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Coulomb blockade in fractional topological superconductors
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We study charge transport through a floating mesoscopic superconductor coupled to counterpropagating
fractional quantum Hall edges at filling fraction ν = 2/3. We consider a superconducting island with finite
charging energy and investigate its effect on transport through the device. We calculate conductance through
such a system as a function of temperature and gate voltage applied to the superconducting island. We show
that transport is strongly affected by the presence of parafermionic zero modes, leading at zero temperature to a
zero-bias conductance quantized in units of νe2/h independent of the applied gate voltage.
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Introduction. Topological superconductors, characterized
by the presence of localized Majorana zero-energy modes
(MZMs), have recently generated significant excitement in
the condensed matter and quantum information communi-
ties [1–5]. Much of this excitement is due to the prediction
that MZMs obey non-Abelian braiding statistics [6–8], and
as such have potential applications in topological quantum
computation [5]. Theory predicts that MZMs may be realized
in semiconductor-superconductor heterostructures [9–12], and
there is mounting experimental evidence for their existence in
semiconductor nanowires [13–22]. More recently, a number of
proposals [23–29] were put forward describing how to realize
a scalable platform for topological quantum computation using
mesoscopic superconducting islands hosting two or more
MZMs. The interplay between charging energy in mesoscale
islands and topological degrees of freedom is an outstanding
open problem.

In a normal-superconductor-normal (N-S-N) junction con-
sisting of a gated s-wave superconducting island, the con-
ductance through the device has 2e periodicity with the gate
charge [30,31]. The transport is dominated by the coherent
Cooper-pair transmission through the island. In contrast, an
N-TSC-N junction has e periodicity due to the presence
of MZMs [32–36] which enable coherent single-electron
transmission between opposite ends of a nanowire (i.e., an
electron propagates coherently over distances much larger
than the superconducting correlation length). This effect is
at the heart of some of the recent measurement-only quantum
computation proposals with Majorana zero modes [28,29].
An interesting question is whether this coherent transmission
phenomenon has some analog in fractional 1D topological
superconductors (fTSCs).

One-dimensional (1D) fTSCs are characterized by the
modes at their end points that may accommodate a dis-
crete fraction of an electron charge e∗ at no energy cost.
These modes, known as parafermionic zero modes, are a
generalization of the more well-known Majorana zero modes,
which can accommodate only electrons at no cost. According
to a classification theorem [37] parafermionic zero modes
are forbidden in a generic purely one-dimensional system.

However, 1D fTSCs may exist in effectively 1D systems
that emerge at the boundary of a 2D region that already
admits fractionalized excitations, such as a 2D electron gas
in a fractional quantum Hall (fQH) state. There have been
several proposals for realizing these fractional topological
superconductors in solid-state systems [38–41]. Recently,
Clarke et al. [42] argued that fTSCs may lead to an interesting
and unique set of circuit elements when the proximitizing
superconductor is grounded (i.e., has no charging energy).
In this paper we consider a device (shown in Fig. 1) with a
floating fTSC and investigate the effect of charging energy on
transport in such a system. We find that the transport properties
of an fTSC in the presence of charging energy are drastically
different from that in Majorana islands [20,32,34–36,43].
Floating metallic islands coupled to QH edges have
been already realized experimentally [44,45]. Therefore,
we believe that our proposal is within the experimental
reach, and is particularly suitable for graphene-based fTSC
proposals.

Theoretical model. We consider the transport through
a mesoscopic superconducting island connecting the coun-
terpropagating edge modes bordering two regions of spin-
unpolarized fQH state at a filling fraction ν = 2/(2n + 1)
(see Fig. 1). We assume that edge states are strongly coupled
to the superconductor in the region x1 < x < x2, and are com-
pletely decoupled outside. Each edge state can be described
using the K-matrix formalism [46,47] with the corresponding
Lagrangian LR/L

0 = LR/L
ρ + LR/L

σ , where

LR/L
ρ = 2n + 1

8π
∂xφρ(±∂tφρ − Vρ∂xφρ), (1)

LR/L
σ = 1

8π
∂xφσ (±(−1)n∂tφσ − Vσ ∂xφσ ). (2)

Here R/L denotes the right/left propagating edge modes. The
fields φρ and φσ correspond to charge and neutral modes,
respectively. In particular, we note that the operator eiφρ creates
a spinless quasiparticle with charge e∗ = νe. Note that we
assume here that the state is unpolarized and neglect spin-
SU (2) symmetry-breaking terms such as Vρσ ∂xφρ∂xφσ .

2469-9950/2017/96(4)/041123(5) 041123-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.041123


RAPID COMMUNICATIONS

YOUNGHYUN KIM, DAVID J. CLARKE, AND ROMAN M. LUTCHYN PHYSICAL REVIEW B 96, 041123(R) (2017)

= 2/3

SC

= 2/3
∗

FIG. 1. Schematic diagram of the device layout. Two counter-
propagating fQH edges with the filling fraction ν = 2/3 are coupled
to a floating mesoscopic s-wave superconductor with a charging
energy EC . In the appropriate parameter regime (see below), two
parafermionic zero modes are localized at x1 and x2. Here the distance
|x2 − x1| should be much larger than superconducting coherence
length. The low-energy transport is dominated by the coherent charge
e∗ transmission through the superconducting island.

In terms of the chiral fields, electron operators at either side
of the superconducting island can be written as

ψ
R/L

↑ = 1√
2πa

ei( 1
ν
φ

R/L
ρ − 1

2 φ
R/L
σ ), (3)

ψ
R/L

↓ = 1√
2πa

ei( 1
ν
φ

R/L
ρ + 1

2 φ
R/L
σ ), (4)

where a is a short-distance cutoff. We now introduce the
nonchiral bosonic variables φR

ρ,σ = ϕρ,σ + θρ,σ and φL
ρ,σ =

ϕρ,σ − θρ,σ where the charge and spin fields satisfy the
following commutation relations:

[θρ(x),ϕρ(x ′)] = −2πνi�(x ′ − x), (5)

[θσ (x),ϕσ (x ′)] = 2πi(−1)n�(x ′ − x). (6)

Here �(x ′ − x) is the Heaviside theta function. The total
charge density now reads

ρ = ∂x(φR
ρ − φL

ρ )

2π
= ∂xθρ

π
, (7)

and the current operator for the corresponding segment of the
four-terminal device shown in Fig. 1 is given by [48]

Iin = e

2π
φ̇R

ρ (x1), I1 = e

2π
φ̇R

ρ (x2), (8)

I2 = e

2π
φ̇L

ρ (x1), I3 = e

2π
φ̇L

ρ (x2). (9)

The injected current in the linear response regime is given
by 〈Iin〉 = V νe2/h, whereas the injected current 〈I3〉 = 0
since both contacts upstream of the bottom right edge are
grounded. Therefore, we can define differential conductances
for the two different drain electrodes G1 = d〈I1〉/dV and
G2 = d〈I2〉/dV with the constraint G1 + G2 = νe2/h due to
current conservation. After including interaction terms across
the superconducting island

LRL
C = − 1

4πν
V C

ρ ∂xφ
R
ρ ∂xφ

L
ρ − 1

8π
V C

σ ∂xφ
R
σ ∂xφ

L
σ , (10)

one arrives at the effective action Sρ + Sσ with

Sρ = 1

2π

∫
dx dτ

Kρ

ν

[
(∂τϕρ)2

v
+ v(∂xϕρ)2

]
, (11)

Sσ = 1

2π

∫
dx dτ

Kσ

2

[
(∂τϕσ )2

v
+ v(∂xϕσ )2

]
, (12)

where Kρ,σ =
√

Vρ,σ +V C
ρ,σ

Vρ,σ −V C
ρ,σ

. From now on we will assume a

weak repulsive interaction between the charge modes and
an attractive interaction between the neutral modes such that
Kρ � 1 > Kσ .

Next we consider various perturbations induced by the
superconducting trench (of width smaller than the SC coher-
ence length). In the Supplemental Material [47], we analyze
the single-particle and two-particle processes across the
superconducting trench and calculate the scaling dimension
of the corresponding operators. One can show that the neutral
mode is gapped out in the singlet channel for Kσ < 1 and,
as a result, θσ is pinned. Henceforth we will assume that
the gap for the neutral modes is the largest energy scale in
the problem which effectively makes the system spinless. In
the charge sector, there are two important bulk perturbations
involving one fermion from each edge: a spin-conserving
backscattering process ψ

†R
↑ ψL

↑ + ψ
†R
↓ ψL

↓ + H.c. ∝ cos( 2
ν
θρ)

and a superconducting pairing term in the singlet channel
ψR

↑ ψL
↓ − ψR

↓ ψL
↑ + H.c. ∝ cos( 2

ν
ϕρ).

For ν = 2/3, both terms are relevant at Kρ ∼ 1 and flow
to strong coupling. For other filling fractions (ν = 2

2n+1 with
n > 1), only one of these terms may be made relevant at a
time by adjusting Kρ . However, given that θρ and ϕρ are dual
variables, these terms compete with each other and cannot
order simultaneously. Henceforth we focus on the limit when
superconducting pairing is relevant (Kρ > 1

2ν
) and dominates

over the backscattering term to open a pairing gap in the
trench; see detailed discussion in Refs. [38–40]. As a result,
the backscattering term is suppressed in the bulk but may be
important at the boundaries of the superconducting region (x1,
x2). Note that the system with a grounded superconductor
was considered in Ref. [42] where it was shown that the
parafermionic zero modes emerging at the end of the super-
conductor lead to a spectral flow of the boundary conditions
and strongly modify transport properties of the system. In the
present case, we consider a floating superconducting island
with a finite charging energy EC � T , with T being the
temperature. Thus, in contrast with Ref. [42], uncorrelated
Andreev processes at x1 and x2 are suppressed in our
case.

Taking into account the above considerations, one can
now write an effective low-energy model for the system. For
concreteness, we consider the case ν = 2/3, which may be
the most experimentally relevant situation given that both
the pairing term (leading to a topological phase) and the
spin-conserving backscattering term (that reforms the ν = 2/3
state from separated edges) are relevant when interactions are
weak (Kρ ∼ 1). In the limit of weak backscattering at x1/2, the
corresponding Hamiltonian becomes

H = H0 + HB + HP + HC, (13)
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where H0 describes the two decoupled edges and

HB = −Dr1 cos (3θρ(x1)) − Dr2 cos (3θρ(x2)), (14)

HP = − 

2πa

∫ x−
2

x+
1

dx cos (3ϕρ(x)), (15)

HC = EC

(
θρ(x2) − θρ(x1)

π
− Ng

)2

. (16)

Here r1,2 � 1 are the reflection amplitudes at x = x1,2,
respectively,  is the induced SC gap, EC is the charging
energy determined by the geometric capacitance of the island,
a is the short-distance cutoff, and x±

i ≡ xi ± 0+. The charge
on the island, given by [θρ(x2) − θρ(x1)]/π , can be tuned with
the dimensionless gate voltage Ng = CgVg , where Cg and Vg

are gate capacitance and voltage, respectively. We implicitly
assume here that due to the presence of a metallic island and
strong hybridization between edge states and states in the
metal, normal-state level spacing in the domain x ∈ (x1,x2)
becomes negligibly small.

High-temperature limit. We first analyze the high-
temperature limit EC � T �  when the island is in the
normal state. At energies below EC , charge fluctuations will be
suppressed, resulting in the constraint θ−

ρ ≡ θρ(x2) − θρ(x1) =
πNg . In terms of the fluctuating field θ+

ρ ≡ θρ(x2) + θρ(x1),
the boundary backscattering Hamiltonian HB is given by

H
(eff)
B = −Dr(Ng) cos

(
3
2θ+

ρ − β(Ng)
)
, (17)

where β(Ng) is some unimportant phase and r(Ng) reads

r(Ng) = sgn

(
cos

3πNg

2

)√
r2

1 + r2
2 + 2r1r2 cos(3πNg).

(18)

As a result of pinning of θ−
ρ , the RG equation for r(Ng) in

the case D < EC becomes dr/dl = (1 − 3Kρ/4)r . For Kρ <

4/3, the backscattering term is relevant, and flows to the strong
coupling limit with θ+

ρ pinned. Using the condition r(Dc) ∼ 1,
we find the strong-coupling crossover scale Dc:

Dc ∼ ECr(Ng)
4

4−3Kρ . (19)

In the intermediate regime Dc � D � EC , the backscattering
term remains small and can be taken into account perturba-
tively.

The differential tunneling conductance in different temper-
ature regimes can be evaluated using the Kubo formula [49]

Gi = 1

2T

∫ ∞

−∞
dt �i

(
it + 1

2T

)
, �i(τ ) = 〈Ii(τ )Ii(0)〉.

(20)

Here τ is imaginary time and Ii is the corresponding expression
for the current operator; see Eq. (8). The resulting conductance
G1(T ) for max{Dc,} � T � EC is given by

G1(T )

G0
= ν

(
1 − c1r(Ng)2

(
EC

T

) 4−3Kρ

2
)

, (21)

where G0 = e2/h and c1 is an O(1) numerical constant.

Let us now consider the case  � T � Dc [50], where
backscattering becomes large and the system flows to strong
coupling, thereby pinning the field θ+

ρ at the boundary. In
order to calculate the conductance in this case, we first need
to perform a duality transformation. The leading irrelevant
operator, which shifts 3

2θ+
ρ by 2π , is given by

Hdual = −Dλ(D) cos(δϕout − δϕin), (22)

where δϕout = ϕρ(x+
2 ) − ϕρ(x−

1 ) and δϕin = ϕρ(x−
2 ) − ϕρ(x+

1 ).
Equation (22) describes a process of correlated tunneling of
charge e∗ at x1 and x2 preserving the total charge in the island.
The scaling dimension of this operator is 4/3Kρ , in keeping
with its role as the dual of the Hamiltonian H

(eff)
B . The RG

flow for λ reads dλ/dl = (1 − 4/3Kρ)λ. Let us now consider
transport at this fixed point. The pinning of boundary fields θ±

ρ

implies that

φ̇R
ρ (x1) = φ̇L

ρ (x1), φ̇R
ρ (x2) = φ̇L

ρ (x2). (23)

Thus there is strong backscattering at x1 and x2 resulting in
〈I1〉 → 0. Assuming  � T � Dc, the conductance G1(T )
can be calculated perturbatively in λ. Using the Kubo for-
mula (20) and the current-conservation constraint at x1 (i.e.,
G2 = νG0 − G1), one finds that

G1(T )

G0
∼ λ(Dc)2

(
T

Dc

) 8
3Kρ

−2

∼ r(Ng)−
8

3Kρ

(
T

EC

) 8
3Kρ

−2

,

(24)

where we used λ(Dc) ∼ 1. Thus transport through the island in
this temperature regime is dominated by the inelastic processes
and is suppressed at low temperatures.

Low-temperature limit. Let us now consider the low-
temperature limit T � . We expect that transport prop-
erties will be significantly modified due to the presence of
parafermionic zero modes [38–40,42]. In the limit  � Dc,
the effective Hamiltonian at the scale D ∼ Dc is given by
Eq. (22) with λ(D) = λ(Dc)(D/Dc)4/3Kρ−1. Upon lowering
the bandwidth to D ∼ , the SC pairing HP opens a gap in the
spectrum and suppresses fluctuations of δϕin. It is illuminating
to rewrite the low-energy boundary Hamiltonian (22) in terms
of the parafermionic zero modes. Using the right-moving
representation [51], the effective Hamiltonian becomes

Hdual = − 1
2Dλ∗(D)eiφR

ρ (x+
2 )e−iφR

ρ (x−
1 )α

R†
2 αR

1 + H.c., (25)

where αR
1,2 are parafermionic operators localized at x1/2. One

should keep in mind that the system hosting two parafermionic
zero modes (Nm = 2) does not have ground-state degeneracy
since charge on the island is fixed by the charging energy.
If, however, the number of zero modes Nm > 2, ground-state
degeneracy will be restored and the process considered above
provides a way of measuring which ground state the system
is in. Hamiltonian (25) describes a coherent transfer of charge
e∗ quasiparticles through the superconducting island and is
reminiscent of the single-electron coherent transmission in
Majorana systems [32,36].

Let’s now analyze transport properties at low temperature
T � . One may notice that the scaling dimension of λ(D)
for D <  is halved to 2/3Kρ . Thus the boundary term (25)
becomes relevant for 2/3 < Kρ , and λ(D) grows under RG
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and reaches a strong coupling limit at the new scale:

Ds ∼  · λ()
3Kρ

3Kρ−2 . (26)

Using λ() ∼ (/Dc)
4

3Kρ
−1, the differential conductance can

be calculated perturbatively in the limit Ds � T �  yielding

G1(T )

G0
∼ r(Ng)−

8
3Kρ

(


EC

) 8
3Kρ

−2(


T

)2− 4
3Kρ

. (27)

Notice that the above expression matches Eq. (24) at T ∼ .
Finally, let’s consider the low-temperature regime

T � Ds,. At D < Ds , the boundary condition for the
fields becomes ϕρ(x+

2 ) − ϕρ(x−
1 ) = const, which leads to the

following conservation law for the chiral fields:

φ̇R
ρ (x2) + φ̇L

ρ (x2) − φ̇R
ρ (x1) − φ̇L

ρ (x1) = 0. (28)

Using current conservation, one finds that 〈I1〉 = 〈I 〉 and
〈I2〉 = 0. As a result, we conclude that zero-temperature
conductance G1 = νe2/h and is independent of Ng , which is
very different from the Majorana case [36]. Finite-temperature
corrections to the conductance can be calculated by perturbing
the above result with the leading irrelevant operator at the
strong coupling fixed point D � Ds :

H eff
B ∼ −Dr(D) cos

(
3θ+

ρ

2

)
. (29)

Given that ϕρ is pinned in the domain x1 < x < x2, the RG
flow for r(D) becomes dr/dl = (1 − 3Kρ/2)r . Thus, at the
energy scale D � Ds , one finds that

r̃(D) = r̃(Ds)

(
D

Ds

) 3Kρ

2 −1

. (30)

By perturbatively evaluating corrections to the conductance
using the Kubo formula (20) (see Ref. [52] for details) one
finds

G1(T )

G0
=ν

(
1 − c2r

4(Ng)

(
EC



)4−3Kρ
(

T



)3Kρ−2)
. (31)

Here c2 is an O(1) numerical coefficient. This is a coun-
terintuitive result. Despite the fact that the backscattering
term Dc was initially large (i.e., Dc � ), the low-energy
transport properties are characterized by a universal value of
the conductance. In other words, ground-state properties of
the system are independent of Ng (i.e., effective charging
energy is renormalized to zero by quantum fluctuations).
(See Fig. 2.)

Let’s compare our results for the Coulomb blockade in the
fractional TSC systems with the corresponding case in the
Majorana counterparts [32,34–36,43]. In the Majorana sys-
tems the backscattering operator is marginal [43] and the zero-
temperature conductance G1 is dependent on Ng: it reaches

FIG. 2. Schematic plot of the differential conductance G1(Ng)
in the low-temperature T � Ds, (dash-dot blue line) and high-
temperature  � T � Dc,EC (solid red line) limits. Here we assume
symmetric contacts r1 = r2.

maximum of the order of e2/h at the charge degeneracy points
and gets significantly reduced in the Coulomb valleys. In stark
contrast, we find quantized conductance G1 in the fractional
TSC systems. This drastic difference originates from the fact
that backscattering operators for charge-e∗ quasiparticles are
not allowed between fractional QH edges separated by the
trivial vacuum and backscattering is therefore dominated by
fermionic processes having higher scaling dimension. As a
result, quantum charge fluctuations are much stronger in fTSC
systems than in Majorana systems.

Conclusion. Coulomb blockade of charge transport across
a mesoscopic superconducting island manifests itself through
the oscillations of the conductance with the gate voltage
Ng . In Majorana islands the periodicity of the oscillations
corresponds to an increment of charge by e, whereas in
fractional topological superconductors this periodicity is deter-
mined by the fractional quasiparticle charge e∗. In this paper
we have developed a framework for studying the Coulomb
blockade effect in QH-superconductor heterostructures. By
considering the specific fractional topological superconduc-
tor proposal based on ν = 2/3 QH state, we show that
dependence of the differential conductance on gate voltage
and temperature is quite nontrivial. At zero temperature
the conductance approaches a quantized value of νe2/h.
The dependence on gate voltage appears only at finite
temperature with the amplitude of gate-voltage oscillations
increasing with temperature [see Eq. (31)]. The conductance
decreases with increasing temperature until T reaches the
superconducting gap scale  and then increases again to the
quantized value for  � T � EC .
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