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Emergent Weyl nodes and Fermi arcs in a Floquet Weyl semimetal
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When a Dirac semimetal is subject to a circularly polarized laser, it is predicted that the Dirac cone splits into two
Weyl nodes and a nonequilibrium transient state called the Floquet Weyl semimetal is realized. We focus on the
previously unexplored low-frequency regime, where the upper and lower Dirac bands resonantly couple with each
other through multiphoton processes, which is a realistic situation in solid-state ultrafast pump-probe experiments.
We find a series of new Weyl nodes emerging in pairs when the Floquet replica bands hybridize with each other.
The nature of the Floquet Weyl semimetal with regard to the number, locations, and monopole charges of these
Weyl nodes is highly tunable with the amplitude and frequency of the light. We derive an effective low-energy
theory using Brillouin-Wigner expansion and further regularize the theory on a cubic lattice. The monopole
charges obtained from the low-energy Hamiltonian can be reconciled with the number of Fermi arcs on the
lattice, which we find numerically.
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Introduction. Weyl semimetals (WSM) and Dirac semimet-
als (DSM) have emerged as one of the most exciting new class
of three-dimensional topological materials [1–6] with a gapless
and linearly dispersing bulk spectrum allowing for a realization
of Weyl fermions. Since the Weyl nodes in a lattice always
occur in pairs of opposite chiralities [7], they act as monopoles
and antimonopoles of Berry flux. Consequently, WSMs have
topological surface states whose Fermi surfaces originate and
terminate at Weyl nodes of opposite chiralities leading to
open Fermi arcs [8–15]. The nontrivial topology of WSMs
leads to various exotic electromagnetic responses like the
condensed matter realization of the chiral anomaly [16–22],
chiral magnetic effect [23,24], and negative magnetoresistance
[19,25,26]. Although WSM materials have been discovered
recently [13–15,27–29], it is extremely desirable to posses
the capability of tuning their properties with regard to the
number and nature of Weyl nodes. It is known that WSM can
be generated out of a DSM when time-reversal (TRS) and/or
inversion symmetries are broken [2,30–32]. While the former
separates the Weyl nodes in momentum, the latter separates
them in energy.

Recently, time periodic modulations of topologically trivial
systems, often realized via light-matter interaction, have
emerged as an interesting way of obtaining topological phases,
often richer than their static counterparts [33–45]; the effects
of interaction and disorder have also been explored [46–51].
Such protocols have also been complemented with their
experimental realizations [52,53].

In the same spirit, one expects to generate a three-
dimensional topological WSM from its trivial parent, a Dirac
semimetal (DSM) by subjecting it to time-periodic fields
[54–59]. An appealing way of breaking TRS in the context of
solid state experiments is to subject DSM materials like Na3Bi
and Cd3As2 [60–64] to a circularly polarized laser (CPL). Such
a system is described by a Hamiltonian periodic in time and
hence can be studied using Floquet theory [65–67]. Analysis
of the Floquet quasienergy spectrum reveals a new Floquet
WSM phase born out of the DSM, in which the number,
location, and nature of the Weyl nodes are tunable with the

amplitude and frequency of CPL. Previously, such a system
has been studied within the framework of high-frequency
Floquet-Magnus expansion [68,69] and holographic duality
[70].

The focus of this work, however, is the much richer and
experimentally relevant regime, namely the situation where
the frequency of the CPL is much less than or comparable
to the bandwidth of the parent DSM. In this regime, Floquet
replica, i.e., photon dressed states, will cross, hybridize with
and repel each other. As a consequence, besides the two Weyl
nodes born out of the original Dirac cone, we find a series
of infinite number of Weyl nodes emerging from the Floquet
replicas. They have nontrivial monopole charges, and as the
CPL amplitude is increased, they move and pairwise annihilate
as they approach those with opposite monopole numbers (see
Fig. 1, for example).

We derive effective low-energy Hamiltonians for these new
Weyl nodes using Brillouin-Wigner expansion [71–73] and
deduce their monopole charges. Similar to the static case,
Floquet Fermi arcs are generated between the Weyl nodes
and their degeneracy is related to the monopole number of
the Weyl nodes. These results are verified by regularizing our
theory on a lattice, and numerically computing the number of
Fermi arcs in a system with open boundaries. Our findings
can be experimentally realized using time-resolved ARPES or
ultrafast pump-probe measurements, which we will explain in
the end.

Spectrum of the Floquet WSM. Floquet theory reduces the
solution of the Schrödinger equation for a time periodic Hamil-
tonian H(t + T ) = H(t) with T = 2π/� to an eigenvalue
problem for a time-independent, but infinite dimensional,
Hamiltonian (for a review see [74]). The infinite dimensional
Floquet Hamiltonian HF has blocks of the general form

HF
m,n = 1

T

∫ T/2

−T/2
dtei(m−n)�tH(t) − n�δm,n, (1)

where n,m ∈ Z. The diagonal blockHF
n,n corresponding to the

n-photon sector is equal to the time averaged Hamiltonian over
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FIG. 1. Evolution of the Floquet quasienergy spectrum on increasing laser amplitude A. Weyl points generated from the n = 0 and n = ±1
sectors at finite A meet and annihilate at A/� = 0.5.

a period HF
0 , shifted in energy by n�. The off-diagonal blocks

HF
m,n = HF

m−n, with m �= n, correspond to transitions between
these sectors via absorption or emission of m − n photons.

We start with a continuum low-energy description of
the DSM described by the Hamiltonian HDSM = γ 0(Mc2 +
ch̄γ · k), where M is the mass and c the Fermi velocity of
the DSM. The CPL propagating along the ẑ, described by the
gauge field A(r,t), is assumed to have a wavelength much
larger than the width of the DSM along ẑ. Further, since the
magnetic field of the CPL is negligible compared to the electric
field, the r dependence can be neglected, which reduces
the form of the gauge field to A(t) = A{cos(�t), sin(�t),0},
where E = A� is the amplitude of the electric field and �

is the frequency of the CPL. The continuum time-dependent
Hamiltonian describing the DSM subjected to CPL can then
be obtained via minimal coupling between HDSM and A(t) as

H(t) = γ 0
[
Mc2 + h̄cγ ·

(
k − e

h̄
A(t)

)]
. (2)

In the following, we use natural units with h̄ = 1 = e = c

and also set the mass M of the DSM to zero. The Floquet
Hamiltonian corresponding to H(t) (2) can be obtained using
Eq. (1) as

HF
0 = γ 0γ · k; HF

±1 = −Aγ 0γ ±, (3)

and HF
n = 0∀|n| > 1, where γ ± = (γ 1 ± ıγ 2)/2. To obtain

the Floquet quasienergy spectrum, i.e., the eigenvalues ε of
the Floquet Hamiltonian, HF is truncated to include a finite
number of photon processes and numerically diagonalized.
Since we are interested in the low-energy properties of the
system, it is sufficient to include up to ±5 photon sectors, so
that the Floquet quasienergy spectrum within ±3� converges
to numerical precision.

The quasienergy spectrum reveals an exotic Floquet WSM
phase, where the number and locations of the Weyl nodes can
be tuned via A and � as shown in Fig. 1. In the absence of
CPL (A = 0), the Floquet quasienergy spectrum consists of
a doubly degenerate Dirac cone at k = 0 and quasienergy
ε = 0. Additionally, the gap between the Floquet replicas
of the spectrum from the ±n-photon sectors closes on the
hypersphere |k| = n� at ε = 0. A finite A causes the Dirac
cones at k = 0 to hybridize with each other, and similarly the
doubly-degenerate gapless hyperspheres at |k| = n�. Each
of these split into two Weyl nodes, lying on the k3 axis.
On increasing A, the Weyl nodes move along k3, such that
they eventually merge and annihilate each other, resulting in
a gapped spectrum. The global picture is shown in Figs. 2(a)
and 2(b) via the trajectories of the Weyl nodes.

It is important to note that, although the continuum theory
is scale-invariant because of its linear dispersion, leading to
any � being resonant, it correctly describes the physics of
a lattice regularized theory only close to k = 0 within the
region where the linear approximation for the DSM spectrum
sin |k| ∼ |k| holds. The spectrum of a DSM on a lattice would
have a bounded spectrum with a finite bandwidth. The resonant
regime in this case, unlike the high-frequency limit, allows
for hybridization between the n = ±1 Floquet replicas [75]
resulting in additional Weyl nodes as shown for small �/�0

values in Fig. 2(b). It can be estimated that the continuum
theory correctly captures the resonances between ±n-photon
sectors as long as � is small enough such that sin(n�) ∼ n�.
Having established that the resonant limit of the Floquet WSM
indeed leads to new Weyl nodes from resonances between
higher photon sectors, we now obtain effective low-energy

FIG. 2. The number and location of Weyl points along k3

calculated from the continuum model as a function of (a) the
amplitude A and (b) frequency � of the circularly polarized light,
with A = �0/4 fixed, where �0 is an arbitrarily chosen frequency.
The lines denote the location of the Weyl points on the k3 axis, which
are calculated by locating the zeros of the quasienergy spectrum.
Note that, on decreasing �, the spectrum has increasing number of
Weyl points close to k3 = 0 originating from higher order resonances.
(c) Schematic plot showing the creation and annihilation of emergent
Weyl nodes along the kz axis, when A �= 0. The dashed circles show
the Dirac semimetal nodal line due to Floquet replica bands crossing
the ε = 0 surface at |k| = n�, for A = 0, � �= 0, which disappears
as soon as the CPL is turned on. The number above each Weyl point
indicates its monopole charge, which is computed from the effective
Hamiltonian in Eq. (5).
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FIG. 3. Floquet quasienergy spectrum near the Weyl nodes for
A = �/5. The spectrum from the Floquet Hamiltonian (FH) (3) and
effective theory obtained from (5) are compared. (a) A slice along k3

with k1,2 = 0. A slice along k2 for (b) k3 = k
W,+
3 and (c) k3 = k

W,−
3

at k1 = 0.

Hamiltonians for these new Weyl nodes originating from the
hybridization of n = ±1 Floquet replicas, i.e., near k3 � ±�,
to leading order in A.

Effective theory for the emergent Weyl nodes. The Weyl
nodes that are created in the Floquet replica bands have
nontrivial monopole numbers and we can construct their

FIG. 4. (a) Weyl node trajectories similar to Fig. 1 for the lattice
system with � = 0.25. The markers in the plot correspond to the
values of A and k3 for which the quasienergy spectrum with open
boundary conditions is shown. In plots (b), (e), and (f), there are
no surface states; in (c) and (d) there are respectively one and three
surface states. From the change in the number of Fermi arcs between
the regions marked by the blue circle and the orange and purple
triangles, it can be deduced that the monopole charges of the Weyl
nodes from the n = ±1 sectors are 1 and −1, respectively. Similarly,
from the regions marked with the green and purple triangles and the
brown diamond, it can be deduced that the monopole charges of the
Weyl nodes n = ±2 sectors are ±3. Note that, each of the Fermi arcs
shown here are twofold degenerate due to equivalent contributions
from k1 = 0 and π . The system has a linear dimension of 512 and
HF is truncated till n = 4.

FIG. 5. Splitting of Weyl points due to C−4 symmetric lattice.
(a) The original Weyl point obtained from the continuum theory with
monopole charge of +3 (red) is split into four C−4 symmetric Weyl
points (blue) with charges of +1 each while the monopole charge
of the original Weyl point on the k3 axis now becomes −1 (orange).
(b) The quasienergy bands along the white dashed line are shown,
which corresponds to the minima of the quasienergy spectrum in
the k2-k3 plane for k1 = 0 illustrating the additional Weyl points
apart from the one at k2 = 0. The parameters used are � = 0.25 and
A = 0.08.

effective theories using the Brillouin-Wigner (BW) expansion,
where the details can be found in Ref. [76]. We note that
this method is equivalent to the Green’s function decimation
(GFD) technique [77,78], which has also been applied to study
Floquet states in graphene [75].

Here, we demonstrate this for the first Weyl node pairs
created by hybridization of the n = ±1 Floquet replicas that
are resonant at k3 � � and k1,2 = 0. The derivation is done
by projecting the infinite-dimensional Floquet Hamiltonian
(3) onto the relevant photon sectors that participate in the
resonance. Their effective coupling is derived up to leading
orders in A by projecting out other photon sectors. Given the
eigenvalue problem

∑
n(HF

m,n − δm,nm�)|�n〉 = ε|�m〉, we
aim to reduce it to an eigenvalue problem

∑′
n HBW

m,nP |�n〉 =
εP |�m〉 in a smaller Hilbert space. P is the projection operator
to the n = ±1 subspace, Pm,n = δm,1δn,1 + δm,−1δn,−1 and the
sum

∑′ is restricted to this space. The BW Hamiltonian
depends on the exact eigenvalue ε and up to A2 it is expressed
as

HBW
s,s (ε) = HF

0 − s� + HF
+s

(
ε − HF

0

)−1HF
−s

+HF
−s

(
ε + 2s� − HF

0

)−1HF
−s ;

HBW
s,−s(ε) = HF

+s

(
ε − HF

0

)−1HF
+s , (4)

with s = ±1. By using the basis diagonal in both HF
0 and γ 5,

one can further project out the irrelevant states far from ε = 0,
and replace ε with an explicit form obtained by an expansion in
A. The effective Hamiltonian so obtained has the same block
diagonal structure as obtained from GFD and the two blocks
are given by

HW,±
eff =

(
|k| − � + A2 |k|2 + k2

3 ± �k3

|k|(4|k|2 − �2)

)
σ 3

− A2
(|k| + k3

)±1

2|k|�(2|k| − �)

(
k2∓1
+ σ+ + H.c.

)
, (5)

041126-3



RAPID COMMUNICATIONS

BUCCIANTINI, ROY, KITAMURA, AND OKA PHYSICAL REVIEW B 96, 041126(R) (2017)

FIG. 6. Evolution of the population of the Floquet quasienergy bands as a function of A/�, when starting from an initial state that has the
two upper and lower Dirac bands fully occupied. Dashed lines indicate the Floquet quasienergy bands, while the red shade indicate the bands,
which have larger spectral weight.

where k± = k1 ± ik2 and σ± = σ1±iσ2
2 . The Weyl points appear

at

k
W,±
3 = (2 ∓ 1)� +

√
((2 ± 1)�)2 − 8A2

4
, k1,2 = 0,

(6)

which agree with the numerical results as shown in Fig. 3.
Equation (5) further implies that the monopole charges are
+1 and +3. One can generalize this discussion to k3 ∼ n�

with ±n-photon sectors, where the off diagonal term is
proportional to An(k2n∓1

+ σ+ + h.c.) to leading orders in A

implying monopole numbers of 2n ∓ 1. In the negative k3 < 0
side, we obtain Weyl nodes with −2n ± 1 monopole numbers,
and the pair annihilation shown in Fig. 2 occurs between
those with opposite monopole numbers. We note that similar
nodal states with nontrivial winding were studied in the
two-dimensional problem as well [79].

Emergent Fermi arcs and lattice effects. In a system with
open boundary conditions, the monopole charge of the Weyl
nodes can then be deduced from the change in the number
and chirality of the Fermi arcs edge states across the Weyl
nodes. Equivalently, a WSM can be viewed as a momentum-
space stack (along k3 in this case) of two-dimensional Chern
insulators with a k3 dependent mass, where the Weyl nodes
serve as points of topological phase transitions leading to a
change in the Chern number and hence in the number of edge
states. In order to reconcile the number of edge states with the
monopole charges of the Floquet Weyl nodes, we regularize
our continuum theory on a four-orbital cubic lattice and study
the quasienergy spectrum of with open boundary conditions
along x but periodic along y and z.

Here, using a four-orbital fermion operator �μ̂, we consider
a lattice model

H(t) = −1

2

∑
r

3∑
μ=1

(ı�†
rγ

0γ μ�r+μ̂e−ıA(t)·μ̂ + H.c.) (7)

as a regularized version of the DSM in CPL incorporated as
a time-dependent Peierl’s substitution. In momentum space, it
reduces toHDSM=− ∑3

μ=1 γ 0γ μ sin(kμ − Aμ). Using Eq. (1),
the components of the Floquet Hamiltonian for the lattice
system become

HF
m = − 1

2Jm(A)[(−ı)mλ1 + (−ı)−mλ
†
1 + λ2 + (−1)mλ

†
2]

HF
0 = − 1

2 [J0(A)(λ1 + λ2) + λ3] + H.c., (8)

where λμ = ı
∑

r �
†
rγ

0γ μ�r+μ̂ and Jm is the mth Bessel
function of the first kind.

The lattice Hamiltonian allows direct transitions between
all photon sectors and may result in a difference in the
monopole charge of Weyl nodes compared with the continuum
theory. For instance, HF

±2 give an additional off-diagonal
term ∼ −(A2/8)k−σ+ + H.c. to HW,−

eff in Eq. (5). This term
changes the monopole charge from +3 to −1 in the vicinity
of k3 = k

W,−
3 . This is manifested in the number of the Fermi

arcs changing by one across this Weyl point as shown in the
regions corresponding to the blue circle and the orange and
purple triangles in Fig 4. Regularizing the theory on a C − 4
symmetric lattice essentially leads to four additional Weyl
points with charges +1 branching out away from the k3 axis
such that their net charges and that of the one on the k3 axis
sum to −3, which is shown in Fig. 5. A simple counting of edge
states in Fig. 4 also shows that that the monopole charges of the
Weyl nodes generated from the n = ±2-photon sector are ±3.

Tr-ARPES is a powerful method to experimentally observe
the Floquet bands. The static spectral function gives a reliable
approximation if the bands are initially fully occupied and
the laser is turned on suddenly. It is defined by A(k,ε) =
−π−1Tr[(ε + iδ)I − HF

k ]−1, where HF is the Floquet Hamil-
tonian, Tr denotes the trace over Floquet and internal states,
and δ is a small real number, see Ref. [33] for details. As
shown in Fig. 6, where we considered an initial state with
the four original Dirac bands fully occupied, most of the
spectral weight is concentrated near the original Dirac bands
even for A/� �= 0; in particular, the annihilation process at
A/� = 0.5 has enough spectral weight to be experimentally
observable.

Conclusions. To summarize, we have derived an effective
low-energy theory for a Floquet WSM obtained by subjecting
a DSM to CPL. We especially focused on the Weyl points
originating from the Floquet replica in the resonant limit. We
found that tuning the frequency or the amplitude of the CPL
can move these Weyl points such that they can merge and
annihilate in pairs. We also found that such a Floquet WSM
allows for Weyl points of higher monopole charges, which
we finally reconciled by numerically studying the number of
Fermi arcs on a lattice system.

The annihilation process of Weyl nodes is experimentally
accessible. The Fermi velocity of the DSM Cd3As2 is 1.5 ×
106 m s−1 [63]. If a mid infrared laser with photon energy � =
0.2 eV is used, the pair annihilation taking place at A/� = 0.5
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can be achieved at E � 0.2 MeV cm−1. Our results can
potentially be verified using time-resolved ARPES, as it has
already been successfully performed in Refs. [52,53] to obtain
the Floquet replicas in Bi2Se3.
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