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Much excitement has been generated recently by the experimental observation of the chiral anomaly in
condensed matter physics. This manifests as strong negative longitudinal magnetoresistance and has so far
been clearly observed in Na3Bi, ZrTe5, and GdPtBi. In this Rapid Communication, we point out that the chiral
anomaly must lead to another effect in topological metals, the giant planar Hall effect (GPHE), which is the
appearance of a large transverse voltage when the in-plane magnetic field is not aligned with the current.
Moreover, we demonstrate that the GPHE is closely related to the angular narrowing of the negative longitudinal
magnetoresistance signal, observed experimentally.
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The recent theoretical [1–8] and experimental [9–14]
discovery of Dirac and Weyl semimetals has extended the
notions of nontrivial electronic structure topology to metals.
It has also reinforced the connection that exists between the
physics of materials with topologically nontrivial electronic
structures and the physics of relativistic fermions. Chiral
anomaly, which refers to nonconservation of the chiral charge
in the presence of collinear external electric and magnetic
fields, is a particularly important example that highlights such
a connection. Discovered theoretically by Adler [15] and by
Bell and Jackiw [16] in the relativistic particle physics context,
it provided the explanation for the observed fast decay of a
neutral pion into two photons, naively not allowed by the
chiral charge conservation. Very recently, a condensed matter
manifestation of the chiral anomaly was finally observed in
Dirac semimetals Na3Bi [17], ZrTe5 [18], and in a half-Heusler
compound GdPtBi [19].

The chiral anomaly manifests in Weyl and Dirac semimetals
as a very unusual large negative longitudinal magnetoresis-
tance, quadratic in the applied magnetic field, as predicted
theoretically [20–22]. While the existence of the effect, and
most of its observed features, are in qualitative agreement with
the theory, one puzzling feature has remained unexplained. As
was first pointed out in Ref. [17], the observed dependence
of the magnetoresistance on the angle θ between the current
and the applied magnetic field is against the expectations,
drawn from the existing theory. Namely, the theory of
Refs. [20–22] naively predicts a cos2 θ dependence, due to
the quadratic dependence of the chiral anomaly contribution
to the conductivity on the magnetic field, but the observed
angular dependence appears to be much stronger.

In this Rapid Communication, we both explain the angular
narrowing phenomenon and connect it with another effect, the
giant planar Hall effect (GPHE). Note that a closely related
explanation of the angular narrowing effect has already been
proposed by us in Ref. [23], but the connection with the
GPHE was not understood there. We argue that the presence
of both the negative longitudinal magnetoresistance with a
characteristic dependence on the angle between the current
and the magnetic field, and the GPHE, may be regarded as a
smoking gun signature of the chiral anomaly.

As was argued in Refs. [20–22,24], transport in topological
(both Weyl and Dirac) metals is distinguished by the existence

of an extra (nearly) conserved quantity, the chiral charge,
which is coupled to the electric charge in the presence of an
external magnetic field. The hydrodynamic transport equations
for the electric and the chiral charge have the following form
[21,22],

∂n

∂t
= D∇2(n + gV ) + �B · ∇(nc + gVc),

∂nc

∂t
= D∇2(nc + gVc) − nc + gVc

τc

+ �B · ∇(n + gV ).

(1)

Here, −en is the electric charge density, and −enc is the chiral
charge density (defined as the difference between the total
right-handed and total left-handed charge); D is the diffusion
coefficient (we take the diffusion coefficients, corresponding to
the electric and the chiral charges to be the same for simplicity,
although they may in general be different due to electron-
electron interaction effects); g is the density of states at the
Fermi energy; � = e/2π2g is a transport coefficient, which
characterizes the chiral anomaly induced coupling between
the electric and the chiral charge in the presence of an applied
magnetic field B; and τc is the chiral charge relaxation time,
which is taken to be long, reflecting the near conservation of
the chiral charge. We will use h̄ = c = 1 units throughout this
Rapid Communication, except in some of the final results.

The presence of the electrostatic potential V and the “chiral
electrostatic potential” Vc (this is a hypothetical external
potential that couples antisymmetrically to the right- and
left-handed charge) reflects the presence of both diffusion
and drift contributions to the electric and chiral currents
correspondingly. In equilibrium the two contributions must
cancel each other, which, in particular, implies nc + gVc = 0
in this case. We note that a time-independent spatially uniform
Vc will always be present in a noncentrosymmetric topological
metal [25].

Let us consider an experimental setup, shown in Fig. 1. We
will assume a sample of length Lx in the x direction, attached
to current-carrying normal (i.e., nontopological) metallic leads
at x = ±Lx/2, and a square (for simplicity) cross section of
area L2

y . Suppose electric current I is injected and extracted
uniformly at the attached leads. We want to find the voltage that
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FIG. 1. Schematics of the sample setup. Ordinary metal elec-
trodes (green) are attached along the whole width of the sample cross
section and inject current into the sample uniformly. The sample has
a square cross section of area L2

y and length Lx .

develops in response to this current, or the resistivity tensor of
our system.

It is convenient to introduce “electrochemical potentials”
μ = (n + gV )/g and μc = (nc + gVc)/g. The electric current
density is then given by

j = σ

e
∇μ + eg�μcB, (2)

where σ = e2gD is the Drude conductivity. The second term
in Eq. (2) expresses the chiral magnetic effect (CME) [26].
Since μc = 0 in equilibrium, CME vanishes in equilibrium, as
it should [27,28].

We assume that in the steady state the current only flows in
the x direction, which means

jx = I

L2
y

, jy = jz = 0. (3)

We will also assume that the magnetic field is only rotated
in the xy plane (the xz plane is identical). This implies that
we may take both electrochemical potentials μ and μc to be
independent of z. Then Eqs. (2) and (3) allow us to express ∇μ

in terms of the current and the chiral electrochemical potential
μc as

∂μ

∂x
= eI

σL2
y

− μc

La

cos θ,
∂μ

∂y
= −μc

La

sin θ, (4)

where θ = arctan(By/Bx) is the angle between the applied
magnetic field and the current and we have introduced a
magnetic field related length scale

La = D

�B
, (5)

which will play a crucial role in what follows. Note that this
length scale is distinct from the usual magnetic length �B =
1/

√
eB and appears due to the chiral anomaly (hence the

subscript a). 1/La quantifies the strength of the chiral anomaly
induced coupling between the electric and the chiral charge.
The existence of this length scale was first pointed out in
Ref. [29]. Substituting Eq. (4) into the equation for the chiral
electrochemical potential, we obtain

∂2μc

∂x2
+ ∂2μc

∂y2
− μc

λ2
= −eI cos θ

σLaL2
y

, (6)

where

λ2 = L2
aL

2
c

L2
a + L2

c

, (7)

and we have introduced another important length scale Lc =√
Dτc, which has the meaning of the chiral charge diffusion

length. Transport effects due to the chiral anomaly may be
expected to be significant only when Lc is a macroscopic
length scale, i.e., when the chiral charge is a nearly conserved
quantity. More specifically, as will be shown below, the
parameter that determines the strength of the chiral anomaly
induced magnetotransport effects in topological metals is the
ratio of the two length scales Lc/La .

We may further simplify Eq. (6) by noticing that the
condition of no charge current in the y direction, expressed
by the second of Eqs. (4), may always be satisfied by taking
μc to be independent of y, which then implies uniform gradient
of the electrochemical potential μ in the y direction. Equation
(6) then simplifies to

d2μc

dx2
− μc

λ2
= −eI cos θ

σLaL2
y

. (8)

Equation (8) needs to be solved with the appropriate boundary
conditions. These are naturally not universal and depend on
the details of the experimental setup being modeled. We will
assume that the sample is attached to uniform current carrying
leads across the whole width of the sample cross section, and
the lead material is a normal nontopological metal. In this
case, chiral charge must rapidly relax upon entering the normal
leads and the most appropriate boundary condition is thus of
the Dirichlet type,

μc(x = ±Lx/2) = 0. (9)

We note, however, that the boundary conditions do not affect
the final results at all for large sample sizes Lx � La,Lc

(the scale dependence of transport coefficients is, however,
interesting in its own right in this case and may be observable
due to the large size of Lc [29]).

Solving Eq. (8) with the above boundary conditions, we
obtain

μc(x) = eIλ2 cos θ

σLaL2
y

[
1 − cosh(x/λ)

cosh(Lx/2λ)

]
. (10)

Substituting Eq. (10) into Eq. (4), we may now calculate the
voltage drops that develop across the sample in the x and
y directions in response to the current in the x direction,
as integrals of the corresponding electrochemical potential
gradients. We obtain

Vx = 1

e

∫ Lx/2

−Lx/2
dx

∂μ

∂x
= ILx

σL2
y

(
1 − λ2

L2
a

cos2 θ

)

+2Iλ3 cos2 θ

σL2
yL

2
a

tanh(Lx/2λ), (11)

and

Vy = 1

eLx

∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dy

∂μ

∂y

= −Iλ2 cos θ sin θ

σL2
aLy

[
1 − 2λ

Lx

tanh(Lx/2λ)

]
, (12)

where we have averaged Vy along the length of the sample in
the x direction.
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Equations (11) and (12) then imply the following result for
the scale-dependent resistivity tensor,

ρxx = 1

σ

(
1 − λ2

L2
a

cos2 θ

)
+ 2λ2 cos2 θ

σL2
aLx

tanh(Lx/2λ),

ρyx = −λ2 sin θ cos θ

σL2
a

[
1 − 2λ

Lx

tanh(Lx/2λ)

]
. (13)

The resistivity tensor thus contains both diagonal and off-
diagonal components, the off-diagonal ones being induced by
the magnetic field. Since λ is always dominated by the shortest
of the two length scales La,c, it is clear that the off-diagonal
resistivity vanishes when La diverges, making it clear that the
origin of the off-diagonal component of the resistivity tensor
is the chiral anomaly. More specifically, its origin can be easily
traced back to the CME contribution to the electrical current
in Eq. (2).

Equation (13) may be rewritten in a more illuminating
form in terms of ρ‖ and ρ⊥, i.e., diagonal components of
the resistivity tensor, corresponding to the current flow along
and perpendicular to the direction of the magnetic field. From
Eq. (13), we have

ρ‖ = 1

σ

(
1 − λ2

L2
a

)
+ 2λ3

σL2
aLx

tanh(Lx/2λ), ρ⊥ = 1

σ
.

(14)
Then Eq. (13) may be written as

ρxx = ρ⊥ − �ρ cos2 θ, ρyx = −�ρ sin θ cos θ, (15)

where �ρ = ρ⊥ − ρ‖ is the chiral anomaly induced resistivity
anisotropy.

Equation (15) has the form of a standard relation between
the anisotropic magnetoresistance (AMR), represented by the
first equation, and the planar Hall effect (PHE), which is
expressed by the second equation [30–32]. Note that the name
PHE is a bit of a misnomer: The off-diagonal resistivity does
not satisfy the antisymmetry property of a true Hall effect
ρxy = −ρyx , since it does not originate from the Lorentz
force. It is, however, the standard name for this phenomenon
in the literature and we will thus use it as well. Both AMR
and PHE are well-known phenomena in ferromagnetic metals,
originating in this case from the interplay of the magnetic order
and the spin-orbit interactions. Both are typically very weak,
but can be much stronger in ferromagnets with significant spin-
orbit interactions, such as doped magnetic semiconductors
[32]. What is remarkable about our result is that neither
AMR nor PHE in a topological metal require magnetic
order, originating instead from the chiral anomaly, and their
magnitude can be extremely large (in fact, approaching the
theoretical upper limit at increasing magnetic field), as we
show below. The sign of the effect in our case is also opposite
to what is typically observed in ferromagnets: �ρ, as defined
in Eq. (15), is positive in our case, but would typically be
negative in a metallic ferromagnet [31].

The parallel resistivity ρ‖ exhibits a nontrivial dependence
on the two intrinsic length scales La,c of the material and on
the sample size Lx . Let us first consider the regime of weak
magnetic fields, corresponding to La � Lc. In this case, taking

the limit of large sample size Lx � Lc, we obtain

ρ‖ ≈ 1

σ

[
1 −

(
Lc

La

)2
]
, (16)

which corresponds to a small negative quadratic magnetic-
field-dependent correction to the longitudinal resistivity. The
PHE in this case is also small and given by

ρyx = − 1

σ

(
Lc

La

)2

sin θ cos θ. (17)

A more interesting regime is the regime of stronger magnetic
field, corresponding to La � Lc. Assuming the sample size
Lx > La , we obtain

ρ‖ = L2
a

σL2
c

(
1 + 2L2

c

LaLx

)
. (18)

Equation (18) exhibits an interesting and nontrivial scale
dependence. Indeed, suppose that La < Lx < L2

c/La (the
upper limit is a third nontrivial length scale in this problem).
In this case,

ρ‖ ≈ 2La

σLx

= 4π2�2
B

e2Lx

. (19)

To understand the meaning of this result, it is convenient to
evaluate the corresponding conductance

G‖ = ρ‖L2
y

Lx

= e2Nφ

2π
, (20)

where Nφ = L2
y/2π�2

B is the number of magnetic flux quanta,
penetrating the sample cross section. This is identical to the
result of Ref. [29], obtained by a different method. Physically,
this corresponds to a regime in which the sample conductance
is dominated by the chiral lowest Landau level, which is where
the chiral anomaly contribution to Eqs. (1) and (2) comes
from [21,22]. G‖ then corresponds to a conductance of e2/h

per lowest Landau level orbital state, i.e., is identical to the
conductance of an effective one-dimensional system with Nφ

conduction channels.
Most importantly, the resistivity anisotropy and thus the

magnitude of the PHE in this regime is given by

�ρ = 1

σ

(
1 − 2La

Lx

)
. (21)

Thus �ρ is starting to approach its maximal possible value of
1/σ when the sample size is increased. We thus call this the
giant planar Hall effect (GPHE) (this name was first used in
relation to PHE in the context of magnetic semiconductors in
Ref. [32]).

For larger sample sizes, when Lx > L2
c/La , the magnetic

field dependence of the longitudinal resistivity crosses over
from 1/B to 1/B2,

ρ‖ ≈ 1

σ

(
La

Lc

)2

. (22)

The GPHE magnitude in this case becomes independent of the
sample size and has reached its maximal magnitude,

�ρ = 1

σ

(Lc/La)2

1 + (Lc/La)2
, (23)

which converges to 1/σ as the magnetic field is increased.

041110-3



RAPID COMMUNICATIONS

A. A. BURKOV PHYSICAL REVIEW B 96, 041110(R) (2017)

Interestingly, there exists a direct connection between the
GPHE and the angular narrowing of the negative longitudinal
magnetoconductivity signal [17], as we will now demonstrate.
Using Eq. (15), we obtain

ρ−1
xx (B) − ρ−1

xx (0) = σ (�ρ/ρ‖) cos2 θ

1 + (�ρ/ρ‖) sin2 θ

= σ (Lc/La)2 cos2 θ

1 + (Lc/La)2 sin2 θ
. (24)

What is missing in the standard expressions for the chiral
anomaly induced magnetoconductivity [20] is the angular
dependence in the denominator in Eq. (24). This clearly leads
to narrowing of the angular dependence: Equation (24) at
small angles has the form of a Lorentzian with the angular
width �θ ∼ La/Lc, which gets narrower as the magnitude of
the chiral anomaly induced GPHE increases. This nontrivial
connection between the GPHE and the angular narrowing of
the negative longitudinal magnetoresistance signal may be
regarded as a smoking gun evidence for the chiral anomaly.

In order to relate our results to the existing experimental
data [17,18], it is useful to express the ratio Lc/La explicitly
in terms of the magnetic field. We obtain

Lc

La

= �B

√
τc

D
∼

(
h̄vF /�B

εF

)2√
τc

τ
, (25)

where vF is the Fermi velocity of the Weyl (Dirac) fermions,
εF is the Fermi energy, and τ is the momentum relaxation
time. Taking the values for these parameters from Ref. [17],
we have vF ≈ 3.5 × 107 cm/s, εF ≈ 30 meV, and τc/τ ≈ 50.
Assuming the density of states to be g = ε2

F /2π2h̄3v3
F , and

substituting the above values in Eq. (25), we obtain Lc/La ≈
0.7B/1 T.

In Fig. 2 we plot both the angular dependence of the
inverse longitudinal magnetoresistivity and the magnitude
of the GPHE using Lc/La values, which correspond to the
range of magnetic fields of up to about 10 T, which was
used in Refs. [17,18]. Qualitatively, the behavior of the
magnetoresistivity appears to agree with the experimental data.
In particular, at low magnetic fields, the magnetoconductivity
peak follows a B2 dependence, while the angular width
goes roughly as 1/B, consistent with Eqs. (24) and (25). At
higher fields both appear to saturate, which is likely explained
by the fact that in both experiments the quantum regime
εF < h̄vF /�B is reached at magnetic fields of just a few T.
In this regime, we expect g ∼ B and 1/τ ∼ B, 1/τc ∼ B, thus
making the ratio Lc/La independent of the magnetic field.
Figure 2 also shows that the magnitude of the GPHE may
approach its maximal value of �ρ = 1/σ for experimentally
accessible values of the magnetic field.

FIG. 2. (a) Inverse longitudinal magnetoresistivity as a function
of the angle between the current and the magnetic field. Different
curves correspond to different values of the ratio Lc/La : 2 (blue,
solid), 3 (orange, dashed), and 5 (green, dotted). (b) Dependence of
the resistivity anisotropy �ρ and thus the magnitude of the GPHE
on Lc/La .

In conclusion, we have described a magnetotransport effect,
related to the chiral anomaly, called the giant planar Hall effect.
We have also connected this effect to the angular dependence of
the longitudinal magnetoconductivity, explaining its magnetic-
field-dependent narrowing, pointed out in Ref. [17]. Observa-
tion of both the negative longitudinal magnetoresistance and
the GPHE, with a specific relation between the angular de-
pendence of the magnetoresistance and the GPHE magnitude,
given by Eq. (24), constitutes a smoking gun evidence for the
chiral anomaly. We note that the GPHE may have already been
observed in a recent experiment on ZrTe5 [33].

We acknowledge useful discussions with Nai Phuan Ong.
Financial support was provided by Natural Sciences and
Engineering Research Council (NSERC) of Canada.
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