, then J̃z vanishes as D̃ → 0 and the system must
lie in the LM phase. On the other hand, we can associate
the divergence of j̃ at some value l = lK with entry into the
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FIG. 6. Scaling trajectories for the pseudogap Kondo model
with (a) r = 0.1, (b) r = 0.3, calculated via numerical iteration of
Eqs. (67). Arrows indicate the direction of flow under reduction of
the half-bandwidth D. Thick lines show trajectories that flow to the
critical fixed point, thereby defining the boundary between the LM
and Kondo phases. Circles represent points on the phase boundary
as determined using the NRG, with all Jz and J⊥ values for given r

rescaled by the same multiplicative factor, chosen so that the isotropic
boundary point is located at ρ0Jz = ρ0J⊥ = r .

Kondo regime around temperature TK = De−lK . The boundary
between the two phases is determined by the divergence of j̃ (l)
only at l = ∞. For a ferromagnetic bare exchange Jz < 0, any
J⊥ �= 0 is sufficient to ensure that j̃ < 1 for all l > 0. In this
case, the system enters the Kondo regime if j̃ changes sign
and reaches −∞ for some finite lK .

For the purposes of more detailed analysis, it proves
convenient to parametrize the anisotropy of the bare exchange
couplings in terms of the variable

α =
√

|(J⊥/Jz)2 − 1| sgn[(J⊥/Jz)
2 − 1], (73)

which can range from −1 (for J⊥ = 0) to 0 (for J⊥ = |Jz|) to
+∞ (for J⊥ � |Jz|). Then Eq. (72) can be rewritten

dj̃

dl
= (j̃ 2 + α|α|) ρ0Jz e−rl . (74)

Solutions of this equation will be examined in the next two
subsections.

1. Easy-plane anisotropy

In cases where J⊥ > |Jz| > 0, α defined in Eq. (73) is
positive and Eq. (74) has the solution

j̃ (l) = α tan

[
acot α + αρ0Jz

r
(1 − e−rl)

]
. (75)

For antiferromagnetic bare exchange (Jz > 0), the Kondo
phase occupies the region of parameter space in which there
is a solution 0 � lK < ∞ of the equation j̃ (lK ) = ∞, i.e.,

acot α + αρ0Jz

r
>

π

2
. (76)

Thus, the Kondo phase extends over Jz > Jz,c(α) where

ρ0Jz,c(α) = r
atan α

α
. (77)

For α � 1 (weak anisotropy),

ρ0Jz,c � r
(
1 − 1

3α2
)
, (78)

which reduces for α → 0 to the standard result [19] ρ0Jz,c =
ρ0J⊥,c = r . For α � 1 (strong anisotropy),

ρ0Jz,c � rπ

2α

(
1 − 2

πα

)
, (79)

which implies that the Kondo phase occupies the region J⊥ >

J⊥,c where

ρ0J⊥,c � rπ

2

(
1 − 2

πα

)
. (80)

For ferromagnetic bare exchange (Jz < 0), the condition
for entry into the Kondo regime becomes j̃ (lK ) = −∞, which
is met for some finite lK provided that

acot α + αρ0Jz

r
< −π

2
. (81)

Due to the dependence of α on Jz, this inequality is more
likely to be satisfied for smaller values of |Jz| than for larger
values. Therefore, the Kondo phase extends over the region
Jz > Jz,c(α), where

ρ0Jz,c(α) = − r

α
(π − atan α). (82)

For 0 < α � 1 (weak anisotropy),

ρ0Jz,c � − rπ

α

(
1 − α

π

)
, (83)

while for α � 1 (strong anisotropy),

ρ0Jz,c � − rπ

2α

(
1 + 2

πα

)
, (84)

so the Kondo phase spans J⊥ > J⊥,c(α) where

ρ0J⊥,c(α) � rπ

2

(
1 + 2

πα

)
. (85)

2. Easy-axis anisotropy

For |Jz| > J⊥ > 0, α defined in Eq. (73) satisfies −1 <

α < 0 and the solution of Eq. (74) is

j̃ (l) = α coth

[
atanh α − αρ0Jz

r
(1 − e−rl)

]
. (86)
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For antiferromagnetic bare exchange (Jz > 0), the Kondo
phase spans the region in which

atanh α − αρ0Jz

r
> 0, (87)

i.e., the region Jz > Jz,c where

ρ0Jz,c = r
atanh α

α
. (88)

For |α| � 1 (weak anisotropy),

ρ0Jz,c � r
(
1 + 1

3α2
)

(89)

while for α → −1+ (strong anisotropy),

ρ0Jz,c � r

2
ln

2

1 + α
. (90)

For Jz < −J⊥ < 0, it is straightforward to see that |α| �
j̃ (l) < 1 for all l > 0 and the system always lies in the LM
phase.

3. XY exchange anisotropy

In the special case Jz = 0 of pure-XY bare exchange
coupling, the scaling in Eq. (71) can be replaced by

J̃z = j̃⊥(l) J⊥ e−rl , (91)

which converts Eq. (70) to

dj̃⊥
dl

= (j̃ 2
⊥ + 1)ρ0J⊥ e−rl (92)

with initial condition j̃⊥(0) = 0. The equation has solution

j̃⊥(l) = tan

[
ρ0J⊥

r
(1 − e−rl)

]
. (93)

In the Kondo phase, there must be an lK (0 < lK < ∞) such
that j̃⊥(lK ) = ∞, a condition that is satisfied for J⊥ > J⊥,c

where

ρ0J⊥,c = rπ

2
. (94)

As one would expect, this result coincides with the limits
α → ∞ of Eqs. (80) and (85).

4. Comparison with NRG

The preceding results for the location of the phase boundary
as a function of α and the sign of Jz can be reexpressed as the
statement that for any value of Jz, the Kondo phase occupies
the region J⊥ > J⊥,c(Jz), where J⊥,c is a monotonically
decreasing function of Jz that has the following limiting forms:

ρ0J⊥,c � ρ0|Jz|
[

1 + 1

2

(
rπ

ρ0Jz

)2
]
, for 1 � −ρ0Jz � rπ,

(95a)

ρ0J⊥,c � rπ/2 − 2ρ0Jz/π, for ρ0|Jz| � r, (95b)

ρ0J⊥,c � r − 1

2
(ρ0Jz − r), for |ρ0Jz − r| � r/3, (95c)

ρ0J⊥,c � 2ρ0Jz exp(−ρ0Jz/r), for r � ρ0Jz � 1. (95d)

In the limit r → 0, these expressions reproduce the standard
result [5] J⊥,c = |Jz|θ (−Jz). The purpose of this section is

to test these statements based on poor man’s scaling against
nonperturbative NRG calculations.

Scaling trajectories for the pseudogap Kondo model,
calculated via numerical iteration of Eqs. (67) with different
starting parameters, are plotted in Figs. 6(a) and 6(b) for
r = 0.1 and r = 0.3, respectively. Solid lines show trajectories
that flow to the fixed points of the model. Arrows on some of
the trajectories show the direction of flow of the couplings
under reduction of the half-bandwidth D. The phase boundary
(thick line) separating the basins of attraction of the LM
fixed point (ρ0Jz = ρ0J⊥ = 0) and the Kondo fixed point
(ρ0Jz = ρ0J⊥ = ∞) was found by (a) reversing the flow of
Eqs. (67) and (b) choosing starting parameters very close to
the critical coupling ρ0Jz,c = ρ0J⊥,c = r and lying on either
side of the the trajectory Jz = J⊥. For comparison, NRG
data for the phase boundary (circles) are shown, with all
values of Jz and J⊥,c rescaled by the multiplicative factor
that places the isotropic critical point at ρ0Jz = ρ0J⊥,c = r .
This r-dependent multiplicative factor is introduced to account
both for a known reduction in hybridization arising from the
NRG discretization [31,48] and for the effect of higher-order
terms omitted from the poor man’s scaling equations (67),
which shift the isotropic critical point from ρ0Jc = r to
ρ0Jc = f (r) � r(1 + r/2) [20]. Figure 6 shows that poor
man’s scaling does an excellent job of reproducing the shape
of the phase boundary over the entire region of couplings
ρ0|Jz| < 1, ρ0J⊥ < 1.

A more rigorous test of the poor man’s scaling is provided
by Figs. 7–10, which compare ρ0J⊥,c vs ρ0Jz calculated
for one of the limiting cases in Eqs. (95) (solid lines)
with their NRG counterparts (symbols). The NRG results
are again scaled so that the isotropic critical point is at
ρ0Jz = ρ0J⊥,c = r .

Figure 7 plots the critical coupling ρ0J⊥,c for r = 0.1
over a range of ferromagnetic exchange couplings ρ0Jz < 0.
Although the perturbative scaling analysis is not strictly
valid for ρ0Jz � −1, Eq. (95a) captures surprisingly well the
variation of ρ0J⊥,c,NRG at least as far as ρ0Jz = −1.7. For
r = 0.3, the restriction ρ0Jz � −rπ rules out the applicability

-2.0 -1.5 -1.0 -0.5 0.0
0.0

0.5

1.0

1.5

2.0

0
J

c

0 Jz

FIG. 7. Pseudogap Kondo model phase boundary ρ0J⊥,c vs ρ0Jz

for r = 0.1, comparing NRG results (symbols) with the poor man’s
scaling prediction for ρ0Jz � −rπ as given in Eq. (95) (line).
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FIG. 8. Pseudogap Kondo model phase boundary plotted as
ρ0J⊥,c − rπ/2 vs ρ0Jz/r for r = 0.1 and r = 0.3, comparing NRG
results (symbols) with the poor man’s scaling prediction for ρ0|Jz| �
r as given in Eq. (95b) (lines).

of Eq. (95a) anywhere within the range of validity of the scaling
equations, so no results are shown for this case.

In Fig. 8, the critical coupling is plotted as ρ0J⊥,c − rπ/2
versus ρ0Jz/r near ρ0Jz = 0. The NRG results are well
reproduced by the poor man’s scaling prediction Eq. (95b) over
its entire range of validity ρ0|Jz| � r . Figure 9 focuses on the
vicinity of the isotropic critical point at ρ0Jz = ρ0J⊥,c = r ,
plotting the critical coupling as ρ0J⊥,c − r vs 3(ρ0Jz − r)/r .
The scaling prediction in Eq. (95c) closely reproduces the
NRG results over the range ρ0|Jz − r| � r/3.

Lastly, Fig. 10 plots the critical coupling as r ln(J⊥,c/2Jz)
versus ρJz for 0 � ρ0Jz � 1. We find that the NRG
results closely follow the asymptotic form for r � ρ0Jz � 1
[Eq. (95d), dashed line] over the range 0.2 � ρ0Jz � 0.7
for r = 0.1 and over 0.6 � ρ0Jz � 1 for r = 0.3. There are
minor deviations from the asymptotic form as ρ0Jz nears 1
due to perturbative effects beyond second order. We have
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,c
-r

3( 0 Jz - r)/r

FIG. 9. Pseudogap Kondo model phase boundary plotted as
ρ0J⊥,c − r vs 3(ρ0Jz − r)/r for r = 0.1 and r = 0.3, comparing
NRG results (symbols) with the poor man’s scaling prediction for
ρ0|Jz − r| � r/3 as given in Eq. (95c) (lines).
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FIG. 10. Pseudogap Kondo model phase boundary plotted as
r ln(J⊥,c/2Jz) vs ρ0Jz for r = 0.1 and r = 0.3, comparing NRG
results (symbols) with the poor man’s scaling prediction obtained
via numerical solution of Eq. (88) (solid lines) and the asymptotic
form for ρ0Jz � r from Eq. (95d) (dashed line).

also plotted the poor man’s scaling prediction obtained via
numerical solution of Eq. (88) (solid lines), which can be seen
to describe correctly the deviation of J⊥,c,NRG near Jz = 0
from its ρ0Jz � r asymptote.

The overall conclusion from Figs. 6–10 is that the poor
man’s scaling approach provides an excellent account of the
location of the boundary between the Kondo and local-moment
phases of the spin-anisotropic pseudogap Kondo model under
conditions of strict p-h symmetry.

C. Divergent density of states

Coupling a Kondo impurity to a fermionic density of states
that diverges at the Fermi level in a manner described by Eq. (9)
with r < 0 has been shown to yield rich physics including non-
trivial quantum phase transitions occurring for ferromagnetic
exchange couplings J < 0 [22,23]. The poor man’s scaling
analysis of the spin-anisotropic Kondo model applies also to
cases r < 0. Examination of Eqs. (67) show that the poor
man’s scaling trajectories for r < 0 can be obtained from those
for band exponent |r| > 0 through the simple replacements
r → −r , J̃z → −J̃z. This mapping implies that the scaling
trajectories for r < 0 should be reflections of those for r > 0
about the axis Jz = 0 with reversal of the direction of flow
arrows. This is illustrated in Fig. 11, which plots the scaling
trajectories for a representative case r = −0.1 over the range
of exchange couplings −1 < ρ0Jz < 1 and 0 < ρ0J⊥ < 1.
Arrows indicate the direction of flow of couplings with de-
creasing effective half-bandwidth. The model has three stable
fixed points: a ferromagnetic fixed point at (ρ0Jz,ρ0J⊥) =
(−∞,0) where the impurity is locked into a many-body
spin triplet with the conduction band, the symmetric strong-
coupling fixed point at (ρ0Jz,ρ0J⊥) = (∞,∞), and an inter-
mediate coupling fixed point at (ρ0Jz,ρ0J⊥) = (−|r|,|r|). The
phase boundary (thick lines) separating the ferromagnetic and
strong-coupling phase is given by the condition Jz = −|J⊥|,
which is entirely consistent with NRG results for the model
(data not shown in Fig. 11).
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FIG. 11. Scaling trajectories for the pseudogap Kondo model
with r = −0.1, representing a divergence of the density of states
at the Fermi energy. Arrows indicate the direction of flow under
reduction of the half-bandwidth D. Thick lines show trajectories that
flow to the critical point, defining the phase boundary between the
ferromagnetic and Kondo phases.

IV. DISCUSSION

In this work, we have extended the poor man’s scaling
approach to analyze phase boundaries in variants of the
Anderson and Kondo impurity models in which a power-law
vanishing or divergence of the host density of states at
the Fermi energy gives rise to a nontrivial phase diagram
featuring local-moment and Kondo-screened ground states.
In the regime of weak-to-moderate impurity-band couplings
where poor man’s scaling is expected to be valid, the
predicted locations of the phase boundaries are generally in
excellent qualitative and good quantitative agreement with
those obtained using the numerical renormalization group
(NRG). Although the NRG remains the most reliable technique
for treating power-law quantum impurity problems, the scaling
approach has the advantages that it is much more intuitive and
it can clarify algebraically the functional dependence of the
critical impurity-host coupling on other model parameters.
Thus, poor man’s scaling retains considerable value even for
quantum impurity problems where two or more competing RG
flows give rise to different possible infrared-stable fixed points
separated by quantum phase transitions.

Despite its successes demonstrated in Secs. II and III, poor
man’s scaling has two significant limitations. First, and more

obviously, the approach is perturbative in the impurity-band
coupling and is unable to describe physics at strong coupling.
In the pseudogap Anderson model, a reliable calculation of
the critical hybridization based on poor man’s scaling alone
is possible for all r > 0 only for 0 < −εd � U/2 (on the
ASC− side) or 0 < U + εd � U/2 (on the ASC+ side). Near
the p-h-symmetric point εd = − 1

2U , the method breaks down
for r � 1

3 . This is clear to see for r > 1
2 because �c(U,εd )

diverges as εd → − 1
2U [see Fig. 1(b)] and therefore any phase

boundary lies outside the perturbative regime (as is also the
case for the corresponding Kondo model). For 1

3 � r < 1
2 ,

�c(U,εd ) remains finite for all −U < εd < 0 [see Fig. 1(b)]
but, as discussed in Ref. [31] and in Sec. II D above, the strong-
coupling phases are accessed directly from mixed valence, and
in such cases we have been unable to find a scaling criterion
for locating the phase boundaries.

A second deficiency of poor man’s scaling is that it does
not seem to be capable of reproducing the full RG fixed-point
structure identified using the NRG [31]. Scaling Eq. (28) and
its counterpart dK̃/dD̃ = rK̃/D̃ for the potential scattering in
the pseudogap Kondo model both indicate that p-h asymmetry
is an irrelevant perturbation about the symmetric plane ε̃d =
− 1

2 Ũ . This is consistent with NRG results for band exponents
on the range 0 < r � r∗ � 3/8, where a single p-h-symmetric
quantum critical point (QCP) governs the physics all over
the phase boundary between the LM and strong-coupling
phases shown in Fig. 1(a). However, there also exists a range
r∗ < r < 1

2 in which the boundary between the LM phase
and each strong-coupling phase (SSC, ASC−, and ASC+) is
governed by a different QCP. Within this second range of
band exponents, poor man’s scaling cannot detect that p-h
asymmetry is a relevant perturbation that causes flow from the
symmetric QCP to one or the other of the two asymmetric
QCPs (as illustrated schematically for the pseudogap Kondo
model in Fig. 16(b) of Ref. [31]). This is a quite subtle aspect
of the pseudogap Kondo and Anderson models that even
much more sophisticated RG treatments are unable to fully
capture [38].
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