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We classify the band degeneracies in three-dimensional crystals with screw symmetry nm and broken P ∗ T
symmetry, whereP stands for spatial inversion and T for time reversal. The generic degeneracies along symmetry
lines are Weyl nodes: chiral contact points between pairs of bands. They can be single nodes with a chiral charge
of magnitude |χ | = 1 or composite nodes with |χ | = 2 or 3, and the possible χ values only depend on the order
n of the axis, not on the pitch m/n of the screw. Double Weyl nodes require n = 4 or 6, and triple nodes require
n = 6. In all cases, the bands split linearly along the axis, and for composite nodes the splitting is quadratic on
the orthogonal plane. This is true for triple as well as double nodes, due to the presence in the effective two-band
Hamiltonian of a nonchiral quadratic term that masks the chiral cubic dispersion. If T symmetry is present and
P is broken, there may exist on some symmetry lines Weyl nodes pinned to T -invariant momenta, which in
some cases are unavoidable. In the absence of other symmetries, their classification depends on n, m, and the
type of T symmetry. With spinless T such T -invariant Weyl nodes are always double nodes, while with spinful
T they can be single or triple nodes. T -invariant triples nodes can occur not only on sixfold axes but also on
threefold ones, and their in-plane band splitting is cubic, not quadratic as in the case of generic triple nodes. These
rules are illustrated by means of first-principles calculations for hcp cobalt, a T -broken, P-invariant crystal with
63 symmetry, and for trigonal tellurium and hexagonal NbSi2, which are T -invariant, P-broken crystals with
threefold and sixfold screw symmetry, respectively.
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I. INTRODUCTION

The study of degeneracies in the energy spectrum of crystals
has a long history in the band theory of solids. The early works
focused on the consequences of symmetry [1–3], and it was
only much later that the topological aspects of the problem
began to be appreciated [4]. The interplay between topology
and crystal symmetry can be particularly interesting. For
example, Michel and Zak [5] used an argument based on the
periodicity of reciprocal space to show that nonsymmorphic
symmetries (screw axes and glide planes) necessarily lead to
degeneracies on symmetry lines and planes in the Brillouin
zone (BZ).

In recent years, the study of band crossings has been
reinvigorated by the discovery of gapless topological phases
such as Weyl and Dirac semimetals, where the presence
of degeneracies near the Fermi level can lead to striking
observable effects [6,7]. A knowledge of the symmetry
conditions under which certain types of degeneracies become
possible, or even unavoidable, can greatly simplify the search
and analysis of candidate materials.

Our focus here is on Weyl nodes, i.e., isolated twofold
degeneracies that occur in three-dimensional (3D) band
structures without having to fine-tune the Hamiltonian. In the
simplest and most common case, the two bands split linearly
in all directions away from the node [3]. Such contact points
are the generic degeneracies in bulk crystals with broken
P ∗ T symmetry, where P and T denote spatial inversion
and time-reversal symmetry, respectively. (If the combined
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P ∗ T symmetry is present, the bands are Kramers-degenerate
everywhere in the BZ, and additional isolated degeneracies
are known as Dirac nodes.) Weyl nodes are chiral, acting
as monopole sources and sinks of Berry curvature in the
BZ, and when the quantized Berry flux through some of the
Fermi-surface sheets is nonzero the material is classified as a
Weyl (semi)metal [6].

Weyl nodes are topologically protected by the discrete
translational symmetry of the lattice (they can only be gapped
by anihilating with other Weyl nodes of opposite chirality),
and no further symmetries are needed for their existence.
Nevertheless, the presence of other symmetries affects their
location and characteristics. For example, fourfold symmetry
can stabilize Weyl nodes along a symmetry axis in the
BZ, and in some cases the bands split quadratically in the
directions perpendicular to the axis (but still linearly along
the axis) [3,8,9]. Such quadratic touchings may be regarded
as consisting of two linear Weyl nodes of the same chirality
brought together by rotational symmetry [8,9]. Their chiral
charge is χ = ±2, and for that reason they have become
known as “double Weyl nodes” [9]. Furthermore, it has been
shown that while point-group symmetry is not necessary, it can
sometimes be sufficient to guarantee the existence of isolated
band touchings at points of symmetry [10].

In this paper, we classify the band crossings occurring on the
symmetry lines of 3D crystals with screw rotational symmetry
and broken P ∗ T symmetry. We first describe the types of
crossings that are possible at generic points along a symmetry
line. We then specialize to T -invariant, P-broken crystals and
consider the crossings at T -invariant points on those lines, for
both spinful and spinless T symmetry; the former applies to
electrons in crystals, and the latter to the spectrum of photonic
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crystals [11], as well as to electronic bands calculated without
including spin-orbit coupling.

We find, for example, that in nonmagnetic crystals with
a threefold screw axis Weyl nodes are unavoidable at the
symmetry points � and A when spin-orbit is included. In a
crystal like Te where the band structure is composed of sixband
complexes, each complex generates a triple Weyl node with
χ = ±3 at � and another at A (in addition to two single Weyl
nodes with χ = ±1 at each of those points). In contrast, the
occurrence of triple nodes at generic points along a symmetry
axis requires sixfold symmetry [9]. The off-axis splitting of
the bands in the orthogonal plane is qualitatively different in
the two cases: it is cubic when the triple node is pinned to a
T -invariant point (either � or A) on a threefold or sixfold axis,
and quadratic when the triple node occurs at a generic point
along a sixfold axis. Thus a quadratic in-plane band splitting
does not necessarily mean that the Weyl node is a double node.

The paper is organized as follows. In Sec. II, we classify the
Weyl nodes occurring at generic points along a rotation axis in
the BZ. That section follows closely the discussion in Ref. [9],
which we extend from pure rotations to screw rotations, and it
also includes a new result on the in-plane dispersion of triple
nodes. In. Sec. III, we apply the classification scheme to Weyl
nodes on the sixfold axis in the BZ of ferromagnetic hexagonal
close-packed (hcp) Co. In Sec. IV, we turn to nonmagnetic
acentric crystals and classify the degeneracies occurring at T -
invariant momenta on a rotation axis. As an example, we study
in Sec. V the Weyl nodes on the threefold axis in the BZ of
trigonal Te. In Sec. VI, we study the effect of a perturbation that
breaks T symmetry but preserves a threefold or sixfold screw
symmetry, on the examples of Te and NbSi2, respectively. The
conclusions are drawn in Sec. VII, and some supplementary
information and derivations are given in the appendices.

II. WEYL NODES AT GENERIC POINTS ALONG
A ROTATION AXIS

In this section, we consider the most general scenario in
which Weyl points can occur along a symmetry line. Since their
presence anywhere in the BZ requires brokenP ∗ T symmetry,
we assume this to be the case for our crystal. Examples include
ferromagnetic metals such as body-centered cubic Fe [12]
and hcp Co, nonmagnetic acentric semiconductors such as
trigonal Te [13,14], and polar conductors such as TaAs, a Weyl
semimetal [15,16]. In the first two examples, T symmetry is
broken and P symmetry is present, while the reverse is true for
the others. Note that certain antiferromagnets such as Cr2O3

do not qualify; they break P and T individually, but respect
P ∗ T .

We further assume that our crystal is left invariant under
either a pure rotation or a screw operation n′

m′ , where n′ =
2,3,4,6 denotes a counterclockwise 2π/n′ rotation around
the +ẑ axis, and the non-negative integer m′ < n′ indicates a
translation along +ẑ by a fraction m′/n′ of the lattice constant
c (which we take as the unit of length). If n is a divisor of
n′, invariance under n′

m′ implies invariance under nm about
the same axis, where m = m′ mod n. In the presence of
nm symmetry, the Bloch Hamiltonian Hij (k) = 〈ψik|H |ψj k〉
satisfies

Cnm
H (k)C−1

nm
= H (Rnk), (1)

where the matrix Cnm
represents the nm operation in the

Bloch basis and Rnk is the vector obtained by applying a
counterclockwise rotation of 2π/n to k. In writing Eq. (1),
we have adopted the “active picture” where the action of a
transformation S on a function f (r) is described by Sf (r) =
f (S−1r).

We want to study the possible crossing between two
eigenstates |u〉 and |v〉 of H (k) along a rotationally invariant
line (a line where Rn K = K mod G at every point K ). For
clarity, we will focus on the axis

K = (0,0,Kz) (2)

that has the highest rotational symmetry n = n′, but our
analysis also applies to the other invariant lines that are present
in the BZ as a result of lattice periodicity. Henceforth we will
use the symbol K to refer to a point with coordinates given by
Eq. (2).

If the two states are very close in energy at K and
comparatively far from other bands, we can work in the basis
|u〉 = (1,0)T and |v〉 = (0,1)T choosing |u〉 as the higher-
energy state at Kz + δ when δ → 0+, and approximate the
Bloch Hamiltonian around K by

Heff(K + q) = d(q)1 + f (q)σ+ + f ∗(q)σ− + g(q)σz, (3)

where q = (qx,qy,qz), 1 is the 2 × 2 identity matrix, σ± =
σx ± iσy , and a dependence on K of the real functions d

and g and of the complex function f is implied. In this
approximation, the two basis states are eigenstates of Heff(K ),
which means that f (q = 0) = 0. The condition for a crossing
to occur at K is that g(q = 0) = 0 as well, and in the following
it is assumed we have found such a point. The functions f and
g can then be expanded around K as

f (q+,q−,qz) =
∑

n1n2n3

An1n2n3q
n1+ q

n2− qn3
z , (4a)

g(q+,q−,qz) =
∑

m1m2m3

Bm1m2m3q
m1+ q

m2− qm3
z , (4b)

where q± = qx ± iqy , An1n2n3 and Bm1m2m3 are Kz-dependent
complex coefficients with ni,mi � 0, and A000 = B000 = 0 by
assumption. The requirement that Eq. (3) be Hermitian implies
that g(q) is real, leading to the relation

Bm1m2m3 = B∗
m2m1m3

. (5)

The types of crossings that can occur at generic points along
the axis, where nm symmetry is present but T is broken, were
classified in Ref. [9] by imposing the rotational constraint
(1) on the effective Hamiltonian of Eqs. (3) and (4). The
authors specialized to pure n-fold rotations (m = 0), and in the
following we extend their treatment to include screw rotations.
As we shall see, the resulting classification is independent of
the pitch of the screw.

At any point along the axis Eq. (1) reduces to
[Cnm

,H (K )] = 0, so that the energy eigenstates are also
eigenstates of Cnm

. The rotational eigenvalues α(Kz) are
determined by noting that (nm)n describes a 2π rotation around
the +ẑ axis followed (or preceeded) by a translation by mẑ.
The former leaves a spinless wave function unchanged but
flips the sign of a spinful wave function, and the latter gives an
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extra phase factor e−imKz (the minus sign comes from using
the active picture). Taking the nth roots we find

αp(Kz) = γnm
(Kz) ei2πp/n, (6a)

γnm
(Kz) = eiπ(F−F ′m)/n, (6b)

where p is an integer chosen between 0 and n − 1, F = 0
(F = 1) for spinless (spinful) T symmetry, and F ′ = Kz/π .
In the same basis of Eq. (3), then, the matrix describing the nm

operation reads

Cnm
(Kz) = γnm

(Kz)

(
ei2πpu/n 0

0 ei2πpv/n

)
. (7)

Combining Eqs. (1), (3), and (7) gives

ei 2π
n

(pu−pv )f (q+,q−,qz) = f
(
q+ei 2π

n ,q−e−i 2π
n ,qz

)
, (8a)

g(q+,q−,qz) = g
(
q+ei 2π

n ,q−e−i 2π
n ,qz

)
. (8b)

Inserting Eq. (4a) in Eq. (8a) and Eq. (4b) in Eq. (8b), we
find

n1 − n2 = pu − pv mod n, (9a)

m1 − m2 = 0 mod n. (9b)

The only nonzero elements of An1n2n3 or Bm1m2m3 occur
when Eq. (9a) or (9b) is satisfied, respectively. When pu = pv

the degeneracy is nonchiral and can be gapped by a small
perturbation that respects nm symmetry (see Appendix A),
whereas for pu �= pv it is chiral and robust.

We will use two criteria to classify the Weyl nodes that
occur for pu �= pv: (i) the power laws that describe at leading
order the splitting of the bands as one moves away from the
node along the axis and in the orthogonal directions, and (ii)
the chiral charge of the node.

Let us consider first the splitting of the bands. Regarding the
behavior along the axis, the only surviving terms in Eqs. (4a)
and (4b) when q+ = q− = 0 are those with n1 = n2 = 0 and
m1 = m2 = 0 respectively. Then A00n3 vanishes for all n3

because of Eq. (9a), and to leading order in qz, we find

Heff(0,0,Kz + qz) = B001σzqz. (10)

From this we conclude that the band splitting is generically
linear along the symmetry axis. With our choice of |u〉 =
(1,0)T as the higher-energy state on the higher-Kz side of the
crossing, B001 is positive.1

The behavior on the orthogonal plane is described by
Heff(qx,qy,Kz). We now need to collect the leading terms with
n3 = 0 in Eq. (4a) that satisfy condition (9a). Those terms
determine the magnitude of the chiral charge, and their form
only depends on n and on the ratio

αu

αv

= ei2π(pu−pv )/n (11)

between the rotational eigenvalues of the crossing states. We
must also collect terms with m3 = 0 in Eq. (4b) that comply

1In Ref. [9], the opposite choice was made, i.e., B001 < 0 in Eq. (10).
As a result, the chiral charges in Table I of that work have the opposite
signs compared to our Table I.

TABLE I. Classification of Weyl nodes at generic points on an
n-fold axis in the BZ of a crystal with nm symmetry and broken
P ∗ T symmetry. αu and αv are the rotational eigenvalues of the
crossing states, with u denoting the higher-energy state on the higher-
Kz side of the crossing. The Hamiltonian near a node on the plane
perpendicular to the axis is Heff (qx,qy,Kz) = heff + h

†
eff , and q± =

qx ± iqy . In each row, the complex parameters a and b correspond to
specific coefficients An1n20 in Eq. (4a), and c = B110/2 from Eq. (12)
is real (the term c(q2

x + q2
y ) is written only when it is of leading order).

χ is the chiral charge with χab = sgn(|b| − |a|), and the off-axis band
splitting at leading order is indicated as q⊥ (linear) or q2

⊥ (quadratic).

n αu/αv heff χ Splitting

2 −1 (aq+ + bq−)σ+ χab q⊥
3 e±i2π/3 aq±σ+ ∓1 q⊥

4 ±i aq±σ+ ∓1 q⊥
4 −1 (aq2

+ + bq2
−)σ+ + c(q2

x + q2
y )σz 2χab q2

⊥
6 e±iπ/3 aq±σ+ ∓1 q⊥
6 e±2iπ/3 aq2

±σ+ + c(q2
x + q2

y )σz ∓2 q2
⊥

6 −1 (aq3
+ + bq3

−)σ+ + c(q2
x + q2

y )σz 3χab q2
⊥

with condition (9b). At leading order we find g(q+,q−,0) =
B110q+q−, or equivalently,

g(qx,qy,0) = B110
(
q2

x + q2
y

)
. (12)

This term is allowed for all n, and it appears to have been
overlooked in Ref. [9]. It does not affect the sign or magnitude
of the chiral charge, but in some cases it qualitatively changes
the off-axis band splitting. For triple nodes, in particular, this
term dominates the band splitting in the plane normal to the
axis, although a cubic splitting would still be evident if one
could follow the parabolic g(q)=0 surface instead of the fixed-
qz plane.

By now we have gathered all the needed information to
catalog the Weyl crossings that can occur at generic points
on a rotation axis. The classification is given in Table I, and
as anticipated it does not depend on the pitch m/n of the
screw. The main conclusions are as follows. The occurrence
of triple Weyl nodes requires sixfold symmetry, double nodes
require fourfold or sixfold symmetry, and rotation axes of any
order can host single Weyl nodes. At leading order the band
splitting along the axis is linear in all cases, while on the
orthogonal plane it is linear for single nodes and quadratic for
both double and triple nodes. These conclusions agree with
Ref. [9], except for the realization that the in-plane splitting of
a triple Weyl node is generally quadratic, not cubic. In Sec. IV,
we will encounter triple nodes for which the quadratic term
(12) is disallowed by symmetry, resulting in a cubic in-plane
dispersion.

III. APPLICATION TO HCP COBALT

In order to illustrate the preceding discussion, we have
performed an ab initio study of the band structure of hcp
Co. The technical details of the calculation are given in
Appendix B. In the hcp structure (space group P 63/mmc, No.
194), the c axis is a 63 screw axis. This is a “neutral screw” (a
screw that has neither right or left sense [17]) that coexists with
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FIG. 1. (a) Calculated band structure of hcp Co along the sixfold
symmetry line �A. Energies are measured from the Fermi level, and
each color denotes a branch labeled by the integer p in Eq. (6).
Markers denote Weyl crossings with the indicated chiral charges χ .
The inset shows the hexagonal BZ and its high-symmetry points.
(b) and (c) show the in-plane dispersions near a double and a triple
Weyl node, respectively, and (d) and (e) show the corresponding band
splittings away from the nodes, together with the quadratic and cubic
best fits.

P symmetry, while T is broken by the ferromagnetic order.
The spontaneous breaking of T symmetry occurs in the spin
channel via the exchange interaction, and is then transmitted
to the orbital wave functions and to the band structure by the
spin-orbit interaction. In our calculation, the magnetization
points along the positive haxagonal axis.

Figure 1(a) shows the energy bands near the Fermi level on a
segment of the sixfold axis �A. (For a more complete picture of
the band structure of Co, see Ref. [18].) The different branches
are color-coded by the rotational labels p in Eq. (6), which
were determined directly from the Bloch wave functions.
Already in this narrow energy range of ∼0.8 eV one can find all
the types of crossings listed in Table I for n = 6. For example,
the crossing between the pu = 4 and pv = 2 branches near the
bottom of the figure is a double Weyl node of negative chirality
(chiral charge χ = −2) because αu/αv = ei2π/3, while the two
crossings with (pu,pv) = (2,3) and (3,2) have χ = +1 and
χ = −1, respectively. As expected, the crossing between the

two branches with p = 3 is avoided. Triple Weyl nodes are
generated at the crossings where pu − pv = 3 mod 6, namely,
(pu,pv) = (0,3) and (4,1); in this case, the chirality sgn(χ )
cannot be extracted from the symmetry labels. For each node,
we have evaluated χ explicitly from the quantized Berry-
curvature flux through a small enclosing box, as described in
Appendix B. For the single and double nodes, the calculated
values of χ agree in sign and magnitude with those predicted
from the symmetry labels.

Figure 1(a) confirms that the band dispersions along the
axis are linear around every Weyl node. The dispersions are
also linear in the transverse directions when |χ | = 1 (not
shown), but not when |χ | > 1. Figures 1(b) and 1(c) show the
dispersions near a double and a triple node respectively, along
the in-plane direction �M (denoted as q⊥) on the constant-kz

plane of the node; in both cases, the in-plane dispersion is
fairly isotropic near q⊥ = 0. Figures 1(d) and 1(e) show the
band splittings with increasing q⊥, together with their best fits
by quadratic and cubic functions. The splitting at small q⊥ is
accurately described by ∝ q2

⊥ (rather than ∝ q3
⊥) for both the

double and the triple node. This confirms that the in-plane
dispersion of a triple node is dominated by the nonchiral
quadratic term in Eq. (12), which masks the cubic dispersion
from the chiral term (A300q

3
+ + A030q

3
−)σ+ in the last row of

Table I.
We are aware of one other work [19] where triple Weyl

nodes at generic points on a sixfold axis were studied
numerically (for a hexagonal photonic crystal). That work
only reports the band dispersions along the axis, which as
expected are linear around each node (see Fig. 4 therein). The
authors state that the in-plane dispersion is cubic for the triple
nodes, but it is unclear whether this was verified numerically,
or if it is simply a remark based on the conclusions of
Ref. [9].

IV. WEYL NODES AT TIME-REVERSAL INVARIANT
MOMENTA ON A ROTATION AXIS

Let us resume the formal development of our systematic
classification. In Sec. II we considered a broken-P ∗ T crystal
with nm symmetry, and classified the Weyl nodes occurring at
generic points on the rotation axis of Eq. (2). For the remainder
of this work we specialize to a T -invariant, P-broken crystal,
and focus on points along that axis where T symmetry is
present (the time-reversal invariant momenta, or TRIM). Since
T maps k onto −k mod G, such points occur at Kz = 0 and
π , corresponding to F ′ = 0 and 1, respectively, in Eq. (6). As
for the additional symmetry lines not passing through �, they
only contain TRIM if they are twofold or fourfold axes.2 The
ensuing analysis assumes that n-fold rotational symmetry and
T are the only symmetries present at the TRIM.

2Consider a crystal with nm symmetry. For n = 3, the TRIM that
do not project onto � on the projected 2D BZ are at the three M

points, while the threefold axes in k space are at K and K′, so there
are no TRIM on a threefold axis except at �. For n = 6, there are
no sixfold axes off �, only threefold axes at K and K′ which do not
contain TRIM, and twofold axes at M , M

′
, and M

′′
. Thus threefold

and sixfold axes never contain TRIM except at �.
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A. Formal derivation

We now find it more convenient to identify an eigenvalue
of Cnm

by an index j via [compare with Eq. (6)]

αj = eiπj/n, where j = 2p + F − F ′m, (13)

so that the j are integers spaced two units apart. With this
notation, T maps αj into α−j . If the two time-reversed states
|u〉 and |v〉 = T |u〉 are distinct, they form a degenerate pair 3

to which we assign the labels ju = j and jv = −j . We then
wish to understand whether and how this pair splits as we move
off the symmetry axis as described by Eqs. (3) and (4a), and
to determine the monopole charge when the crossing is chiral.
In this context, the results of the rotational symmetry analysis
in Sec. II can be expressed via pu − pv = (ju − jv)/2 = j , so
that the only nonzero elements of An1n2n3 occur when

n1 − n2 = j mod n, (14)

while nonzero elements of Bm1m2m3 must still comply with
condition (9b).

Let us now turn to the conditions imposed by T itself,
which are different depending on whether F = 0 or 1 because
T 2 = (−1)F . The first thing to note is that unless the two time-
reversed states have different rotational labels, when F = 0
they are actually the same state and there is no T -protected
degeneracy. Thus we impose

j �= 0,n when F = 0. (15)

(From here on, j is chosen between 0 and 2n − 1.) When
F = 1 the Kramers theorem guarantees that the two states
are different [20] and the above restriction does not apply.
These conclusions are in line with the “Wigner rules” for
degeneracies with T symmetry present [21].

T symmetry also imposes the restrictions

n1 + n2 + n3 = F mod 2, (16a)

m1 + m2 + m3 = 1 mod 2 (16b)

on the nonzero elements of An1n2n3 and Bm1m2m3 , respectively,
as a result of the relation

T H (k)T −1 = H (−k). (17)

To show this, let us express T in our basis by acting with
it on a state |w〉 = a|u〉 + b|v〉. From T |v〉 = (−1)F |u〉 and
the antilinearity of T we obtain T = σxK (F = 0) and T =
−iσyK (F = 1) with K the complex conjugation operator, so
that T f (q)T −1 = f ∗(q) and T σ±T −1 = (−1)F σ∓. Inserting
Eq. (3) in Eq. (17) and using these identities gives f (−q) =
(−1)F f (q), which leads to Eq. (16a) when combined with
Eq. (4a). Similarly, from T g(q)T −1 = g(q) and T σzT −1 =
−σz we get g(−q) = −g(q), which leads to Eq. (16b).

Armed with the above relations, we can proceed to classify
the degeneracies at the TRIM (0,0,0) and (0,0,π ). We begin
with the on-axis band splittings. As in Sec. II, we collect terms
in Eq. (4b) with m1 = m2 = 0, excluding B000 which vanishes
by assumption. Equation (9b) is automatically satisfied and

3The degeneracy follows from Eq. (17), which at the TRIM becomes
[T ,H (k)] = 0.

TABLE II. Classification of spinless Weyl nodes at the TRIM
Kz = 0 and π on an n-fold axis in the BZ of a crystal with nm and T
symmetries. Each row is uniquely identified by the values of n and
of the symmetry label j [defined in Eq. (13)] of the higher-energy
state on the higher-Kz side of the crossing; from these two values, the
entries in the remaining columns can be generated. The values of m

for which the given j occurs at Kz = 0 and π are listed under m(0)
and m(π ), respectively, and the rest of the notation follows Table I.

n m(0) m(π ) j heff χ Splitting

3 — 1 1 aq2
−σ+ +2 q2

⊥
3 all 0,2 2 aq2

+σ+ −2 q2
⊥

3 all 0,2 4 aq2
−σ+ +2 q2

⊥
3 — 1 5 aq2

+σ+ −2 q2
⊥

4 all 0,2 2 (aq2
+ + bq2

−)σ+ 2χab q2
⊥

4 all 0,2 6 (aq2
+ + bq2

−)σ+ 2χab q2
⊥

6 all 0,2,4 2 aq2
+σ+ −2 q2

⊥
6 all 0,2,4 4 aq2

−σ+ +2 q2
⊥

6 all 0,2,4 8 aq2
+σ+ −2 q2

⊥
6 all 0,2,4 10 aq2

−σ+ +2 q2
⊥

Eq. (16b) forces m3 to be odd, and so the leading term is
generically

g(0,0,qz) = B001qz. (18)

Turning to the expansion (4a) of f (0,0,qz), we keep terms with
n1 = n2 = 0 excluding A000. Equation (14) requires j = 0 or
n which conflicts with Eq. (15) when F = 0, and when F = 1
Eq. (16a) requires n3 to be odd. Thus

f (0,0,qz) =
{
A001qz, when F = 1 and j = 0 or n,

0, otherwise. (19)

In all cases, Heff(0,0,Kz + qz) is linear in qz, producing a linear
band splitting along the axis.

In order to describe the in-plane behavior, let us collect the
leading terms with n3 = 0 in Eq. (4a). Equation (16a) can then
be written as

n1 − n2 = F mod 2, (20)

which together with Eqs. (14) and (15) constrains the form
of f (q+,q−,0). Turning to g(q+,q−,0) and setting m3 =
0 in Eq. (16b) we conclude that m1 − m2 must be odd,
which excludes terms with m1 = m2 such as Eq. (12). The
requirement that m1 − m2 be odd conflicts with condition (9b)
when n is even, and so we find

g(q+,q−,0) =
{

2Re(B300q
3
+), for n = 3,

0, for n = 2,4,6.
(21)

In summary, the band splitting moving away from a
degeneracy protected by T and nm symmetry at Kz = 0
or π is generically linear along the axis. Assuming no
other symmetries, the form of the in-plane Hamiltonian
Heff(q+,q−,Kz) is constrained by Eqs. (14), (15), (20), and
(21); the type F of T symmetry enters the first three equations,
and an additional dependence on the pitch m/n is introduced
by Eqs. (14) and (15) at Kz = π . The Weyl-like solutions
compatible with lattice periodicity are listed in Table II for
spinless T , and in Table III for spinful T . With spinless T all

045102-5



STEPAN S. TSIRKIN, IVO SOUZA, AND DAVID VANDERBILT PHYSICAL REVIEW B 96, 045102 (2017)

TABLE III. Classification of spinful Weyl nodes at the TRIM
Kz = 0 and π on an n-fold axis in the BZ of a crystal with nm and
T symmetries. The notation is the same as in Tables I and II, except
that here c = B300 is a complex coefficient.

n m(0) m(π ) j heff χ Splitting

2 all 0 1 aq−σ+ +1 q⊥
2 all 0 3 aq+σ+ −1 q⊥

3 — 1 0 (aq3
+ + bq3

−)σ+ + cq3
+σz 3χab q3

⊥
3 all 0,2 1 aq+σ+ −1 q⊥
3 — 1 2 aq−σ+ +1 q⊥
3 all 0,2 3 (aq3

+ + bq3
−)σ+ + cq3

+σz 3χab q3
⊥

3 — 1 4 aq+σ+ −1 q⊥
3 all 0,2 5 aq−σ+ +1 q⊥

4 all 0,2 1 aq+σ+ −1 q⊥
4 all 0,2 3 aq−σ+ +1 q⊥
4 all 0,2 5 aq+σ+ −1 q⊥
4 all 0,2 7 aq−σ+ +1 q⊥

6 all 0,2,4 1 aq+σ+ −1 q⊥
6 all 0,2,4 3 (aq3

+ + bq3
−)σ+ 3χab q3

⊥
6 all 0,2,4 5 aq−σ+ +1 q⊥
6 all 0,2,4 7 aq+σ+ −1 q⊥
6 all 0,2,4 9 (aq3

+ + bq3
−)σ+ 3χab q3

⊥
6 all 0,2,4 11 aq−σ+ +1 q⊥

Weyl degeneracies are double nodes, and with spinful T they
are either single or triple nodes. Triple nodes occur not only
for n = 6 as in Table I but also for n = 3, and in both cases
the in-plane splitting is cubic, not quadratic as in Table I.

B. Schematic description: (F,nm) diagrams

Let us illustrate the use of Tables II and III by considering
some specific combinations (F,nm). We start with (0,31), i.e.,
spinless T and a right-handed threefold screw. At Kz = 0
along a 31-invariant axis, the states carry labels j = 0,2,4
[Eq. (13)]. The j = 0 states are nondegenerate [Eq. (15)],
while time-reversed pairs of states with labels (j,−j + 2n) =
(2,4) or (4,2) form double Weyl nodes of negative or positive
chirality, respectively (second and third rows of Table II). At
Kz = π , the possible labels are j = 1,3,5; the j = 3 states
are nondegenerate, and the pairs (1,5) and (5,1) form double
Weyl nodes of positive and negative chirality, respectively. As
Kz goes from 0 to π , the rotational eigenvalues of Eq. (13)
wind as e−iKz/3, so that j = 0 goes into j = 5, j = 2 into
j = 1, and j = 4 into j = 3. Except for the chiralities, all this
information is presented schematically in Fig. 2(a).

Figure 2(b) shows the (1,31) diagram, where the allowed j

values have shifted by +1 compared to Fig. 2(a). With spinful
T the restriction (15) does not apply, and all bands pair up to
form either single or triple Weyl nodes at both Kz = 0 and π .
The triple nodes are formed between Kramers pairs with the
same label j = 0 or j = 3 located on the equator of the unit
circle.

Consider now the (0,21) diagram shown in Fig. 3(a). The
symmetry labels at Kz = 0 are j = 0,2. Since F = 0 and these
labels lie on the equator, the states are nondegenerate; this
explains their absence from Table II. At Kz = π , the labels are

FIG. 2. Schematic representation of the degeneracies at the TRIM
along a 31-invariant axis. (a) is for spinless T (F = 0) and (b) is for
spinful T (F = 1). Solid gray circles represent the complex unit
circle, with the rotational eigenvalues of Eq. (13) at Kz = 0 (bottom)
and Kz = π (top) marked as spheres labeled by j , and their windings
with Kz represented by lines with matching colors. A dashed line or
loop connecting spheres indicates that a pair of time-reversed states
with those labels forms a single (•), double (�), or triple (�) Weyl
node.

j = 1,3, and they also do not appear in Table II (where there
are no entries with n = 2) even though such states must be
pairwise degenerate according to the Wigner rules. The reason
is that the degeneracy is not an isolated Weyl node. Instead, the
bands remain glued together over the entire BZ face [2,21]. A
dashed line without a marker is used to represent this nonchiral
“sticking of the bands”.

The (1,21) diagram of Fig. 3(b) shows that with spinful
T all bands pair up to form single Weyl nodes at Kz = 0.
The bands are again glued together over the entire BZ face at
kz = π , but now the degenerate partners share the same label,
j = 0 or 2, on the rotation axis.

Band gluing across a BZ face orthogonal to a 21 axis occurs
in T -invariant crystals because points on the BZ face are
mapped onto themselves by T ∗ 21; the fact that this symmetry
operation is antiunitary and squares to −1 (for both F = 0 and
1) then forces a Kramers degeneracy [20]. Since the presence
of either 41, 43, 61, 63 or 65 symmetry implies the presence of

FIG. 3. Same as Fig. 2, but for a 21-invariant axis. Dashed-line
connectors without a marker in the middle represent nonchiral
degeneracies caused by band gluing across the BZ face orthogonal to
the symmetry axis.
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21 symmetry, the band sticking occurs for all of them. Indeed,
Eqs. (14) and (20) require F ′m to be even when n is even,
and as a result,f (q+,q−,0) vanishes when n is even, m odd,
and Kz = π . Together with Eq. (21), this implies that when
n is even and m is odd the dispersion on the kz = π plane
is described by Heff(qx,qy,π ) = d(qx,qy,0)1, confirming that
the bands remain glued together across the BZ face. The
combination of T with screw symmetries other than the ones
listed above (i.e., with 31, 32, 42, 62, or 64) does not provoke
band gluing and can stabilize Weyl nodes at Kz = π , as we
already saw for 31.

The complete set of (F,nm) diagrams is given in Ap-
pendix C. A few special cases of our systematic classification
have been noted in the recent literature. Double Weyl nodes
protected by 30 and spinless T symmetry [see the (0,30)
diagram in Fig. 8] were treated in Ref. [19], and triple nodes
protected by sixfold symmetry and spinful T symmetry are
mentioned in Ref. [22].

V. APPLICATION TO TRIGONAL TELLURIUM

Elemental Te is a nonmagnetic semiconductor that crystal-
izes in two enantiomorphic structures with space groups P 3121
(No. 152, right-handed) and P 3221 (No. 154, left-handed). The
unit cell contains three atoms disposed along a spiral chain,
with the chains arranged on a hexagonal net. The structure and
its symmetries are detailed in Refs. [23,24], where it can be
seen that the spiral chains reduce the symmetry from hexagonal
to trigonal. In the following, we pick right-handed Te and
classify the Weyl crossings along the trigonal axis �A in the
hexagonal BZ shown in Fig. 1(a). (For left-handed Te, the band
structure is identical, but the chiral charges flip sign.)

The valence-band maximum and conduction-band mini-
mum of trigonal Te occur close to the H point on the HK line.
Without spin-orbit coupling the conduction-band minimum is
exactly at H, and with spin-orbit the topmost valence band has
a “camelback” shape, with a local minimum at H surrounded
by two maxima along HK [25,26]. States along the �A line
are far from the band edges and hence do not participate in the
low-energy physics. We will study them with the sole purpose
of illustrating our classification scheme for Weyl nodes.

A. Spinless bands

We begin with a calculation that does not include spin-orbit
coupling. The bands split into “elementary representations”
[5] containing three bands each, and in Fig. 4 we plot along
�A the second-highest valence-band complex. As in Fig. 1,
each color denotes a branch labeled by the integer p in Eq. (6),
with the branch cuts chosen at Kz = π mod 2π . The labels
were determined in two ways: (i) by direct calculation starting
from the wave functions, and (ii) using p = j (�)/2 [Eq. (13)],
after determining the j labels at � and A as explained below.

It can be seen from Eq. (6) that as Kz changes by 2π ,
branch p connects with branch p − m mod n, which in the
present case amounts to p − 1 mod 3. This is the monodromy
phenomenon described in Ref. [5], and it implies that the three
bands must be connected along the �A line in such a way that
one can travel continuously through all of them. The argument
only relies on screw symmetry and is silent on the nature and

− 4

− 3

AA

4
2
0

3
1
5

3
5

1

−

FIG. 4. A connected group of three valence bands in trigonal
tellurium along the rotationally invariant line �A, calculated without
including spin-orbit coupling. Energies are measured from the
valence-band maximum, and each color denotes a branch labeled
by the integer p in Eq. (6). For each branch, the values of the label
j in Eq. (13) at −A, �, and A (respectively, Kz = −π,0 and π ) are
also indicated. Markers denote Weyl crossings with chiral charges χ .

location of the contact points, which also depend on the T
symmetry [5].

Let us first classify the degeneracies at � and A in Fig. 4,
with the help of the (0,31) diagram in Fig. 2(a). The band
that is nondegenerate at � has j = 0, and the two degenerate
bands have j = 2 and 4. The j = 4 state evolves to become the
nondegenerate j = 3 state at A, while j = 2 evolves into j =
1 to become degenerate with the j = 5 state that evolved from
j = 0. The two degenerate pairs, one at � and one at A, form
double Weyl nodes. By consulting Table II, we conclude that
both have negative chirality [for the node at � (A), the higher-
energy state at Kz = 0+ (Kz = π+) has label j = 2 (j = 5)].
As in Sec. III, we have checked these results by calculating
the chiral charges explicitly from the Berry curvature, and the
same was done for the other cases discussed below.

We have been assuming that the only symmetries present
at � and A are 31 and T , when in fact those points are
also left invariant under twofold rotations along the �K

and AH axes, respectively [23,24]. This does not change
our conclusions, because the presence of 20 symmetry does
not lead to degeneracies at either � or A, as can be seen
from the (0,20) diagram in Fig. 8 of Appendix C. Hence
the degeneracies that do occur at those symmetry points are
correctly described by the (0,31) diagram.

Let us now determine the chiral charges of the two non-
TRIM crossings in Fig. 4; since they are related by a twofold
rotation it is sufficient to focus on one of them, e.g., that
between the red and blue branches on the right-hand side of
the figure. Recalling that |u〉 and |v〉 are, respectively, the
higher- and lower-energy states after the crossing, we assign
pu = 0 and pv = 2. Equation (11) then gives αu/αv = ei2π/3,
and consulting Table I we find χ = −1, in agreement with the
calculated value.

In this particular example, it was possible to characterize
all the contact points on the symmetry axis without having to
calculate explicitly from the wave functions either their chiral
charges or the rotational symmetry labels of the crossing bands.
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FIG. 5. (a) Same as Fig. 4 but with spin-orbit coupling included,
resulting in a connected group of six bands. (b) In-plane dispersion
near the triple Weyl point at �. (c) The corresponding splitting of
the bands, together with its cubic and quadratic best fits. The band
splittings along the �M and �K directions were fitted separately.

While the crossings at � and A are topologically required by
the monodromy argument, those at intermediate Kz values can
be eliminated by changing the Hamiltonian without changing
the symmetry [5]. This is discussed further in Appendix D.

B. Spinful bands

Upon inclusion of spin-orbit coupling, the three-band
complex of Fig. 4 turns into the six-band complex of Fig. 5(a).
The branches are color-coded by the symmetry labels p =
0,1,2 in the same way as in Fig. 4, with two branches for
each p. Let us label the bands, ordered in energy at each k,
from one to six. If we start at −A on the sixth band and
follow the topmost p = 2 branch from Kz = −π to Kz = π ,
it connects with the fourth band on a p = 1 branch. After one
more monodromy cycle, that branch connects with the second
band at −A on a p = 0 branch, which connects back with the
original p = 2 branch on the sixth band after a third cycle. So

far, we have only covered half of the band complex; in order
to span the other half (comprising three more branches with
p = 0,1,2), we can carry out a new sequence of monodromy
cycles starting from the fifth band at −A. Each band is split
in half between the two groups of three branches, and the two
groups are connected to one another by the continuity in k of
energy bands.

As in the spinless case, the qualitative features of the
degeneracies at � and A can be inferred by simply inspecting
the band structure and referring to the corresponding diagram
in Fig. 2(b). According to that diagram, Weyl nodes are
unavoidable at both points; since all allowed j labels occur
the same number of times within the complex, at each TRIM
two of the nodes must be single Weyl nodes and one a triple
node. Note also that states forming the triple node at one
TRIM must hook up with states belonging to different single
nodes at the other. It is then sufficient, in order to label all six
bands, to identify one of the triple nodes (e.g., by examining the
in-plane band splittings and selecting the one that is nonlinear).
Suppose we have established that the triple node at � is the
middle one in energy, as indicated in the figure. Since it
connects with the two lower-energy nodes at A, these must
be single nodes; as expected, the remaining (triple) node at A

connects with the two single nodes at �. We can now assign all
the j labels at � and A, and Table III then gives the chiralities
of all four single nodes at those two points (but not of the two
triple nodes, whose chiralities are not fixed by the symmetry
labels and had to be determined from the Berry flux).

Figures 5(b) and 5(c) show the in-plane dispersion and
splitting of the bands around the triple Weyl node at �. In
this case the splitting is cubic as predicted in Sec. IV A, not
quadratic as for triple nodes occurring at generic points along
a sixfold axis [e.g., Fig. 1(e)].

Finally, consulting Table I, we find the chiralities of the
five-band crossings between � and A in Fig. 5, which must
be single Weyl nodes since the axis has threefold symmetry.
Amusingly, the rules for determining the chiralities in this
case are those of the game “Rock–paper–scissors” [27]; a red
branch is “rock”, blue is “paper”, and green is “scissors”. If
the higher-energy state after the crossing is the winner then
χ = +1, otherwise χ = −1; since branches of the same color
do not cross, there can be no tie.

In Appendix D, we repeat the above analysis for two more
six-band complexes in the spinor band structure of Te, and
before closing this section we mention that Weyl nodes in
Te were studied in Refs. [13,14]. The main focus of both
works was on the nodes occurring close to the valence-band
maximum and conduction-band minimum near the H point.
The existence of triple Weyl nodes at � and A is not mentioned
in either work, where all the reported Weyl points have |χ | = 1.

VI. EFFECT OF A T -BREAKING PERTURBATION

In this section, we continue to focus on acentric crystals
with a hexagonal BZ and a nonmagnetic ground state, and
study how spinful Weyl nodes on the �A line are effected
by a perturbation that breaks T symmetry but preserves the
rotational symmetry. Because only sixfold (not threefold)
symmetry is able to protect triple Weyl nodes in the absence of
T symmetry, the effect of such a perturbation on a triple node
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+1

1-

0

FIG. 6. Solid lines: ground-state band structure of Te color-coded
by the expectation value of the spin (in units of h̄/2) projected along
the trigonal axis ẑ. Dashed lines: band structure in the presence of
a macroscopic magnetization amounting to a magnetic moment per
atom of μz = 0.01μB. Symbols denote Weyl nodes in the ground
state with μ = 0, and energies are measured from the ground-state
valence-band maximum.

pinned to either � or A will be different depending on whether
�A is a threefold or a sixfold axis. In order to illustrate the two
types of behaviors, we consider below the cases of trigonal Te
and hexagonal NbSi2.

A. Trigonal Tellurium

We start by recalculating the spinor band structure of Te
in the presence of a weak local Zeeman field directed along
the trigonal axis ẑ, which induces a finite magnetic moment
μ = μzẑ on each Te atom. Technically, this is achieved by
adding a “penalty term” of the form λ

∑3
i=1 |μ − μi |2 to the

density functional during the self-consistent loop. Here, μi is
the self-consistent magnetic moment on the ith atom in the
unit cell, and λ > 0 is an adjustable parameter.

To lowest order, the contribution of the induced magnetiza-
tion to the Hamiltonian takes the form

�H ∝ Mzτz (22)

in the basis of the unperturbated eigenstates. Here, Mz is the
magnetization and τz is the Pauli matrix describing the spin
degree of freedom, not to be confused with the pseudospin
matrix σz in Eq. (3). Since our discussion will be qualitative,
we are content to leave Eq. (22) expressed as a proportionality.

Figure 6 shows how the band structure on the �A line
changes in the presence of a small positive Mz. The “generic”
Weyl nodes away from � and A, which are pinned to the
symmetry axis by the 31 symmetry, remain on the axis because
that symmetry is preserved with M ‖ ẑ. However, they move
in energy and wave vector, in a way that depends on the spin
projections of the two crossing states. This behavior can be
understood from the effective two-band Hamiltonian near a
generic Weyl node of charge χ = ∓1, which reads

Heff(q+,q−,qz) =
(

αqz + Mzsu 2aq±
2a∗q∓ −αqz + Mzsv

)
(23)

with the zero of energy placed at the unperturbed crossing.
Here, su = 〈u|τz|u〉 and sv = 〈v|τz|v〉 are the spin projections
of the upper- and lower-energy states on the right-hand side of
the crossing. Note that the perturbation (22) does not introduce
off-diagonal terms in the effective Hamiltonian: since pu �=
pv for single Weyl nodes, 〈u|τz|v〉 vanishes according to
Appendix A. For Mz = 0 and qz = 0, Eq. (23) reduces to the
Hamiltonian given in the second row of Table I; for Mz = 0
and q+ = q− = 0, it reduces to Eq. (10), with the positive
coefficient B001 written here as α.

Assuming the crossing states are the eigenstates of the spin
projection Sz (implying |su| = |sv| = 1), we can derive from
Eq. (23) with q+ = q− = 0 the following rules for how generic
Weyl nodes on the �A line shift under a small positive Mz:

sgn(su) sgn(sv) direction of shift

+ + to higher energy
− − to lower energy
+ − to lower Kz

− + to higher Kz

Even though the crossing states are generally not eigen-
states of Sz, these simple rules describe fairly well the shifts
of most of generic nodes in Fig. 6.

Let us turn now to the Weyl nodes pinned to � and A
by T symmetry. In this case, the unpreturbed crossing states
are time-reversal partners, so that sv = −su. Consider first
the nodes with |χ | = 1. When T is broken by Mz, those nodes
move away from the TRIM but remain on the �A axis by virtue
of the unbroken 31 symmetry, and their motion along the axis
obeys the same rules discussed above for the generic single
Weyl nodes. Note that the positive node at A and ∼ − 4.5 eV
moves to the left and anihilates with the negative node at
∼ − 4.0 eV and halfway between � and A, which moves to
the right.

The most striking effect of the axial Zeeman field is on the
triple Weyl nodes at � and A. In Fig. 6, gaps open up near those
nodes when Mz �= 0. That happens because T symmetry not
only pins those nodes to the TRIM, but is essential for their
existence on a threefold axis (recall that without T symmetry,
triple nodes can only occur on sixfold axes). Once the T
symmetry is broken, each triple node splits into three single
nodes; these are not visible in Fig. 6 because they are located
off the �A axis on �MLA planes (see below).

In order to understand the splitting pattern, let us write the
effective Hamiltonian for a triple node including the perturbing
term (22). Taking the unperturbed terms with qz = 0 from
the third row in Table III and the unperturbed terms with
q+ = q− = 0 from Eq. (19) we find, setting A001 = β and
using sv = −su,

Heff(q+,q−,qz)

= (αqz + cq3
+ + c∗q3

− + suMz)σz

+ [(aq3
+ + bq3

− + βqz + γMz)σ+ + H.c.], (24)

where γ = 1
2 〈u|τz|v〉 and “H.c.” stands for a Hermitian

conjugate. Without additional symmetries all coefficients here
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are generally complex, except for α, which is real and positive.
The condition for a degeneracy to occur is that the prefactors
of the σz and σ± matrices should vanish simultaneously. Thus

qz = − 1

α
(suMz + cq3

+ + c∗q3
−), (25)

which inserted into the prefactor of σ+ gives

ãq3
+ + b̃q3

− + γ̃Mz = 0, (26)

where ã = a − cβ/α, b̃ = b − c∗β/α and γ̃ = γ − βsu/α.
Writing q± as q⊥e±iφ with q⊥ > 0 leads to

q3
⊥ (̃aei3φ + b̃e−i3φ) + γ̃Mz = 0. (27)

The condition arg(̃aei3φ + b̃e−i3φ) = arg(−γ̃Mz) for the
phase has three roots separated by 2π/3. This means that the in-
plane splitting pattern of a triple node respects threefold sym-
metry, as expected. For the magnitude of the splitting, we get

q3
⊥ =

∣∣∣∣ γ̃Mz

ãei3φ + b̃e−i3φ

∣∣∣∣. (28)

Thus the in-plane splitting increases as |Mz|1/3, and from
Eq. (25) we conclude that the vertical shift of the three split
nodes is instead linear in |Mz|. However, unlike for a single
Weyl node, the direction of the on-axis shift of a triple node
in not uniquely defined by the spin projections of the crossing
states, but also depends on microscopic parameters.

The previous analysis correctly predicts a threefold sym-
metric in-plane splitting of a T -invariant triple node on a three-
fold axis, but it does not determine its absolute orientation.
In order to do so, it is necessary to take into consideration
an additional symmetry of trigonal Te, namely the twofold
rotation. In Appendix E, we show that this symmetry pins the
three split Weyl nodes to the �MLA planes, as confirmed by
the first-principles calculations.

B. Hexagonal NbSi2

We take as our last example the transition-metal silicide
NbSi2, a nonmagnetic metal that crystallizes in a noncen-
trosymmetric hexagonal structure with three formula units
per cell [28]. The structure is enantiomorphic, and we pick
the right-handed variety with space group P 6222 (No. 180).
Due to the combination of a sixfold rotational symmetry and
time-reversal invariance, the energy bands of NbSi2 contain
single and triple nodes at the points � and A, as well single,
double and triple nodes at generic points along the �A line.
In the following, we focus on the Weyl nodes pinned to the
� point, and study numerically how they are affected by a
Zeeman field directed along the hexagonal axis.

In Fig. 7(a), we plot along �A four spinor bands below
the Fermi level in the vicinity of �. The unperturbed bands are
drawn as solid lines, with each color denoting a branch labeled
by the integer p in Eq. (6), which was determined from the
calculated Bloch states. The states at � are more conveniently
labeled using Eq. (13): j (�) = 2p + 1. In accordance with the
(1,62) diagram in Fig. 9, the two upper bands with j = 1 and
11 form a single Weyl node, while the two lower bands with
j = 3 and 9 form a triple node. Table III tells us that the single
node has positive chirality, and that the chirality of the triple
node is not fixed by the rotational symmetry of the crossing
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FIG. 7. (a) Spinor band structure of NbSi2 in the vicinity of a pair
of single and triple Weyl nodes at �. Solid lines: band structure in
the nonmagnetic ground state, color-coded in a similar way as Figs. 4
and 5(a). Dashed lines: band structure with T symmetry broken by
an induced magnetic moment of 0.1 μB per unit cell. (b) In-plane
dispersion near the triple node, with (dashed lines) and without (solid
lines) the induced magnetic moment. The corresponding in-plane
band splittings away from the triple node are shown in (c) on a
double logarithmic scale, together with their quadratic and cubic fits.

states (in principle it could be determined from the Berry flux,
but we have not done so).

The bands perturbed by the Zeeman field are plotted in
Fig. 7(a) as dashed lines. While the effect on the single Weyl
node at � is the same as in Fig. 6 for trigonal Te (the node
shifts away from the TRIM along the axis), the effect on the
triple node is different. Instead of splitting into three off-axis
single nodes, the triple node simply moves away from the
TRIM along the axis. This is due to the fact that contrary to
the threefold symmetry of Te, the sixfold symmetry of NbSi2
is able to stabilize a triple Weyl node without the assistance
of T symmetry, whose only effect is to pin the triple node to
a TRIM and to modify its in-plane dispersion. Figures 7(b)
and 7(c) demonstrate that once T is broken the in-plane band
splitting changes from cubic to quadratic, in accordance with
Tables I and III.

VII. CONCLUSIONS

We have carried out a systematic classification of the types
of degeneracies that can occur on symmetry lines in the
BZ of a 3D crystal with pure rotational or screw symmetry
nm, assuming broken P ∗ T symmetry and in the absence
of other crystallographic symmetries. We first presented the
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classification for the generic case, and then specialized to
T -invariant, P-broken crystals, treating both spinless and
spinful T . At generic points along a symmetry axis, the
degeneracies are Weyl nodes. At T -invariant points on an
axis, they can be either Weyl nodes or, when n is even and
m is odd, glueing of pairs of bands extending over the entire
perpendicular BZ face.

It was known from previous work [9] that the presence
of either 4-fold or sixfold rotational symmetry without T
symmetry can stabilize Weyl nodes with a chiral charge of
magnitude larger than one: |χ | = 2 when n = 4 or 6, and also
|χ | = 3 when n = 6. In this work, we have found a new type
of triple Weyl node that is stabilized by spinful T symmetry
in combination with either 3m or 6m symmetry; for 61, 63,
and 65 nodes of this type can only occur at �, while in all
other cases they can also occur at the A point. The two types
are qualitatively different; generic triple nodes protected by
sixfold symmetry alone away from the TRIM are dressed,
with the in-plane cubic chiral dispersion masked by a nonchiral
quadratic dispersion; thus, at leading order, the band splitting
is indistinguishable from that of a double Weyl node. Instead,
T -invariant triple nodes at � or A on a threefold or a sixfold
axis are naked: the leading-order in-plane splitting is cubic.
It follows that there is no one-to-one correspondence between
the chiral charge of a Weyl node on a symmetry axis and the
leading-order in-plane splitting of the bands. Ferromagnetic
hcp Co and trigonal Te are examples of materials possessing
dressed and naked triple Weyl nodes, respectively, while both
types are present in hexagonal NbSi2.

In summary, we have shown that composite Weyl nodes are
both more common and more diverse than previously thought,
and that in some cases they are unavoidable. We hope that
these findings will stimulate the search for new classes of Weyl
semimetals where T -invariant Weyl nodes occur on symmetry
axes and close to the Fermi level.
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APPENDIX A: LEVEL REPULSION VERSUS LEVEL
CROSSING AT GENERIC POINTS ON A ROTATION AXIS

Let |u〉 and |v〉 be two distinct eigenstates of the screw
symmetry operator Cnm

at a generic point Kz along the rotation
axis of Eq. (2), and let αpu

and αpv
be the corresponding

eigenvalues given by Eq. (6). Suppose the two states are
also degenerate eigenstates of the Hamiltonian H , which by
assumption commutes with Cnm

. Now add a small perturbation
�H that respects the Cnm

symmetry. We want to know the
conditions under which �H can couple the two states and
open a gap. If the crossing can be removed in this way then it
means that the original Hamiltonian H was fine-tuned.

The coupling matrix element is

〈v|�H |u〉 = 〈v|C−1
nm

(
Cnm

�HC−1
nm

)
Cnm

|u〉
= ei2π(pu−pv )/n〈v|�H |u〉, (A1)

where we used [�H,Cnm
] = 0. There are two cases. (1) If pu �=

pv mod n Eq. (A1) can only be satisfied with 〈v|�H |u〉 = 0,
which means that the perturbation does not open a gap: the
crossing is robust against symmetry-preserving perturbations.
(2) If pu = pv mod n then 〈v|�H |u〉 can be nonzero, and �H

will generically split the degeneracy.

APPENDIX B: DETAILS OF THE NUMERICAL
CALCULATIONS

1. Ground-state calculations

The electronic structure calculations of Secs. III and V
were carried out within the framework of density-functional
theory, as implemented in the VASP code package [29,30].
This code uses a plane-wave basis set to expand the valence
wave functions, and the projector-augmented wave method
to describe the core-valence interaction [31,32]. Except for
Sec. V A, the calculations reported in this work include spin-
orbit coupling in the core-valence interaction.

Fully relativistic total energy calculations for hcp Co
in its ferromagnetic ground state were carried out using
the experimental lattice parameters a = 2.506 Å and c =
4.067 Å [33]. Exchange and correlation effects were treated
using the Perdew, Burke, and Ernzerhof generalized-gradient
approximation (GGA-PBE) [34].

For the calculations on trigonal Te, we used the experi-
mental parameters a = 4.458 Å and c = 5.925 Å [35], and
a relaxed value of u = 0.274 for the dimensionless helix
parameter, which differs slightly from the experimental value
of u = 0.255 [35] (this parameter is defined as u = r/a, with
r the radius of the helix [26]). Both the generalized-gradient
approximation and the local-density approximation incorrectly
predict a semi-metallic rather than semiconducting ground
state for this material, due to a closing of the gap at the H

point. Although this issue does not greatly affect our study of
degeneracies along the �A line, we have opted to correct it by
using instead the so-called HSE06 hybrid functional [36]. In
this way we obtained an energy gap of 0.312 eV at H from a
fully relativistic calculation, in good agreement with both the
calculated value of 0.314 eV obtained using the GW method
[13] and the experimental value of 0.323 eV [37].

The band structure calculations for hexagonal NbSi2 in the
nonmagnetic ground state were carried out using the GGA-
PBE approximation and the experimental lattice parameters
a = 4.819 Å and c = 6.592 Å [38]. In order to study the effect
of a T -breaking perturbation, we added a non-self-consistent
magnetization of 0.1μB per unit cell.

2. Post-processing using a Wannier-function basis

In order to interpolate the energy bands and calculate the
chiral charges of the Weyl nodes, we use the formalism of max-
imally localized Wannier functions [39,40] as implemented
in the WANNIER90 code package [41,42]. Exploring the band
structure of hcp Co over the BZ, we find that the bands shown
in Fig. 1 cross with higher-lying bands [18], and thus we use
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the disentanglement procedure [40] to construct the Wannier
functions. The trial orbitals are chosen to be sp3 hybrids and
atom-centered d orbitals, totaling nine Wannier functions per
atom and spin channel. The outer energy window [40] spans the
range from −20 to +70 eV relative to the Fermi level, which
covers all 4s, 4p, and 3d states present in the pseudopotential
calculation, while the frozen energy window [40] goes from
−20 to +7 eV.

The 5p bands of trigonal Te are well separated from the
lower 5s states, and they cross with higher-lying sates only
in a small region of the BZ. The outer energy window goes
from −8 to +5 eV relative to the valence-band maximum,
the inner frozen window from −8 to +2.5 eV, and we use
atom-centered p-type trial orbitals for the initial projections.
The resulting Wannier functions are similar to those obtained
in Ref. [13] for the same material.

The chiral charges are calculated from the quantized Berry-
curvature flux through small surfaces enclosing the individual
Weyl nodes [12],

χlα = 1

2π

∮
S

dS n̂ · �l(k), (B1a)

�l(k) = i〈∇kulk| × |∇kulk〉. (B1b)

Here, n̂ is the unit surface normal pointing outwards, and l is
the lower of the two bands that cross. In practice the Berry
curvature �l(k) is evaluated on a dense grid of k points by
Wannier interpolation [43], and we choose the closed surface
S to be a parallelepiped with the αth Weyl node between bands
l and l + 1 at the center [12].

APPENDIX C: DIAGRAMS DESCRIBING THE TYPES
OF DEGENERACIES AT TRIM ON A ROTATION AXIS

We present here the complete set of (F,nm) diagrams
introduced in Sec. IV B to describe the degeneracies occurring
at TRIM on a rotation axis, assuming no other symmetries
are present. The allowed degeneracies are Weyl points with
chiral charges of magnitude |χ | = 1,2 or 3, and band gluing
extending over the entire BZ face orthogonal to the symmetry
axis. Figure 8 contains the diagrams for spinless T (F = 0)
and Fig. 9 contains the diagrams for spinful T (F = 1).

The magnitude of the chiral charge has a simple inter-
pretation in terms of these diagrams: When F = 0 (F = 1),
|χ | is equal to the smallest nonzero even (odd) number of
hops around the unit circle needed to travel between spheres
connected by a dashed line or loop with a marker. It follows
that |χ | must be even when F = 0, and odd when F = 1. For
n = 2,3,4,6, the only possible values are |χ | = 2 for F = 0
and |χ | = 1,3 for F = 1, with |χ | = 3 requiring n = 3 or 6.
These conclusions are in agreement with Tables II and III.

APPENDIX D: VALENCE AND LOW-LYING
CONDUCTION BANDS OF TELLURIUM

We saw in Sec. V A that the spinless band structure of Te
consists of three-band complexes with topologically required
contact points along the threefold axis �A. In addition to
the double Weyl nodes pinned to � and A by T symmetry,
there was an additional Weyl crossing between � and A in
the complex of Fig. 4. This degeneracy is accidental, and can

FIG. 8. Schematic representation of the types of degeneracies
protected by T and nm symmetry at the TRIM Kz = 0 and π along
an nm-invariant axis (0,0,Kz) in the BZ. Each diagram is labeled by
(F,nm), and here we show the diagrams for spinless T (F = 0) and
all nm symmetries compatible with lattice periodicity. For a detailed
explanation, see the captions of Figs. 2 and 3.

be eliminated by changing the Hamiltonian without changing
the symmetry [5]. This is corroborated by Fig. 10(a), where
two more band complexes are shown. Both have double Weyl
nodes at � and A, but the topmost valence complex contains no
accidental crossings in between. In this scenario with minimal
connectivity, the double nodes at � and A must have opposite
chiralities, as can be seen from Table II.

Figure 10(b) shows the spinful bands for the same three-
band complexes. The ordering in energy of the single and triple
nodes at � and/or A is different in the three complexes, but
the rules of the (1,31) diagram of Fig. 2(b) for hooking up the
states are such that one necessarily ends up with the six bands
forming a connected group in the sense of Ref. [5].
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FIG. 9. Same as Fig. 8, but for spinful T (F = 1).

One noteworthy difference with respect to the spinless case
of Fig. 10(a) is that it is not possible to eliminate all the
Weyl nodes between � and A. The minimum number of such
crossings per six-band complex is two, and it requires that
at both TRIM the triple node lies in energy between the two
single nodes; the two unremovable unpinned crossings then
occur between the red and green branches. This scenario is
almost realized in the upper complex shown in Fig. 10(b),
except for an additional accidental crossing between the two
lowest bands. Crossings that “can be moved but not removed”
while preserving the symmetry of the Hamiltonian were first
discussed in Refs. [44,45].

APPENDIX E: EFFECT OF TWOFOLD ROTATIONAL
SYMMETRY ON THE ZEEMAN SPLITTING OF TRIPLE

WEYL NODES IN TELLURIUM

The point group of trigonal Te contains a pure twofold
rotation operation [23,24] that leaves invariant the points �

and A where triple Weyl nodes occur (the invariant lines are

− 5

− 4

− 3

− 2

− 1

0

1

2

5
3
1

4
2
0

4
2
0

3
1
5

A A

(a) (b)

FIG. 10. Three complexes (two valence and one conduction) in
the band structure of Te, plotted along the threefold axis �A with
energies measured from the valence-band maximum. The bands in
(a) and (b) were calculated without and with spin-orbit coupling,
respectively. The meaning of the colors and markers is the same as in
Figs. 4 and 5(a), which focus on the valence complex shown here at
the bottom.

�K and AH ). That 20 symmetry was not taken into account
when analyzing in Sec. VI the splitting of a triple node by a
Zeeman field. In this appendix, we show that its presence pins
the three single nodes that split from the triple node to the
�MLA planes in the BZ.

To proceed, we need to find the constraints imposed by
the 20 symmetry on the unperturbed effective Hamiltonian
of a triple node. The first step is to write down the matrix
C20 representing the 20 operation in the basis of the two
states forming the triple node. Since that operation sends
Kz into −Kz and the function g(0,0,qz) multiplying σz in
Heff(0,0,Kz + qz) is odd [see Eq. (18)], it follows that the basis
states transform one into the other with some phase factors,

C20 =
(

0 eiφ2

eiφ1 0

)
. (E1)

From (20)2 = (−1)F , we obtain for spinful electrons the con-
strain ei(φ1+φ2) = −1, while φ1 − φ2 depends on the arbitrary
choice of phases for the two basis states. Since we have not
fixed those phases anywhere so far we are free to choose
φ1 = φ2 = −π/2, leading to

C20 = −iσx. (E2)
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The 20 operation transforms the wave vector measured
relative to the nodal point � or A as q+ ↔ q− and qz → −qz,
and using Eq. (1) we find as the invariance condition for the
unperturbed effective Hamiltonian C20Heff(q+,q−,qz)C

−1
20

=
Heff(q−,q+,−qz). Inserting Eq. (3) for Heff in this relation and
using Eq. (E2) leads to the constraints

f (q−,q+,−qz) = f ∗(q+,q−,qz), (E3a)

g(q−,q+,−qz) = −g(q+,q−,qz), (E3b)

which imply, for the expansion coefficients in Eq. (4),

An1n2n3 = (−1)n3A∗
n1n2n3

, (E4a)

Bm1m2m3 = (−1)m3+1Bm2m1m3 . (E4b)

It follows from the first condition that An1n2n3 is real (purely
imaginary) when n3 is even (odd), and from the second
combined with Eq. (5) that Bm1m2m3 is real (purely imaginary)
when m3 is odd (even).

When applied to the unperturbed effective Hamiltonian of
a triple Weyl node in trigonal Te [Eq. (24) with Mz = 0], the
above constraints from 20 symmetry imply that the parameters
α = B001, a = A300 and b = A030 are real, while c = B300

and β = A001 are purely imaginary. As a result the previously

complex quantities ã and b̃ appearing in Eq. (27) have now
become real, and γ̃ has become purely imaginary. The latter
follows from the fact that 20 symmetry renders γ purely
imaginary:

γ = 〈u|τz|v〉 = 〈C20u|C20τzC
−1
20

|C20v〉
= −〈v|τz|u〉 = −γ ∗, (E5)

where C20 |v〉 = −i|u〉 and C20 |u〉 = −i|v〉 according to
Eq. (E2), and C20τzC

−1
20

= −τz according to the algebra for
spin- 1

2 rotations [20]. Under these circumstances, the real part
of Eq. (27) reduces to (̃a + b̃) cos(3φ) = 0, which for ã �= −b̃

has six inequivalent roots:

φ = π

6
+ l

π

3
, l = 0,1, . . . ,5, (E6)

and, from the imaginary part of Eq. (27), we find, using
sin(3φ) = (−1)l ,

q3
⊥ = (−1)l

MzIm[γ̃ ]

b̃ − ã
. (E7)

Depending on the various parameters, the three physical
solutions with a positive q⊥ are the ones with either even or
odd values of l. These two possibilities realize the two types
of threefold symmetric patterns where the split Weyl nodes lie
on the �MLA planes.
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