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Encrypting Majorana fermion qubits as bound states in the continuum
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We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup
hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a
decrypted Majorana fermion (MF) qubit recorded over a single QD, which is detectable by means of conductance
measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in
both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since
the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.
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Introduction. It is well known that Majorana fermion (MF)
qubit zero modes [1,2] are expected to appear bounded to
the edges of a topological Kitaev chain [3–7]. Interestingly
enough, by approaching the Kitaev chain to a quantum dot
(QD), the MF-qubit state leaks [8] into it and manifests itself
as a zero-bias peak (ZBP) in conductance measurements.
The latter reveals experimentally the MF qubit recorded over
the QD. Indeed, such a phenomenon was experimentally
confirmed in a QD hybrid nanowire made by InAs/Al [9]
with huge spin-orbit interaction and magnetic fields, being
the nanowire placed close to an s-wave superconductor. It
is worth mentioning that MF qubits can also emerge in
the fractional quantum Hall state with filling-factor ν = 5/2
[10], in three-dimensional topological insulators [11], at the
core of superconducting vortices [12–14] and on the edges
of ferromagnetic atomic chains covering superconductors
with pronounced spin-orbit interaction [15,16], similarly to
semiconducting nanowires [17]. In terms of technological
applications, MF qubits are of particular interest. This is
because of their topological protection against decoherence
[3], a key ingredient for the achievement of efficient quantum
computers.

In this work we show that the employment of two QDs, as
depicted in Fig. 1(a), enables the cryptography of the MF-qubit
state η↑ = 1√

2
(�1 + i�2) made by the MF-qubits �1 and �2

with splitting energy εM → 0, where an encoded message
can be written over these states of bits. Our main theoretical
findings rely on the interplay between the leakage effect and
the so-called bound states in the continuum (BICs) [18,19]. In
this context, it is worth recalling the underlying physics of such
exotic excitations. BICs were proposed by von Neumann and
Wigner in 1929 [18] as quantum states with localized square-
integrable wave functions, but surprisingly within the domain
of the energy continuum region. Noteworthy, such states
trap particles indefinitely. BICs constitute a current topic of
broad interest [20], appearing in several physical systems like
graphene [21–23], optics and photonics [24–27], arrangements
exhibiting singular chirality [28] and Floquet-Hubbard states
due to ac fields [29,30]. Moreover, BICs assisted by MF qubits
enable applications like the storage of qubits [31] and the
electrical current switch [32] as well. It should be mentioned

that electrons trapped at BICs are prevented to decay into
the energy continuum of the environment. Once BICs are
undetectable by electrical conductance and accounting for the
leakage effect, we benefit of such a remarkable invisibility
feature of the BICs. Hence, for the sake of simplicity, we
label by cryptography of the MF-qubit η↑ = 1√

2
(�1 + i�2)

when its ZBP signature disappears as a BIC, turning itself
undetectable via conductance measurements. As it will be
discussed below, we also find an asymmetrical leakage of
the MF qubit. In such a situation, the ZBP is visible in the
conductance and we call such a regime by decrypted MF
qubit, since the MF-qubit state from the Kitaev chain edge
leaks solely into a single QD of the proposed setup (Fig. 1).
Equivalently, the qubit is recorded over this QD. Our decrypted
MF-qubit case corresponds to the readout of the qubit in QDs
via charge measurement, i.e., the ZB conductance, as proposed
by Flensberg [33]. Otherwise, the encrypted qubit is achieved
when the recording is symmetrical over the QDs, but with an
invisible ZBP in the conductance in such a way that the readout
is off, i.e., the decrypting is not allowed. In this regime, the
MF-qubit leaked state at zero bias is split into the QDs, thus
becoming BICs. Thereby, we propose that the switch on/off of
the readout of the qubit via the ZBP in the QDs consists in a
manner of realizing quantum cryptography of the information
written in the prepared MF-qubit states �1 and �2.

The Model. Below we describe theoretically the setup
outlined in Fig. 1(a) with a topological Kitaev chain coupled to
a double QD setup hybridized with metallic leads [33,34]. The
oversimplified sketch of such a system is depicted in Fig. 1(b),
which is ruled by the Hamiltonian

HFull =
∑
αk

ε̃αkc
†
αkcαk +

∑
α

εαd†
αdα + Tc(d†

LdR + H.c.)

+V
∑
αk

(c†αkdα + H.c.) + HMF qubits, (1)

where the electrons in the lead α = L,R are described by the
operator c

†
αk (cαk) for the creation (annihilation) of an electron

in a quantum state labeled by the wave number k and energy
ε̃αk = ε̃k − μα , with μα as the chemical potential. For the QDs
coupled to the leads, d†

α (dα) creates (annihilates) an electron in
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FIG. 1. (a) Two QDs symmetrically coupled to leads via the
hybridization V and asymmetrically to a topological Kitaev chain
by means of the complex amplitudes λL and λR . �1 and �2 are
overlapped MF qubits with splitting energy εM → 0. (b) Oversim-
plified sketch of (a). (c) Mapping of the original system from (b)
onto the pseudospin representation. The dressed pseudo-Zeeman
gap ε̃d↑ − ε̃d↓ appears depicted within the central QD, which is
side-coupled to the qubit η↑, namely, the MF qubit. λ̄σ identifies
both the tunneling and the Cooper pair binding energy between the
new QD and η↑, respectively, given by the horizontal and semicircular
dashed lines.

the state εα, which is gate tunable. The left-right QD coupling
is Tc, while V stands for the hybridization between these QDs
and the leads. ConcerningHMF qubits we refer to Ref. [33] which
accounts for QDs with large energy spacing of levels between
spins up and down due to Zeeman splitting. Consequently,
the spinless condition is fulfilled where only spin up state
is relevant for the emerging topological superconductivity. In
this way, our QDs do not depend on the charging energy as in
Refs. [9,35], thus the QDs just couple asymmetrically to the
Kitaev chain with complex tunneling amplitudes λL and λR ,
respectively, for the left and right QDs as follows:

HMF qubits = iεM�1�2 + |λR|(eiφRdR − e−iφRd
†
R)�1

+ |λL|(eiφLdL − e−iφLd
†
L)�1, (2)

where �1 = �
†
1 and �2 = �

†
2 account for the MF qubits lying

on the edges of the chain with overlap term εM ∼ e−L/ξ ,

wherein L and ξ designate, respectively, the size of the Kitaev
chain and the superconducting coherence length.

We stress that, for a sake of simplicity, by employing
the following substitutions dL = e−iφL [(cos θ )d̃↑ − (sin θ )d̃↓],
dR = e−iφR [(sin θ )d̃↑ + (cos θ )d̃↓], ckL = e−iφL [(cos θ )c̃k↑ −
(sin θ )c̃k↓], and ckR = e−iφR [(sin θ )c̃k↑ + (cos θ )c̃k↓] into the
Hamiltonian of Eq. (1), in particular at the zero-bias regime
(μα = 0 ≡ Fermi level of the leads), we obtain

HFull =
∑
k,σ

ε̃kc̃
†
kσ c̃kσ +

∑
σ

εdσ d̃†
σ d̃σ + V

∑
k,σ

(c̃†kσ d̃σ + H.c.)

+HMF qubits, (3)

which mimics an effective single QD coupled to an unique lead
both exhibiting an artificial spin degree of freedom σ = ±1
(↑,↓) [see Fig. 1(c) for such a representation].

We call attention that from now on we label the afore-
mentioned variable by pseudospin. As in Ref. [33] we have
topological protection of our findings if the phase difference
φL − φR = 2nπ is fulfilled, with n integer being tunable
via magnetic flux, thus leading to cos(2θ ) = �ε cos(φL−φR )√

4(Tc)2+(�ε)2
,

�ε = εL − εR as the detuning of the original spinless QDs,
the pseudo-Zeeman gap εd↑ − εd↓, with εdσ = (εL+εR )

2 +
σ
2

√
4(Tc)2 + (�ε)2 and

HMF qubits = εM

(
η
†
↑η↑ − 1

2

) +
∑

σ

λ̄σ (d̃σ η
†
↑ + d̃σ η↑ + H.c.),

(4)

where we have used �1 = 1√
2
(η†

↑ + η↑) and �2 = i√
2
(η†

↑ −
η↑) in order to build the qubit η↑ composed by the MF qubits,
namely the MF qubit, with λ̄↑ = 1√

2
(|λL| cos θ + |λR| sin θ )

and λ̄↓ = 1√
2
(|λR| cos θ − |λL| sin θ ) as pseudospin-

dependent amplitudes. As a result, the pseudo-Zeeman
gap becomes dressed by such an interaction, i.e., ε̃d↑ − ε̃d↓,

which will be addressed later on.
We call attention to the system Hamiltonian mapping

into Eq. (4), where one can recognize that the device of
Fig. 1(b) is equivalent to the QD d̃σ emulating the two original
spinless left and right QDs, in particular side-coupled to η↑,
which corresponds to a QD replacing the Kitaev chain. This
opens the possibility of reproducing experimentally the same
phenomenon reported here for the topological Kitaev chain
by employing QDs, but in the presence of a delocalized
Cooper pair split into d̃σ and η↑ with pairing amplitude λ̄σ

as the terms λ̄σ (d̃σ η↑ + H.c.) point out. Besides, the normal
tunneling between these QDs should be also equal to λ̄σ ,
i.e., λ̄σ (d̃σ η

†
↑ + H.c.), just in order to ensure the emergence

of MF qubits at the so-called “sweet spot” as predicted in
Ref. [36] by Flensberg. In such a work, the equivalence of
the topological Kitaev chain with a QD system is established
by means of an analogous Hamiltonian to our Eq. (4). In
this way, this system of QDs hosting MF qubits becomes an
experimental alternative with respect to the topological Kitaev
chain. Noteworthy, this QD-like alternative system with MF
qubits was already explored by some of us in Ref. [37] within
the context of adatoms and STM tips as well as the case of a
zero mode from a regular normal side-coupled QD to a central
QD region [38]. For this latter, the qubit η↑ without the Cooper
pairing amplitude (proximity effect) when encrypted would
be still protected against the decoherence of the surroundings
due to the BIC nature of the state which decouples it from the
environment, thus preventing a finite conductance through this
channel. Equivalently, BICs do not depend on the proximity
effect to occur. However, the decrypted qubit case would
not be protected in the same way, once it couples to the
environment in contrast to a MF qubit, which is topologically
protected characterized by a pinned ZBP. This characteristic
plays the main difference from a regular fermionic zero mode,
wherein the expected ZBP is destroyed by changing external
parameters as outlined in Fig. 4(a) of Ref. [38] and the readout
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of the qubit in the central QD region is compromised as a
result.

In what follows, we use the Landauer-Büttiker formula
for the zero-bias conductance G [39] to analyze the transport
through the QDs, which is

G = e2

h

∫
dε

(
−∂fF

∂ε

)
T Total, (5)

where fF stands for the Fermi-Dirac distribution, TTotal =∑
j Tjj + ∑

j Tj j̄ encodes the system total transmittance with
j = L,R, respectively, for j̄ = R,L to correlate distinct
QDs, in which Tj l = T↑↑ + T↓↓ + T↑↓ + T↓↑ dictates the
transmittance through the channels l,j = L,R in terms of the
coefficients Tσ σ̃ for the pseudospin representation.

Furthermore, Tj l = π�ρjl depends upon the Ander-
son broadening � = πV2 ∑

k δ(ε − ε̃k) [40] and ρjl =
(−1/π )Im(G̃dj ,dl

), the densities of states for the spinless QDs
from the Hamiltonian of Eq. (1) in terms of the retarded
Green’s functions G̃dj ,dl

, which are given by

ρLL = − 1

π
Im{cos2 θ G̃d̃↑,d̃↑ + sin2 θ G̃d̃↓,d̃↓

− sin θ cos θ (G̃d̃↓,d̃↑ + G̃d̃↑,d̃↓ )}, (6)

ρRR = − 1

π
Im{sin2 θ G̃d̃↑,d̃↑ + cos2 θ G̃d̃↓,d̃↓

+ sin θ cos θ (G̃d̃↓,d̃↑ + G̃d̃↑,d̃↓ )}, (7)

ρRL =− 1

π
Im{sin θ cos θ (G̃d̃↑,d̃↑ − G̃d̃↓,d̃↓ )

+ cos2 θ G̃d̃↓,d̃↑ − sin2 θ G̃d̃↑,d̃↓}, (8)

and

ρLR =− 1

π
Im{sin θ cos θ (G̃d̃↑,d̃↑ − G̃d̃↓,d̃↓ )

− sin2 θ G̃d̃↓,d̃↑ + cos2 θ G̃d̃↑,d̃↓}, (9)

here written as functions of the retarded Green’s functions
G̃d̃σ ,d̃σ̃

within the mapping on the pseudospin degree. To
evaluate G̃d̃σ ,d̃σ̃

, we should employ the equation-of-motion
method [39] by using Eqs. (3) and (4) as follows: εG̃d̃σ ,d̃σ̃

=
[d̃σ ,d̃

†
σ̃ ]+ + G̃[d̃σ ,HFull],d̃σ̃

. As a result, we find the linear system:(
ε − εdσ − λ̄2

σK + i�
)
G̃d̃σ ,d̃σ

− λ̄σ̄ λ̄σKG̃d̃σ̄ ,d̃σ

+ λ̄2
σKG̃

d̃
†
σ ,d̃σ

+ λ̄σ λ̄σ̄KG̃
d̃
†
σ̄ ,d̃σ

= 1, (10)

− λ̄σ λ̄σ̄KG̃d̃σ̄ ,d̃σ̄
+ (

ε − εdσ − λ̄2
σK + i�

)
G̃d̃σ ,d̃σ̄

+ λ̄σ λ̄σ̄KG̃
d̃
†
σ̄ ,d̃σ̄

+ λ̄2
σKG̃

d̃
†
σ ,d̃σ̄

= 0, (11)

λ̄2
σKG̃d̃σ ,d̃σ

+ λ̄σ λ̄σ̄KG̃d̃σ̄ ,d̃σ

+ (
ε + εdσ − λ̄2

σK + i�
)
G̃

d̃
†
σ ,d̃σ

− λ̄σ λ̄σ̄KG̃
d̃
†
σ̄ ,d̃σ

= 0,

(12)

and

λ̄σ λ̄σ̄KG̃d̃σ̄ ,d̃σ̄
+ λ̄2

σKG̃d̃σ ,d̃σ̄
− λ̄σ̄ λ̄σKG̃

d̃
†
σ̄ ,d̃σ̄

+ (
ε + εdσ − λ̄2

σK + i�
)
G̃

d̃
†
σ ,d̃σ̄

= 0, (13)

FIG. 2. TTotal as a function of ε: (a) The ZBP gives the asymmet-
rical leakage of the MF-qubit η↑ into the left QD (see also Fig. 3).
(b) and (c) The increasing of εR yields the process for encrypting this
qubit, which is characterized by the quenching of the ZBP amplitude.
(d) Here the ZBP (the MF qubit) is hidden as BICs equally split into
the QDs, where only the dressed pseudo-Zeeman gap is visible (see
also Fig. 4).

where σ̄ is the opposite of σ and K = (ε + εM )−1 + (ε −
εM )−1. To perform the analysis of the model in the next
section, we make explicit that we have solved the current
system numerically.

Results and Discussion. In the simulations below the
temperature T = 0 is assumed and � = 40 μeV [8,40] as
the energy scale. The topological Kitaev chain, for a sake of
simplicity, is treated as very large, which imposes εM → 0.

Thus, in order to make explicit the phenomenon of MF-qubit
cryptography, we begin discussing the picture requested for
the emergence of such in Fig. 2. Figure 2(a) accounts for εR =
−2�, |λL| = |λR| = λ = 5�, Tc = 1�, and εL = 1�, where
we verify a ZBP with amplitude of 1/4 in TTotal of Eq. (5) as a
function of ε. This detectable resonance represents the leakage
of the MF-qubit η↑ into the double QD setup. Additionally, it
also encodes the recording of a decrypted MF qubit over the
left QD, which will be elucidated later on via Figs. 3 and 4.
On this ground, let us consider the sequence of panels from
Figs. 2(b) to 2(d), which describes the qubit cryptography
itself: by changing just εL, we notice that the ZBP amplitude
becomes reduced progressively up to entire quenching in
Fig. 2(d). In this case, solely a couple of peaks stay visible
denoting the dressed pseudo-Zeeman gap ε̃d↑ − ε̃d↓. Indeed,
we will clarify that the ZBP becomes BICs, being undetectable
by TTotal. It means that if the ZBP is not perceived, we have the
accomplishment of the MF-qubit cryptography, which appears
addressed in detail by Figs. 3 and 4.

Figure 3 exhibits the density plots for TTotal, TLL, and TRR

spanned by the axis ε and εL for fixed εR = −2� (εR =
−1.5�), λ = 5� (|λL| = 1.95� and |λR| = 5�), and Tc = 1�.

It is worth noticing that all panels in Figs. 3(a)–3(f) present
a ZBP structure. However, each one reveals different aspects
on the leakage effect. For instance, in Fig. 3(a) [Fig. 3(d)] we
highlight the upper region marked by a yellow dashed ellipse: it
gives the domain where the MF-qubit cryptography is allowed,
once the ZBP is absent. Figures 3(b) and 3(c) [Figs. 3(e)
and 3(f)] contain the asymmetrical leakage into the QDs and
the decrypted MF-qubit left recording as well. Notice that in
the latter, nearby εL = 1� (εL = 0), the right QD decouples
from the setup, due to TRR = 0. This region is then identified
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FIG. 3. Density plots of: (a) TTotal, (b) TLL, and (c) TRR spanned
by εL and ε, with εR = −2�,|λL| = |λR| = λ = 5�, and Tc = 1�.

The ellipses depicted show at zero bias: (i) the region for the MF-qubit
cryptography (yellow dashed ellipse) in (a) and (ii) the corresponding
for the decrypted MF-qubit left recording (white dashed ellipse) in
(a) and (b), due to the right QD entirely decoupled from the system as
(c) shows (white dashed ellipse). (d), (e), and (f) For |λL| 	= |λR| give
qualitatively the same as (a), (b), and (c), thus ensuring the topological
robustness of the results, i.e., the BICs (the encrypted MF qubit) and
the decrypted MF-qubit left recording still occur, but for different set
of parameters.

by white dashed ellipses in Figs. 3(a)–3(f). As a result, the
MF-qubit state is recorded solely at the left QD as Fig. 3(b)
[Fig. 3(e)] ensures. This corresponds to the readout of the
qubit by a charge measurement as proposed by Flensberg [33].

FIG. 4. Tj l in (a) characterizing the decrypted MF-qubit left
recording. TLL shows a ZBP with amplitude 1/4, while TRR does
not: the inset reveals that TRR exhibits T↑↑ + T↓↓ perfectly phase
shifted by π with respect to T↑↓ + T↓↑(Fano dip). As aftermath, this
QD is disconnected from the system. In (b) we have the MF-qubit
cryptography: in TRR, the Fano dip is not perfect as before. However,
a Fano dip in TLR + TRL interferes destructively and exactly with
TLL + TRR. It means that the MF qubit is hidden as BICs equally
divided into the QDs.

Notice that both TLL and TRR share the same brightness in
their scales, thus pointing out the symmetrical leakage of the
MF-qubit zero mode is robust against asymmetrical couplings.
Concerning the satellite arcs aside the ZBP in Figs. 3(a)–3(f),
they account for the dressed pseudo-Zeeman gap ε̃d↑ − ε̃d↓.

These arcs are predominantly absent, as we can see, at the
lower region of Fig. 3(a). This points out that BICs away from
the ZB limit are also reliable in this device. Thereby, in order
to fully understand the underlying physics on the decrypted
MF-qubit left recording versus the MF-qubit cryptography,
we should consider Fig. 4, which uses the same parameters of
Fig. 2 just for a matter of choice, once for the emergence of
the BICs the leakage is always symmetrical even with asym-
metrical couplings λL and λR as Figs. 3(e) and 3(f) ensure.

In Fig. 4(a) the analysis of Tj l shows that the leakage
of the MF qubit occurs only over the left QD. In this way,
the decrypted MF-qubit situation is achieved: TLL exhibits a
ZBP with amplitude 1/4 in contrast to TRR. Thus in order to
understand such an issue, we should focus on the insets. TRR

presents T↑↑ + T↓↓ perfectly phase shifted by π with respect
to T↑↓ + T↓↑(Fano dip) [41,42], thus resulting in a decoupled
QD from the setup. For TLL,T↑↑ + T↓↓ and T↑↓ + T↓↑interfere
constructively. In Fig. 4(b) for TRR, the Fano dip inT↑↓ + T↓↑is
not perfect as previously and does not cancel T↑↑ + T↓↓ any-
more. Particularly, the Fano dip found in TLR + TRL interferes
destructively and perfectly with the peak in TLL + TRR. Fi-
nally, this yields the MF-qubit cryptography here proposed. In
this way, the recording of the qubit is found secure at two apart
sites and hidden as BICs, which are equally split into the QDs
and with amplitude 1/8 each. These processes appear outlined
in the sketches placed at the lower region of Figs. 4(a) and 4(b).

Interestingly enough, the underlying physics of this
cryptography assisted by BICs has a simple picture: the
electronic waves traveling forth and back between the QDs
(TLR + TRL), in particular at zero bias, interfere destructively
with those waves that only pass through these QDs
(TLL + TRR) and as a result, the BICs within the latter emerge.
Regarding the satellite arcs aside the ZBP in Figs. 4(a) and
4(b), we should mention that they are also the result of
interference processes in Tj l as observed.

Conclusions. In summary, we have found theoretically that
the cryptography of the MF qubit is feasible in the system of
Fig. 1(a). We have showed that the recording of the MF qubit
over a single QD is due to an asymmetrical leakage of the MF-
qubit state into the QDs. The encrypted MF qubit is performed
when the leaking is symmetrical, wherein the MF-qubit leaked
state becomes BICs. Thus we reveal a switch on/off mechanism
for the readout of the qubit η↑ = 1√

2
(�1 + i�2) by means

of its ZBP fingerprint on the QDs, which provides a way
of performing quantum cryptography regarding the message
written inside the MF-qubit states �1 and �2 initially prepared
at the edges of a topological Kitaev chain. Therefore, we trust
that our findings can be applied to quantum processing issues
in topological quantum computation devices.
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