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We show that the two-impurity Anderson model exhibits an additional quantum critical point at infinitely
many specific distances between both impurities for an inversion symmetric one-dimensional dispersion. Unlike
the quantum critical point previously established, it is robust against particle-hole or parity symmetry breaking.
The quantum critical point separates a spin doublet from a spin singlet ground state and is, therefore, protected.
A finite single-particle tunneling t or an applied uniform gate voltage will drive the system across the quantum
critical point. The discriminative magnetic properties of the different phases cause a jump in the spectral functions
at low temperature, which might be useful for future spintronics devices. A local parity conservation will prevent
the spin-spin correlation function from decaying to its equilibrium value after spin manipulations.
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Introduction. The promising perspective of combining
traditional electronics with novel spintronics devices leads to
intense research into controlling and switching the magnetic
properties of such nanodevices. Experimentally magnetic
properties of adatoms on surfaces [1–6] or magnetic molecules
[7–14] might serve as the smallest building blocks for
spintronic devices.

From a theoretical perspective, the two-impurity Anderson
model (TIAM) [15–17] constitutes an important but simple
system which embodies the competition of interactions be-
tween two localized magnetic moments with those between
the impurities and the conduction band. The TIAM has
been viewed as a paradigm model for the formation of two
different singlet phases separated by a quantum critical point
(QCP): a Ruderman-Kittel-Kasuya-Yosida (RKKY)-induced
singlet and a Kondo singlet [15]. This QCP investigated by
Jones and Varma [17–19], however, turned out to be unstable
against particle-hole (PH) symmetry breaking [20] and the two
different singlet phases are adiabatically connected. This led to
the conclusion that for finite distances between the impurities,
no QCP exists and the original finding is just a consequence of
unphysical approximations [21] which is generically replaced
by a crossover regime.

In this Rapid Communication, we establish that the model
exhibits another realistic QCP for any inversion symmetric
one-dimensional (1D) dispersion, depending only on the
absolute value of the wave vector. The existence of this
different QCP relies only on the fact that for specific distances
R between both impurities, either the even- or odd-parity
contributions to the conduction band decouple from the impu-
rities at low-energy scales, leading to an underscreened Kondo
effect. This underscreened Kondo fixed point (USK FP) [22]
has a doublet ground state which is different from the singlet
ground state for large antiferromagnetic interactions between
both impurities, excluding a smooth crossover between both
phases. This QCP trivially also exists for the limit R → 0
in all dimensions [23,24]: For this special case, the QCP
has been recently observed in molecular dimers [7], where
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the different phases can clearly be detected in the scanning
tunneling spectra.

Here, we present the generalization to finite distances, its
robustness against particle-hole symmetry as well as parity
breaking, and demonstrate that the quantum phase transition
(QPT) can also be evoked by applying a gate voltage to
the impurities. Since the entanglement between the impurity
spins is protected by a dynamical symmetry in the parity-
symmetric case, the spin-spin correlation function cannot
completely decay to its equilibrium value, and, therefore,
might be useful for future qubit implementations. Possible
experimental realizations for finite distances could be in
pseudo-1D nanostructures [25–29] or optical lattices [30–32].

Model. We consider the two-impurity Anderson model
(TIAM) whose Hamiltonian can be separated into the parts
HTIAM = Hc + HD + HI. Hc contains the conduction band
Hc = ∑

�k,σ ε(�k)c†�k,σ
c�k,σ

and HD and HI comprise the impurity
contribution and the interaction between the conduction band
and impurities, respectively,

HD =
∑
j,σ

Ejd
†
j,σ dj,σ + U

∑
j

nj,↑nj,↓ + �h
∑

j

�Sj

+ t

2

∑
σ

(d†
1,σ d2,σ + d

†
2,σ d1,σ ), (1)

HI = V√
N

∑
j∈{1,2}k,σ

c
†
k,σ eikRj dj,σ + H.c., (2)

with d
†
j,σ creating an electron with spin σ and energy Ej on

impurity j located at position R1/2 = ±R/2, nj,σ = d
†
j,σ dj,σ ,

a local magnetic field �h applied to the spin �Sj = 1
2d

†
j,σ �σσ,σ ′dj,σ

of impurity j , and c
†
�k,σ

creating a conduction electron. At
low temperatures, the tunneling t leads to an effective anti-
ferromagnetic exchange interaction K �S1 �S2, with K = t2/U

between the impurity spins. Throughout this work, unless
stated otherwise, we will consider the case E1 = E2 = E =
−U/2 for simplicity such that both impurities are occupied
with one electron. Below, we will show that the QCP is wholly
robust to a departure from parity and particle-hole symmetries.

For the numerical renormalization-group (NRG) approach
[33–36], it is useful to introduce a parity eigenbasis
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de/o,σ = 1√
2
(d1,σ ± d2,σ ) for the impurity degrees of freedom

[7,18–20,37–40]. In this basis, the orbitals with even/odd
parity couple to corresponding even/odd parity conduction
bands via the energy- and distance-dependent hybridization
functions (see Supplemental Material [41]),

�e(ε, �R) = 2πV 2

N

∑
�k

δ(ε − ε(�k)) cos2

( �k �R
2

)
, (3a)

�o(ε, �R) = 2πV 2

N

∑
�k

δ(ε − ε(�k)) sin2

( �k �R
2

)
. (3b)

A proper consideration of the energy dependence of these
functions generally breaks particle-hole symmetry [20,21] and
hence destroys the well-known QCP predicted by Jones and
Varma [18,19,38].

Hybridization functions. Examining the definitions of the
hybridization functions �e/o(ε, �R) reveals an important funda-
mental property: If all wave vectors �k′ fulfilling ε(�k′) = 0 also
satisfy the condition �k′ �Rn = πn, with n being an integer, one
of the two hybridization functions exhibits a pseudogap ∝ |ε|2
because either the sine or the cosine in Eqs. (3) vanishes for
ε → 0. While for a general dispersion this requirement is not
fulfilled, infinitely many equidistant Rn = | �Rn| obeying this
requirement are found for a 1D inversion symmetric dispersion
with ε(k) = ε(|k|). Note that the presented results are valid
for the case that the mean free path of the electrons in the
conduction channel is larger than the distance R.

Since the Kondo screening breaks down for a pseudogap
hybridization function vanishing as |ε|r , with r > 1/2 [42–45],
the Kondo effect of the even or odd conduction band will
disappear for the specific distances k′Rn = πn, leading to an
underscreened spin-1 Kondo fixed point (USK FP) with an
effective free spin-1/2 remaining.

The odd-hybridization function completely vanishes for
any dispersion and R → 0 on all energy scales, leading to
a single-channel model and, thus, trivially to an USK FP. For a
1D linear dispersion ε(k) = vF(|k| − kF), Eqs. (3) yield [39,40]

�1D
e/o(ε,R) = �0

{
1 ± cos

[
kFR

(
1 + ε

D

)]}
, (4)

with �0 = πρ0V
2, the half bandwidth D, the constant density

of states of the original conduction band ρ0 = 1/2D, kF =
π/2a, and a the lattice constant. The hybridization function
of the even conduction band exhibits a gap for distances
kFR = (2n + 1)π and the one of the odd band for kFR = 2nπ .
Note that with increasing distance R, the frequency of the
oscillations in �1D

e/o(ε,R) increases and, consequently, the
width of the gap becomes smaller so that the stable low-energy
FP is reached at increasingly lower temperatures.

Doublet ground state. Generically, a singlet ground state
is found in the TIAM since either the two impurity spins
are bound in a local singlet for strong antiferromagnetic
correlations between the impurities or the impurity spins
are screened by the surrounding conduction band electrons
to spatially extended Kondo singlets [18,19,38]. A different
situation arises for the specific distances kFRn = nπ , where
one conduction band decouples at low energies. This is
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FIG. 1. (a) The effective local magnetic moment μ2
eff and

(b) entropy of the impurities for the TIAM plotted against the
temperature T for different distances. (c) The temperature-dependent
entropy for distances that slightly deviate from Rn = 0 (solid
lines) and Rn = 1 (dashed lines). Model parameters are t = 0, E =
−5�0, U = 10�0, and D = 10�0.

demonstrated in Fig. 1 where the effective impurity magnetic
moment μ2

eff and the entropy Simp [46] are plotted for different
Rn. The USK FP with a free unquenched spin-1/2 remaining
is the only stable fixed point for vanishing spin-spin interaction
K = 0 (t = 0) characterized by μ2

eff = 0.25 and the impurity
entropy Simp = ln(2).

At very large distances Rn, the gap in one of the
hybridization functions becomes very narrow so that the
crossover to the USK FP only occurs at very low temperatures.
For such distances, at first both impurities are screened by
the two conduction bands, leading to an almost vanishing
magnetic moment μ2

eff ≈ 0 and entropy S ≈ 0. However,
the renormalization of the effective Kondo coupling and
consequently the screening of one local spin always stops
at a finite temperature due to the pseudogap hybridization
function and, therefore, the screening is never complete. Since
the hybridization to one conduction band vanishes at the Fermi
energy, the coupling to that band subsequently decreases until
finally the USK FP emerges at very low temperatures.

In between these two FPs, the model exhibits another
unstable FP with μ2

eff = 0.125 and entropy SImp = 2 ln(2).
The values for μ2

eff and S are a feature of the the gapped
Wilson chain [47] and are not related to the impurity physics.
While μ2

eff(T ) starts to increase until it reaches the value
μ2

eff = 0.125 in the regime of the unstable FP, the impurity
spins remain screened so that the local moment of the
impurities μ2

loc(T ) = T limhz→0〈Sz
j 〉/hz [43,48] continues to

decrease linearly with decreasing T . Since the impurity spins
are only completely screened at T = 0 in the conventional
Kondo problem, the screening of the impurity spins progresses
until the USK FP is reached at low temperatures where the
local moment μ2

loc(T ) and remains constant for T → 0 as it
is expected for a free but strongly reduced magnetic moment
in the Curie-Weiss law [49].

The low-temperature crossover scale from the unstable FP
to the stable USK FP depends on the degree of screening:
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the smaller μ2
loc(TGap) at the energy scale TGap at which the

pseudogap develops, the smaller the crossover temperature
scale. Such a vigorous screening can be achieved in two ways:
either the distance Rn is increased so that the screening stops at
lower temperatures (shown in Fig. 1) or the coupling V to the
bands is increased so that the impurities are already strongly
screened at a higher T .

Although a small departure from the specific distances Rn

theoretically always leads to a singlet ground state at very low
temperatures, the system will stay in the now unstable doublet
fixed point for all experimentally relevant temperatures if the
departure is not too large, which can be seen in Fig. 1(c). As
a result, using kF = π/(2a) of a linear dispersion yields that
in experiments at finite temperatures, variances of Rn by up to
20% of the lattice constant are still sufficient to detect a sharp
change in the magnetic properties of the system.

Quantum critical point. While for a vanishing spin-spin
interaction between the impurities the ground state is always
a doublet at Rn, both impurity spins form a local spin
singlet for sufficiently strong antiferromagnetic interactions
K . Therefore, these two phases must be separated by a QCP.
Unlike the unstable Jones-Varma QCP [18–20] separating
two singlet ground states, this QCP is protected by the spin
as a conserved quantum number. While the Jones-Varma
QPT is continuous [19,20], we found in the parity-symmetric
case a linear decreasing energy scale with decreasing |t − tc|
typical for a parity-protected level-crossing QPT, while in
the parity-broken case we observed a exponentially van-
ishing energy scale indicating a Kosterlitz-Thouless QPT
[23,50–52].

The different nature of the QPTs is also revealed in the
local correlation function 〈�S1 �S2〉. While in the absence of K

(t = 0) a local triplet screened by the Kondo effect at low
T to a doublet is part of the ground state, a local singlet
forms and suppresses the Kondo effect [18,19] for large
antiferromagnetic K . This leads to 〈�S1 �S2〉 > 0 in the former
regime, while in the latter, one finds 〈�S1 �S2〉 < 0. For the Jones-
Varma QCP, 〈�S1 �S2〉 varies continuously across the QPT and
only its derivative diverges at the QCP. This is due to a mixing
term in the Hamiltonian [17–19] exchanging even and odd
conduction electrons via impurity scattering processes. Global
parity remains conserved, but local parity on the impurity
subsystem is broken. This is contrasted by the behavior of
〈�S1 �S2〉 at Rn, as shown in Fig. 2. Since one band decouples at
low-energy scales, the band mixing term is suppressed and a
dynamical local parity conservation ensures the conservation
of 〈�S1 �S2〉 at low temperatures and prohibits the decay to its
equilibrium value after a spin manipulation. Consequently, the
correlation function has to change discontinuously at the QCP
for a parity-symmetric model [53].

Furthermore, the QPT is even robust against parity break-
ing: We have added a small �E to one of the two single-particle
levels, i.e., E1 = E + �E, which is one of several ways of
breaking the parity. Although the spin-correlation function
varies now continuously in the parity-broken case, as depicted
in Fig. 2, other quantities such as the magnetic moment μ2

eff ,
the entropy Simp (shown in the inset of Fig. 2), or the spectral
functions still show a discontinuity at the renormalized critical
tunneling tc(�E), marked on the x axis in Fig. 2.
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FIG. 2. The correlation function 〈�S1 �S2〉 plotted against the tunnel-
ing t for the distance kFR = π . While in the parity-symmetric cases
(solid lines) 〈�S1 �S2〉 must change discontinuously, in the parity-broken
case the correlation function is continuous. The inset shows the
entropy for the parity-broken case and the new critical tc(�E) is
marked on the x axis.

For the parity-conserving case, the spectra of the odd and
even orbital [54,55] are shown in Fig. 3 for the two different
phases and the distance kFR = π , at which the even orbital
decouples from the conduction band at low-energy scales.
The spectral functions exhibit the same features as in the
R = 0 case [7,24], but with the role of even and odd spectra
interchanged.

The spectrum for the odd orbital develops an underscreened
Kondo peak [56] at ω = 0 for t < tc, which collapses once the
tunneling exceeds t > tc. In this phase, both impurity spins are
bound into a local singlet.

In contrast, ρeven always develops a gap around the Fermi
energy for all t = tc: the pseudogap in the even-hybridization
function suppresses the Kondo screening of the spin in the
even orbital. Furthermore, at low frequencies, the orbital
decouples from the hybridization processes. Injecting/ejecting
an electron into/from the even orbital changes the local particle
number, which cannot relax but induces a suddenly changed
Coulomb potential for the odd orbital. The only way the system

0.00

0.05

0.10

0.15

0.20

0.25

−10 −5 0 5 10

0.00

0.50

1.00

1.50

2.00

2.50

−0.4 −0.2 0 0.2 0.4

−10 −5 0 5 10

(a)

(b)

ρ
od

d(
ω
)

t/Γ0 = 1.1
t/Γ0 = 1.2
t/Γ0 = 1.3
t/Γ0 = 1.4
t/Γ0 = 1.5

ρ
ev

en
(ω

)

ω/Γ0

FIG. 3. Spectral function of the (a) odd and (b) even orbital for
tunnelings t < tc (solid lines) and t > tc (dashed lines) and �E = 0.
For the distance kFR = π , the even orbital decouples for T → 0 from
the conduction band.
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FIG. 4. 〈 �S1 �S2〉 phase diagram plotted against E and t for kFR = π

and U = 10�0.

can respond at T = 0 is by changing the many-body ground
state. This leads to the well-understood x-ray edge physics [57]
also found in the Falicov-Kimball model [58]. The excitations
around the Fermi energy thus indicate transitions from the
doublet to the singlet phase for t < tc, and vice versa for t > tc.
Consequently, the width of the gap in the spectrum is given
by the energy difference between the doublet and singlet state
and vanishes for t → tc. Note that for distances kFR = 2nπ ,
the spectral functions of the even and odd are interchanged.

In the general parity-broken case, features of the even
orbital are weakly mixed into the spectral function of the
odd orbital, and vice versa, since in this case both orbitals
are coupled to both conduction bands [7]. Experimentally, the
QPT can be detected by measuring the differential conductance
though an impurity which is proportional to a superposition of
the even and odd spectral functions. We predict that for t < tc,
a clear Kondo peak at the Fermi energy is visible below the
Kondo temperature TK. This Kondo peak disappears for t > tc,
and only the finite frequency excitations stemming from the
x-ray edge physics of the weakly coupled orbital are mixed in
as recently detected in a molecular dimer system [7].

Since the tunneling t is generated by the overlap of orbital
wave functions of the adatoms or molecules in experiment
[7], variation of the tunneling t is experimentally difficult. The
case of a fixed E but different discrete t changed via molecule
geometry has been recently realized [7] for the extreme
case of R ≈ 0, but is not suitable for electronic switching
of the local spin configuration.

However, it is also possible to evoke the QPT for a fixed
tunneling t via a gate voltage shifting both orbital level energies

E. Figure 4 depicts a phase diagram of the correlation function
〈�S1 �S2〉 as a function of E and t . Ferromagnetic correlations
(red and yellow), indicating that the system is in the doublet
phase, are developing inside a tube. If either the tunneling t or
the energy level E is sufficiently increased or decreased, the
system is found in the singlet phase (blue and green). Inside
the tube, the local magnetic moment and the impurity entropy
take the fixed values μ2

eff = 0.25 and Simp = ln(2), while
outside both vanish [59]. For very large positive or negative
level energies, |〈 �S1 �S2〉| → 0 decreases continuously since the
orbitals become either doubly occupied or empty. Note that in
this case, the Kondo effect will also break down in the doublet
phase since there is no local moment in the coupled orbital that
can be screened. To understand the asymmetry with respect to
E and t , it is useful to monitor the single-particle energies in
the even-/odd-parity basis where both energies are split by the
tunneling Ee/o = E ± t/2 so that the even/odd level energy
is increased/decreased with increasing t . In order to evoke a
transition from the singlet to the doublet phase, the decoupled
orbital has to be shifted towards half filling such that it becomes
singly occupied, again which can only happen discontinuously.
Consequently, if the distance is changed from an odd distance
kFR/π = 2n + 1, shown in Fig. 4, to an even distance, the
roles of the even/odd orbital as the uncoupled/coupled orbital
are interchanged and the phase diagram is hence mirrored at
the line t = 0.

Summary. We have shown that the TIAM exhibit a QCP for
a 1D dispersion ε(k) = ε(|k|) in the cases that the impurities
are separated by specific distances Rn. In contrast to the
unstable QCP [18,19] usually discussed in the context of
the two-impurity models, the QCP presented in this Rapid
Communication is stable to departure from particle-hole and
parity symmetry.

We believe that this system may be of great relevance
for spintronic devices since it is possible by applying gate
voltages to turn on and off a free magnetic moment which is
not screened at low temperatures. Along with the magnetic
moment, one can switch on and off a Kondo effect with its
sharp conductance peak at the Fermi energy. Furthermore, in
the parity-symmetric case, the spin-spin correlation between
both impurity spins is protected by the parity as a conserved
quantity, making this system promising for spin-qubit realiza-
tions.
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