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We introduce a method for summing Feynman’s perturbation series based on diagrammatic Monte Carlo
that significantly improves its convergence properties. This allows us to investigate in a controllable manner
the pseudogap regime of the Hubbard model and to study the nodal/antinodal dichotomy at low doping and
intermediate coupling. Marked differences from the weak-coupling scenario are manifest, such as a higher
degree of incoherence at the antinodes than at the “hot spots”. Our results show that the pseudogap and reduction
of quasiparticle coherence at the antinode is due to antiferromagnetic spin correlations centered around the
commensurate (π,π ) wave vector. In contrast, the dominant source of scattering at the node is associated with
incommensurate momentum transfer. Umklapp scattering is found to play a key role in the nodal/antinodal
dichotomy.
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I. INTRODUCTION

Strongly correlated many-electron systems are a major
theoretical challenge. Numerical approaches face difficulties
brought by the exponentially large Hilbert space or the
fermionic sign problem. Among the many questions still
open, an outstanding one is the nature of the low doping
and intermediate- to strong-coupling regime of the proto-
typical two-dimensional Hubbard model. Unbiased methods
are needed to establish whether key aspects of cuprate phe-
nomenology, such as the opening of a pseudogap and the asso-
ciated nodal/antinodal (N/AN) dichotomy [1,2], are intrinsic
features of the model, and to settle the much debated physical
origin of these phenomena. Recently, cluster-dynamical mean-
field theory (DMFT) approaches have allowed significant
progress on these issues [3–6]. However, cluster methods lack
fine momentum resolution [7], which is crucial in view of the
strong momentum dependence along the Fermi surface, and in
establishing which fluctuations are responsible for the physics
[8], e.g., distinguishing commensurate and incommensurate
fluctuations.

A promising alternative method is the diagrammatic Monte
Carlo (DiagMC) technique [9–11], based on the stochastic
summation of Feynman diagrammatic series directly in the
thermodynamic limit, which in principle enables controlled
solutions with arbitrary momentum resolution. However, for
lattice systems, fundamental problems with series convergence
have so far limited its scope of application to modest couplings,
relatively high temperature, and/or low density. In particular,
the skeleton series built on the full (interacting) Green’s
function G can converge to a wrong answer [12], whereas
the bare series built on the noninteracting Green’s function G0

does not exhibit misleading convergence but typically diverges
in the strongly correlated regime.

In this Rapid Communication, we introduce an approach
that considerably enlarges the applicability range of DiagMC.
It is based on a parametric modification of the bare diagram-
matic series that improves its convergence properties. This

technique allows us to address the pseudogap regime of the
two-dimensional (2D) Hubbard model at small doping and
intermediate coupling. The high momentum resolution and
direct access to scattering processes in DiagMC allow us
to identify the physical origins of the pseudogap and N/AN
dichotomy, which are shown to result from antiferromagnetic
spin correlations. At the node, the transfer momentum q of rel-
evant modes is found to be incommensurate, connecting Fermi
surface points. In contrast, at the antinode, scattering with
commensurate momentum exchange q = (π,π ) dominates.
We find that quasiparticles are more incoherent at the antinode
than at the “hot spots” (where the Fermi surface intersects
the antiferromagnetic zone boundary), thus establishing the
strong-coupling nature of the regime investigated. We show
that the umklapp scattering enhanced at large perturbation
orders plays a key role in this suppression of coherence.

II. THE METHOD: ACTION OPTIMIZATION
AND RECURSIVE EVALUATION OF DIAGRAMS

We study the Hubbard model on an (infinite) square lattice,

H = −
∑
ijσ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓, (1)

with hopping amplitudes t and t ′ between nearest-neighbor
and next-nearest-neighbor sites, respectively, and use t = 1 as
our energy unit. In essence, DiagMC is an efficient way of
computing the coefficients al of a perturbative series for the
self-energy as a function of the Matsubara frequency ωn and
momentum k,

�(iωn,k) = lim
L→∞

L∑
l=1

al(iωn,k)Ul, (2)

where al is a sum of all one-particle irreducible (1PI) Feynman
diagrams with l interaction vertices connected by nonin-
teracting Green’s functions G0(iωn,k) = [iωn − εk + μ]−1

[13]. The success of this approach fundamentally relies on
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the convergence properties of the series (2). Because al are
stochastically computed in DiagMC as the sums of the factorial
(in l) number of sign-alternating contributions, in practice one
can only reach L = 6–7 with reasonable statistical error bars
due to the fermionic sign problem. Thus, a controlled answer
is only warranted as long as the series (2) can be reliably
extrapolated to L → ∞ given an essentially limited number
of computed expansion orders. This extrapolation becomes
increasingly difficult at low T and large U .

In order to establish control over the convergence properties
of the series, we introduce a modified action Sξ given by

Sξ = −
∑

ωn,k,σ

c
†
ωn,k,σ G̃0(iωn,k)−1cωn,k,σ

− ξ
∑

ωn,k,σ

αk(iωn)c†ωn,k,σ cωn,k,σ + ξU

∫ β

0
nτ↑nτ↓dτ,

(3)

where G̃0(iωn,k)−1 = iωn+μ−εk−αk(iωn)=G0(iωn,k)−1−
αk(iωn) and αk(iωn) is an arbitrary auxiliary field. When ξ =
1, we recover the original action for the Hamiltonian (1). The
freedom in choosing the noninteracting propagator G̃0(iωn,k)
has been employed by several authors in the contexts of many-
body perturbation theory (see, e.g., Refs. [14–19]). Expanding
in powers of ξ and applying Wick’s theorem generates a new
diagrammatic representation of �,

�(iωn,k) = lim
M→∞

M∑
m=1

ãm(iωn,k)ξm. (4)

Here, the coefficient ãm is a sum of all the diagrams for al

with l running from 1 to m, and for each diagram of order
l, an additional sum over all possible ways of inserting m −
l instances of αk(iωn) in the fermionic lines is performed
according to the standard diagrammatic rules of expanding
with respect to an external field [13]. Note that here the bare
propagators G0(iωn,k) are now replaced with G̃0(iωn,k). The
freedom in choosing αk(iωn) can be now used to control the
convergence properties of the modified series (4) at ξ = 1, as
recently done in a real-time algorithm [18].

This freedom comes at the expense of extending the
diagrammatic space, which considerably worsens the sign
problem. To make practical calculations feasible we introduce
a recursive protocol for summing all the diagrams for ãm,
which makes use of the already computed ãn, n < m. The idea
is that a high-order diagram may contain (between propagator
lines) self-energy insertions of lower orders; all possible
insertions of the total order p can be implicitly summed and
integrated over the internal momentum/frequency variables by
including the results for ãn, n � p, in the propagator lines,

G(p) =
p∑

n=0

G(n)ãp−nξ
p−nG̃0, p > 0, G(0) ≡ G̃0, (5)

so that G(p) ∝ ξp. Then, ãm can be obtained by DiagMC sam-
pling of only 1PI skeleton diagrams of order l = {1, . . . ,m},
where in each diagram some bare propagators G̃0 are randomly
replaced by dressed propagators G(pi ) so that

∑
i pi = m − l.

This recursive approach substantially improves the efficiency

(a)

(b)

(c)

(e)

(d)

(f)

FIG. 1. Left column: Imaginary part of the Hubbard model self-
energy at the first four Matsubara frequencies obtained as a sum of the
first K perturbation orders. The parameters are U = 4.0, t ′ = −0.3,
μ = 0, n ∼ 0.725, T = 0.5. The dashed lines are a benchmark from
determinantal QMC simulations on a 16 × 16 lattice (the discrete
time interval is �τ = 0.0375, where the Trotter error is negligible).
(a) Standard series with Hartree diagrams included in bare Green’s
function. (b) α-shifted case with α = 0.6. (c) The optimal case
α = 1.53. Right column: Results for the atomic limit t = 0, U = 4,
T = 0.5, μ = 0.138, n ∼ 0.725. (e) Modulus/phase (displayed as
saturation/hue) map of the self-energy in the complex ξ plane for
α = 0.6. The physical solution is at the cross ξ = 1 on the unit circle.
(d) The arrows and dots show trajectories of three poles as α is
changed from 0.5 to 1.8. (f) Optimal α and corresponding maximal
convergence radius as a function of the density 〈n〉 in the Hubbard
atom.

of DiagMC by effectively reducing the configuration space
and can be generalized to other channels, e.g., by introducing
dressed interaction lines W (p), dressed two-particle irreducible
vertices �(p), etc.

III. ILLUSTRATIVE RESULT AT HIGH T/ t

We first investigate the simplest case of a constant field
αk(iωn) ≡ α. In Fig. 1, we illustrate its effect on the Hubbard
model at U = 4 and T = 0.5, using a determinantal quantum
Monte Carlo (QMC) simulation on a 16 × 16 lattice as a
benchmark [20]. In the first row of Fig. 1, we compare the
value of �(k,iωn) at the first few Matsubara frequencies
and k = (π/4,π ) summed up to order K , i.e., �(k,iωn) =∑K

m=1 ãm(k,n)ξm. Figure 1(a) shows the behavior of the
standard series (2) (with the Hartree diagrams included in the
Green’s function following Refs. [10,11]), Figures 1(b) and
1(c) show the behavior for two different choices of α. Clearly,
the standard series and the one for an arbitrarily selected
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α = 0.6 fail to converge within accessible orders. However,
a clever choice of α = 1.53 yields a great improvement of
convergence. The exact result is recovered already at order
4 and the extrapolation of the series to infinite order is
straightforward.

IV. RATIONALE: POLE MOVING

In order to get insight into the improvement brought by
the introduction of a modified action, we study in detail the
limiting case t = 0, the Hubbard atom, which can be solved
exactly. In particular, we show how tuning α allows to control
the convergence radius of the series (4). The self-energy for
the action Sξ and t = 0 is given by

�(iωn) = nξU

2
+ 1

4

n(2 − n)ξ 2U 2

iωn + μ̃ − (2 − n)ξU/2
, (6)

μ̃ = ξα − α + μ, (7)

where n = [eβμ̃ + e2βμ̃−βξU ]/[1 + 2eβμ̃ + e2βμ̃−βξU ] is the
density. The analytical structure of �(iω0) in the complex-ξ
plane is shown in Figs. 1(d) and 1(e). The convergence radius
R of the series expansion in ξ is given by the distance from
the origin to the closest pole in the complex-ξ plane, which
strongly depends on the value of α. For α = 0.6 a pole is closer
to the origin than the evaluation point ξ = 1 and the series
diverges, whereas for α = 1.53 the poles are further away and
the series is convergent at ξ = 1. When α is further increased,
new poles get closer to the origin and there is therefore an
optimal value for α for which the radius of convergence is
maximal. A systematic study for the full Hubbard model at
T = 0.5 suggests an optimal value of α � 1.53, close to this
atomic estimate α ∼ 1.3, as expected from a similar analytic
structure of � at this high temperature. Thus the Hubbard
atom can provide a reasonable guide for finding the optimal
α. Finally, we find the largest convergence radius and the
corresponding optimal α for different densities of the Hubbard
atom, as displayed in Fig. 1(d). We see that R is infinite at
half filling and becomes finite (R � 2.5) as soon as a doping
is introduced. For U = 4, the convergence radius is always
large enough for the series to converge. It has a minimum
R � 1.6 > 1 around 10% hole (or electron) doping.

V. REACHING THE PSEUDOGAP SCALE

We now show that this improved scheme allows one to
reach the pseudogap region [21–24]. We consider the Hubbard
model on an infinite square lattice at 4% hole doping and
U = 5.6, t ′ = −0.3 [25]. We could achieve convergence down
to T = 0.2, where we compute the self-energy up to seventh
order with an optimized α = 2.2. The average sign at order 7 is
about 10−4, which precludes access to higher orders. In Fig. 2,
we display the imaginary part of the self-energy Im �(k,iωn)
taken at three different momenta k on the Fermi surface (FS).
We see that the self-energy behaves differently at the nodal
point kN = (1.47,1.47) (intersection of the FS with the zone
diagonal) in comparison to the antinode kAN = (3.04,0.49)
(where the FS hits the upper zone boundary). The imaginary
part of the AN self-energy extrapolates to a larger negative
value at low frequency, indicating the strongest correlation

FIG. 2. Imaginary part of the self-energy at the node, hot spot,
and antinode at U = 5.6, t ′ = −0.3, n = 0.96, T = 0.2. Inset: DCA
results with cluster size Nc = 8, 16, 32, 52 extrapolate to the DiagMC-
summed result (plain horizontal lines) at different frequencies.

effects at the AN. Hence, a clear N/AN differentiation
is already apparent at T = 0.2, consistently with previous
calculations [21,26]. The inset of Fig. 2 also demonstrates
that our results at the AN are in excellent agreement with large
scale dynamical cluster approximation (DCA) [4] ones (after
extrapolating the latter as a function of cluster size). Finally,
we note (Fig. 2) that the self-energy is larger at the AN than at
the “hot spot” kHS = (2.26,0.88) (intersection of the FS with
the antiferromagnetic zone boundary), indicating that we have
reached a regime in which the weak-coupling spin-fluctuation
picture does not apply. Being able to resolve the difference of
behavior at the HS and AN is a clear advantage of the current
approach as compared to cluster methods.

VI. PHYSICAL ORIGIN OF THE NODAL/ANTINODAL
DICHOTOMY: ANTIFERROMAGNETIC

SPIN CORRELATIONS

A decisive asset of DiagMC is that it provides direct
information about the mechanisms behind the pseudogap and
N/AN differentiation. We demonstrate that umklapp processes
are essential to the destruction of the AN quasiparticles. To this
aim, we decompose the self-energy as shown in Fig. 3(b) and
monitor the momentum entering the two-particle scattering
amplitude F↑↓ during the DiagMC evaluation. By forcing the
sum of incoming and outcoming momenta of F↑↓ to differ by a
nonzero or zero reciprocal lattice vector G, we allow or forbid
umklapp scattering at will. The results are given in Fig. 3:
When umklapp processes are forbidden, both the imaginary
part of N and AN Green’s functions become significantly
larger, indicating that umklapp processes are relevant to
suppress spectral weight in the full solution. More importantly,
without umklapp processes, AN Green’s function turns out to
be more coherent than the N one, while the opposite is true
when umklapp processes are allowed. They are therefore a
key ingredient in the suppression of spectral weight at the
AN, and their importance is actually found to grow as the
perturbation order increases (not shown).

To analyze further the N/AN dichotomy, we employ the
Dyson-Schwinger equation representing the self-energy at a
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FIG. 3. (a) Imaginary part of the Green’s functions at node and
antinode as a function of frequency, in cases with and without
umklapp processes. (b) Decomposition of the self-energy using the
Dyson-Schwinger equation of motion [cf. Eq. 8]. (c) Illustration of a
typical weak-coupling umklapp process with G = (2π,2π ).

given momentum k as [Fig. 3(b)]

�(k) = Un

2
−

∑
k′,q

F↑↓(k,k′,q)g(k)g(k′ + q)g(k + q), (8)

or �(k) = Un
2 − ∑

q [�q
X(k)], and study the contributions

from different collective modes with the transfer momentum
q, where X stands for spin (sp), charge (ch), or particle-particle
(pp) representations,

�q
sp(k) =

∑
k′

−F↑↓(k,k + q,k′ − k)g(k′)g(k′ + q)g(k + q),

�
q

ch(k) =
∑

k′
[F↑↓(k,k + q,k′ − k)

− 2 × F↑↓(k,k′,q)]g(k′)g(k′ + q)g(k + q),

�q
pp(k) =

∑
k′

−F↑↓(k,k′,q − k − k′)g(k′)g(q − k′)g(q − k).

(9)

The above equations are obtained by expressing Fsp/ch/pp

in terms of F↑↓ (see Ref. [8]). The resulting low-energy
intensity maps of �

q
X(k) (obtained at order 7) for all three

representations at the N and at the AN are displayed in
Fig. 4. The first compelling result is that the charge and the
particle-particle representations are essentially featureless for
both the N and AN self-energies. The only visible patterns
stem from FS to FS transfer momenta, as shown by the
light circles. In contrast, the spin channel exhibits dominant
modes responsible for the largest contribution to the imaginary
part of the self-energy at low energies. Interestingly, the
most significant transfer momenta are all close to (π,π ) and
we conclude that antiferromagnetic spin correlations are the
leading scattering mechanism in the pseudogap region of
the phase diagram, in agreement with recent experimental
findings [2,27]. The fine momentum resolution of DiagMC
allows us to examine the difference between the N and
AN self-energy in further detail. We see that, at the N,

FIG. 4. Maps of the transfer momentum q contributions to
Im �(k,iω0) + Im �(k,iω1) in the spin (sp), charge (ch), and particle-
particle (pp) channels, both at the antinode, k = (3.04,0.49) (left
column), and node, k = (1.47,1.47) (right column). The two panels
on the top are results at perturbation order 2 while the rest are obtained
up to order 7.

the transfer momenta are close, but not exactly at (π,π ).
They are concentrated around the Fermi surface and are not
exactly commensurate. On the contrary, at the AN the transfer
momenta are centered around (π,π ) and the corresponding
amplitude is larger. The existence of a saddle point in the band
dispersion (van Hove singularity) close to the AN may be at
the origin of this difference, the flatter dispersion allowing
one to compensate for the energetic cost of commensurate
(π,π ) spin scattering. The relevance of the saddle point
has been discussed in Refs. [28–30] within weak-coupling
approaches. Importantly, we note (Fig. 4) that FS scattering
involving an incommensurate transfer momentum controls the
nodal self-energy at both low and high perturbation orders. In
contrast, (π,π ) scattering emerges at high perturbation orders
at the AN. Hence, the scattering mechanism remains of the
weak-coupling type at the N, while the pseudogap opening
at the AN is a strong-coupling phenomenon for the value of
U/t studied here. From similar calculations for 4 � U/t � 6
and different Fermi surface topologies we observe that the
qualitative picture described above is realized as soon as a
clear nodal/antinodal differentiation sets in. For the value of
U/t < 4, both the scattering at the N and at the AN are

041105-4



RAPID COMMUNICATIONS

CONTROLLING FEYNMAN DIAGRAMMATIC EXPANSIONS: . . . PHYSICAL REVIEW B 96, 041105(R) (2017)

incommensurate and similar to what would be obtained in
weak-coupling approaches.

VII. CONCLUSIONS AND PERSPECTIVES

In this Rapid Communication, we have introduced an
improved DiagMC method relying on an optimized parametric
modification of the Hubbard model action. This allows us to
access in a controlled way and with high momentum resolution
parameter regimes that were previously unreachable, such as
the onset of the pseudogap and nodal/antinodal differentiation.
We show that these effects are due to antiferromagnetic
correlations and that marked differences with weak-coupling
spin-fluctuation theories appear in the regime of coupling in-

vestigated here. The challenge ahead is to improve the current
method in order to reach significantly lower temperatures.
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