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Correlated atomic wires on substrates. II. Application to Hubbard wires
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In the first part of our theoretical study of correlated atomic wires on substrates, we introduced lattice models
for a one-dimensional quantum wire on a three-dimensional substrate and their approximation by quasi-one-
dimensional effective ladder models [Abdelwahab et al., preceding paper, Phys. Rev. B 96, 035445 (2017)].
In this second part, we apply this approach to the case of a correlated wire with a Hubbard-type electron-
electron repulsion deposited on an insulating substrate. The ground-state and spectral properties are investigated
numerically using the density-matrix renormalization group method and quantum Monte Carlo simulations. As a
function of the model parameters, we observe various phases with quasi-one-dimensional low-energy excitations
localized in the wire, namely, paramagnetic Mott insulators, Luttinger liquids, and spin-1/2 Heisenberg chains.
The validity of the effective ladder models is assessed for selected parameters by studying the dependence of
results on the number of legs and comparing to the full three-dimensional model. We find that narrow ladder models
accurately reproduce the quasi-one-dimensional excitations of the full three-dimensional model but predict only
qualitatively whether excitations are localized around the wire or delocalized in the three-dimensional substrate.
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I. INTRODUCTION

In the first paper of this series [1], we introduced a three-
dimensional (3D) lattice model for a correlated atomic wire
deposited on an insulating substrate and showed how to map
it onto a two-dimensional (2D) ladderlike lattice that can be
approximated by one-dimensional (1D) narrow ladder models
(NLMs). In this second paper, we apply this approach to a
correlated wire represented by the 1D Hubbard model [2] using
density-matrix renormalization group (DMRG) [3–6] and
quantum Monte Carlo (QMC) [7,8] methods. We investigate
the occurrence and properties of Luttinger liquids [9–11] and
1D Mott insulators [10,12] coupled to a substrate.

Atomic wires on surfaces seem to be the ultimate realization
of 1D electron systems [13–15], but the relevance of 1D
physics for these materials is still controversial. In particular,
numerous experiments show that some of these materials
have gapless excitation spectra with strongly anisotropic
charge dynamics. The list of good candidate materials for
the realization of (quasi-)1D conductors includes In/Si(111)
[15], Au/Ge(100) [16–20], Bi/InSb(100) [21], Pt/Ge(100)
[22,23], Pb/Si(557) [24], and dysprosium silicide nanowires
on Si(001) surfaces [25]. Their properties are sometimes
ascribed to Luttinger liquids and sometimes to anisotropic
2D Fermi liquids. One of the main reasons for these con-
troversies is a poor understanding of the influence of the
3D substrate [13,15,26–28] on 1D conductors. Isolated 1D
conductors are known to be Luttinger liquids [9–11], whereas
the above experimental realizations raise the question of
the stability of Luttinger liquids coupled to an environment
[10,26,29].

The present theoretical study sheds some light on the quasi-
1D physics occurring in correlated atomic wires deposited
on semiconducting substrates, in particular, on the fate of
Luttinger-liquid and Mott-insulating phases when coupled to
their environment. In addition, it confirms that few-leg NLMs

can describe—at least qualitatively—the quasi-1D low-energy
physics of the full 3D wire-substrate system.

The paper is structured as follows. In Sec. II, we briefly
introduce the lattice model for the wire-substrate system and
its NLM approximation. The DMRG and QMC methods are
outlined in Sec. III. Results are discussed in Sec. IV, and Sec. V
contains our conclusions.

II. MODELS

A. 3D wire-substrate model

We consider a wire-substrate model that is a special case
of the general model introduced in Sec. II of [1]. It consists
of an interacting 1D wire on the surface of a noninteracting
insulating 3D substrate. We use a cubic lattice of size Lx ×
Ly × Lz with the wire aligned in the x direction and open
boundary conditions in the z direction. Thus objects on the
surface have a coordinate z = 0. We set all lattice constants
and h̄ equal to 1 and therefore do not distinguish between
momentum and (dimensionless) wave number.

The system Hamiltonian can be decomposed into three
terms describing the substrate degrees of freedom, the wire
degrees of freedom, and the coupling between wire and
substrate. The 3D substrate is represented by a tight-binding
Hamiltonian with a uniform nearest-neighbor hopping ts > 0
and two orbitals per site with different on-site energies ±εs

(εs > 0). The resulting single-particle energy spectrum has
one valence band (b = v,εv = −εs) and one conduction band
(b = c,εc = +εs) with the dispersion relations

εb(k) = εb − 2ts[cos(kx) + cos(ky) + cos(kz)], (1)

where kx,ky ∈ [−π,π ] and kz ∈ [0,π ]. The indirect gap
between the bottom of the conduction band and the top of the
valence band is �s = 2εs − 12ts, and the condition �s � 0
requires εs > 6ts.
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The wire is represented by the 1D Hubbard model [2].
The Hubbard parameter U � 0 describes the strength of
the Coulomb repulsion between two electrons on the same
site, while a nearest-neighbor hopping term with amplitude
tw > 0 accounts for the electronic kinetic energy. In addition,
an on-site potential εw = −U/2 places the Hubbard bands
symmetrically around the middle of the substrate band gap. For
a noninteracting wire (U = 0), we obtain the single-particle
dispersion

εw(kx) = −2tw cos(kx). (2)

The simplest coupling between the wire and the substrate
consists of a hybridization of the electronic orbitals by a
hopping term between nearest-neighbor pairs of sites located
in the wire and the substrate, respectively. We use the same
hybridization strength tws for valence and conduction bands.

The total Hamiltonian takes the form

H = −U

2

∑
x,σ

c†wxσ cwxσ + U
∑

x

c
†
wx↑cwx↑c

†
wx↓cwx↓

− tw
∑
x,σ

(c†wxσ cw,x+1,σ + H.c.)

+
∑
b,r,σ

εbc
†
brσ cbrσ − ts

∑
〈rq〉

∑
b,σ

(c†brσ cbqσ + H.c.)

− tws

∑
b,x,σ

(c†brσ cwxσ + H.c.). (3)

The sums over x run from 1 to Lx , with r = (x,y0,1) in the last
sum (y0 is the y-coordinate of the wire), the sum over r runs
over all substrate lattice sites, and the sum over 〈rq〉 is over all
pairs of nearest-neighbor sites in the substrate. The operator
c
†
brσ creates an electron with spin σ at the site with coordinates

r = (x,y,z) in the substrate orbital b = v,c, while c
†
wxσ creates

an electron with spin σ on the wire site at r = (x,y0,0).

B. 1D narrow ladder models

As explained in [1], the full 3D wire-substrate system can be
mapped exactly onto a ladderlike 2D lattice of size Lx × Nimp

with Nimp = 2LyLz + 1 legs. The explicit form of the full
Hamiltonian is

H = −U

2

∑
x,σ

g
†
x0σ gx0σ + U

∑
x

g
†
x0↑gx0↑g

†
x0↓gx0↓

− tw
∑
x,σ

(g†
x0σ gx+1,0σ + H.c.)

− ts

Nimp−1∑
n=1

∑
x,σ

(g†
xnσ gx+1,nσ + H.c.)

−
Nimp−2∑

n=0

t
rung
n+1

∑
x,σ

(g†
xnσ gx,n+1,σ + H.c.). (4)

Here, g
†
xnσ creates an electron with spin σ at position x in

the nth leg (n = 0, . . . ,Nimp − 1). The first leg (n = 0) is
identical with the wire, in particular, g

†
x0σ = c

†
wxσ , while legs

n = 1, . . . ,Nimp − 1 correspond to successive shells around

the wire and represent the substrate. Hamiltonian (4) consists
of the original Hubbard Hamiltonian for the wire, an intraleg
hopping ts in every substrate leg, and a nearest-neighbor rung
hopping t

rung
n between substrate legs n − 1 and n. The first two

rung hoppings are t
rung
1 = √

2tws and t
rung
2 = √

3t2
s + ε2

s . For
larger n, t rung

n+1 can be computed numerically using the Lanczos
algorithm as described in Sec. III of [1]. The relation between
c
†
brσ and g

†
xnσ is also explained there.

The mapping of the 3D wire-substrate model to the 2D
ladderlike system is exact but does not yet simplify the
problem. Intuitively, however, 1D physics (such as Luttinger
liquid behavior) should occur in the wire or in a region of
the substrate around the wire. Thus only legs that are close
to the wire should be essential for a qualitative description of
the 1D low-energy properties. Therefore, we approximate the
3D wire-substrate model by effective NLMs that are obtained
by taking only the Nleg � Nimp legs closest to the wire into
account. The investigation of a noninteracting wire in [1]
established that an NLM must include an odd number of legs
Nleg � 3 to describe a wire on an insulating substrate.

C. Parameters

For insulating substrates, we can find model parameters
such that the low-energy excitations of the noninteracting
wire lie in the substrate band gap. These excitations are
then localized on or around the wire and thus form a 1D
electronic subsystem of the full 3D wire-substrate system. In
[1] we showed that this scenario is achieved at half-filling
and close to half-filling with a wire hopping tw = 3 and the
substrate parameters ts = 1 and εs = 7. The latter correspond
to an indirect gap �s = 2εs − 12ts = 2 and a direct gap
�(kx) = 2εs − 8ts = 6 for a fixed wave number kx in the
single-particle excitation spectrum.

The effective substrate band gap �s(Nleg) is larger in the
NLM but converges to �s for Nleg → ∞. For instance, for the
three-leg NLM at vanishing wire-substrate coupling tws = 0,
the substrate is represented by a noninteracting two-leg ladder
with single-particle energies

ε(kx) = ±t
rung
2 − 2ts cos(kx). (5)

Thus �s(Nleg = 3) = 2t
rung
2 − 4ts ≈ 10.4 is 5 times larger than

the true gap �s = 2. We use the above parameters throughout
this work and focus on the model properties as a function of the
hybridization between wire and substrate tws and the strength
of the electron-electron interaction U .

At half-filling, the 3D wire-substrate model contains Np =
NimpLx electrons whereas the NLM contains Np = NlegLx .
We focus on half-filled systems and on systems doped
away from half-filling by a finite wire doping yw ∈ (−1,1)
(Np = NimpLx + ywLx for the 3D wire-substrate model, or
Np = NlegLx + ywLx for the NLM). Such a finite wire doping
corresponds to a negligible bulk doping of the substrate in the
thermodynamic limit Nimp � 1 but is relevant for quasi-1D
conductors embedded in an insulating 3D bulk system, e.g.,
metallic wires on semiconducting substrates.
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III. METHODS

A. DMRG

The DMRG is a powerful method for quasi-1D correlated
quantum systems with short-range interactions [3–6]. It can be
used to study relatively wide ladder geometries [30] or coupled
chains [31,32]. For such systems, however, it is limited by
an exponential increase of CPU time and required memory
as a function of the lattice width. Therefore, our DMRG
study is necessarily restricted to correlated NLMs with small
numbers of legs Nleg. Nevertheless, we found that in general
the computational effort required for the NLM increases much
more slowly with the number of legs than for a similar
homogeneous ladder system. Fundamentally, the exponential
increase of the computational cost is due to the rapid increase
of entanglement with the ladder width. This entanglement is
essentially determined by the number of gapless excitation
modes in the system (e.g., the number of bands crossing the
Fermi energy in a noninteracting system). In a homogeneous
ladder model, this number is typically proportional to the
ladder width. In the NLM for an insulating substrate, however,
this number remains small when Nleg increases because most
excitation modes represent gapped transitions between valence
and conduction bands. This results in a slower increase of the
computational cost with system width.

We used the finite-system DMRG algorithm on lattices
with up to Lx = 208 rungs for three-leg ladders and up to
Lx = 128 for wider ladders with up to Nleg = 11 legs. The
ladder length Lx was always taken to be an even number
and open boundary conditions were used in the x direction.
Up to m = 2024 density-matrix eigenstates were kept in our
DMRG calculations, yielding discarded weights smaller than
10−6. We systematically investigated truncation errors by
keeping variable numbers of density-matrix eigenstates and
extrapolating ground-state energies to the limit of vanishing
discarded weights [33]. The resulting error estimates are
smaller than the symbols in our figures.

Using the DMRG, we calculated the charge gap

Ec = 1
2 [E0(M↑ + 1,M↓ + 1) + E0(M↑ − 1,M↓ − 1)

− 2E0(M↑,M↓)], (6)

the spin gap

Es = E0(M↑ + 1,M↓ − 1) − E0(M↑,M↓) , (7)

and the single-particle gap

Ep = E0(M↑ + 1,M↓) + E0(M↑ − 1,M↓)

−2E0(M↑,M↓) , (8)

where E0(M↑,M↓) denotes the ground-state energy for Mσ

electrons of spin σ . These gaps are visible in the dynamic
charge structure factor, the dynamic spin structure factor, and
the single-particle spectral functions calculated with the QMC
method discussed below.

Additional information can be inferred from the distribution
of charges and spins on the different legs. The total charge on
leg n is defined as

C(n) = 〈ψGS|
∑
x,σ

g†
xnσ gxnσ |ψGS〉 , (9)

while the total spin-z density is defined by

S(n) = 〈ψGS|
∑
x,σ

σg†
xnσ gxnσ |ψGS〉 . (10)

Here, |ψGS〉 is the ground state for Mσ electrons of spin σ .
Additionally, variations �C(n) and �S(n) of these quantities
for Mσ ± 1 indicate whether the lowest charge, spin, and
single-particle excitations (defined by the above gaps) are
mostly localized on the wire or distributed in the substrate.

The actual average excess density on the wire is

yav = C(0)

Lx

− 1 (11)

while the wire doping corresponds to

yw =
Nleg−1∑
n=0

[
C(n)

Lx

− 1

]
. (12)

If all added electrons (or added holes) are localized in the
wire then yav = yw. However, in general, |yav| < |yw| because
the doped particles have a finite probability to be in the
substrate. We will show below that it is possible that they
become completely delocalized in the whole substrate so that
|yw| � |yav| ≈ 0.

To analyze finite-size corrections in the correlated NLM,
we calculated these gaps for ladders of various lengths Lx and
widths Nleg. As a first example, Fig. 1(a) shows the charge
gap Ec at half-filling for U = 4 as a function of 1/Lx for
different Nleg. It decreases as a function of 1/Lx for a fixed
Nleg. In 1D Mott insulators, charge and single-particle gaps
decrease toward finite values in the limit Lx → ∞. We used a
second-order polynomial fit in 1/Lx to extrapolate these gaps
whenever necessary and possible. In Fig. 1(a) the extrapolated
charge gaps are finite and almost equal for all Nleg for the
parameters chosen. For other model parameters, we find that
the gap can strongly depend on the number of legs and that
extrapolations for increasing Nleg at finite-system length Lx

are also unsatisfactory. This complex finite-size scaling is
related to the large variation of the effective substrate band
gap �s(Nleg) with Nleg discussed before for the noninteracting
NLM.

As a second example, Fig. 1(b) shows the charge gap away
from half-filling (yw = 12.5%) for U = 4 for two different
values of Nleg. The charge gap vanishes with 1/Lx for a fixed
number of legs. According to conformal field theory, the finite-
size gaps of gapless excitations in 1D electron systems vanish
linearly with the inverse of the system length [10],

Eα = πvα

Lx

(13)

for Lx � 1, where α = c, s, or p and vα is the velocity of the
corresponding excitation. We can hence calculate the velocities
of charge, spin and single-electron excitations from the line
slopes in the finite-size scaling analysis. For the noninteracting
wire without a substrate these velocities are equal to the Fermi
velocity vF = 2tw sin(kF), with vF = 2tw = 6 at half-filling and
vF ≈ 1.96tw ≈ 5.88 at 12.5% doping. We find that the vα do
not change significantly with the number of legs for Nleg � 3,
as illustrated in Fig. 1(b) where vc/vF ≈ 1.2. Since our DMRG
results for gapless excitation modes are limited to a few values
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FIG. 1. DMRG results for the charge gap [Eq. (6)] of the NLM
(a) at half-filling and (b) away from half-filling (yw = 12.5%) as
a function of the inverse ladder length 1/Lx for different numbers
of legs Nleg. The Hubbard interaction was U = 4. The line in (a)
shows the finite-size gap of the half-filled 1D Hubbard model with
open boundary conditions and a hopping tw = 3. The lines in (b)
correspond to quadratic fits in 1/Lx .

of Nleg, in principle we cannot rule out more significant finite-
size corrections for Nleg > 7.

Ideally, the finite-size gaps of the NLM should be extrapo-
lated to the thermodynamic limit using a fixed ratio Nleg/Lx .
However, this is not possible with the DMRG because we
cannot simulate enough different values of Nleg for fixed
Nleg/Lx . Therefore, the few-leg correlated NLMs accessible
to the DMRG are not large enough to accurately investigate the
full 2D ladder representation (4) of the wire-substrate system.
However, they can yield a useful approximation, as illustrated
by our observation that the essential properties (e.g., gapped
vs gapless excitations, or excitations on the wires vs in the
substrate) do not change significantly with Nleg for Nleg � 3
unless a phase boundary is crossed.

To achieve larger ladder sizes, one could use other DMRG
methods and other representations of the NLM that are
more appropriate for specific problems. For instance, the
two-step DMRG [31,32] allows one to investigate systems
of weakly coupled chains more efficiently. The DMRG can
also be used in momentum space [34–36], where it yields
more accurate results for momentum-resolved observables

for weak electron-electron interactions. As the NLM is not
translationally invariant in the rung direction, however, this
approach is not directly applicable. Nevertheless, a clear
advantage of the momentum representation of the NLM is
that the yz slices of the substrate are decoupled, see Sec. III of
[1]. It is sufficient to use the momentum representation in the
wire direction (x direction) to achieve this decoupling. Thus
one could also envision using a mixed representation (kx,y,z),
i.e., momentum space in the wire direction and real space in
the y and z directions, or (kx,n), i.e., momentum space in the
wire direction and Lanczos basis for the other two directions.
DMRG variants that combine momentum and real space have
been developed recently to take advantage of such alternative
representations [37,38]. The mixed representation (kx,n) is
expected to be the best starting point for field-theoretical
approaches [9,10,29,39].

Alternatively, it is possible to consider each yz slice of the
substrate (or, equivalently, each rung of the NLM) as a single
site with a large number of states and apply DMRG methods
developed to treat such big sites [40–42]. This approach may
lead to much smaller effective representations of the substrate
degrees of freedom because the latter seem to be more weakly
entangled than the rungs of homogeneous ladder systems.

B. QMC

The continuous-time interaction-expansion (CT-INT)
QMC method [7] is particularly useful to study both NLMs
and the full 3D wire-substrate model. For this purpose, the
method is formulated in terms of the fermionic coherent-state
path integral with an action S = S0 + S1. Here, S0 is quadratic
and has the form

S0 = −
∑
ijσ

∫∫ β

0
dτdτ ′ c†iσ (τ )G−1

0,σ (i − j,τ − τ ′)cjσ (τ ′) ,

with the free Green function G0,σ describing the hopping
between sites i and j of the wire via all possible paths (direct
or via the substrate). The Hubbard interaction in the wire is
contained in

S1 = U
∑

i

∫ β

0
dτ

[
c
†
i↑(τ )ci↑(τ ) − 1

2

][
c
†
i↓(τ )ci↓(τ ) − 1

2

]
.

The key idea of the method is a Dyson expansion of the
partition function Z = tr e−S in powers of S1, which can
be summed exactly by stochastic sampling of interaction
vertices [7]. The algorithmic details have been discussed in
detail before [8]. For the present problem, it is essential to
understand that interactions are restricted to the wire, whereas
substrate sites are noninteracting both in the NLM and the
full 3D problem. As in previous work on edge states of
topological insulators [43], the numerical effort scales as
n3, where n ≈ UβLx is the average expansion order and
depends only on the number of correlated sites. It is hence
the same as for the 1D Hubbard model. The cubic scaling
with n makes CT-INT most useful for weak-to-intermediate
couplings. However, because the noninteracting substrate sites
are integrated out, NLMs and full 3D models with the same Lx

require the same computer time so that detailed comparisons
between these different models are possible.
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Here, we used a grand-canonical variant of CT-INT with in-
verse temperature β. A chemical potential μ = 0 corresponds
to half-filling, whereas μ > 0 gives electron-doped systems
with yw > 0. The total number of doped electrons was adjusted
to Lx/8 = 5.25 (or yw ≈ 12.5%, as in the DMRG results) by
tuning μ. The thermodynamic average of the particle density
was calculated exactly for the wire as well as the substrate
legs of the three-leg NLM [cf. Eqs. (9) and (12)]. For the
3D wire-substrate model, substrate averages over all sites are
not feasible because G0 has to be stored for all sites and
imaginary times. Therefore, substrate properties were obtained
by averaging over the chains at minimal (y = 1, z = 1) and
maximal distance (y = Ly/2, z = Lz) from the wire.

To complement the DMRG results, we calculated spectral
properties of the NLM and the 3D wire-substrate system.
Specifically, we considered the momentum- and energy-
resolved single-particle spectral functions, as well as the
dynamic charge and spin structure factors. These quantities
can be measured in experiments such as angle-resolved pho-
toemission spectroscopy, electron-energy-loss spectroscopy,
and inelastic neutron scattering, respectively. In principle,
dynamic quantities are also accessible with the DMRG method
[44–46] but at a high computational cost and with the
additional complication of using pseudo-wave numbers and
open boundary conditions (see Refs. [47] and [48] for recent
works).

We considered the single-particle spectral functions defined
in [1], namely, the wire spectral function Aw(ω,kx), the
“substrate” spectral function As(ω,kx) of the three-leg NLM,
and the substrate spectral function As(ω,kx) corresponding
to the average of As(ω,kx,y = y0,z = 1) and As(ω,kx,y =
y0 + Ly/2,z = Lz).

The dynamic charge (α = ρ) and spin (α = σ ) structure
factors of the wire are defined as

Sα(ω,kx) = 1

Z

∑
ij

|〈i|Ŝα(kx)|j 〉|2(e−βEi + e−βEj )

× δ(Ej − Ei − ω) , (14)

with

Ŝρ(kx) = 1√
Lx

∑
x

eikxx
∑

σ

c†wxσ cwxσ ,

Ŝσ (kx) = 1√
Lx

∑
x

eikxx
∑

σ

σc†wxσ cwxσ . (15)

Here, |i〉 is an eigenstate with energy Ei . The above spectral
functions were determined from the QMC results for the
corresponding single-particle, density-density, and spin-spin
imaginary-time Green functions with the help of the stochastic
maximum entropy method [49].

IV. RESULTS

A. Insulating wire

For half-filling and tws = 0, the wire is an exactly half-filled
Hubbard chain decoupled from the substrate. The ground state
of this 1D model for repulsive interactions is a paramagnetic
Mott insulator [2]. Therefore, we know that the 3D wire-

 0

 2

 4

 6

 8

 10

 12

 5  10  15  20  25  30  35  40

E c

U

FIG. 2. DMRG results for the charge gap [Eq. (6)] at half-filling
as a function of the Hubbard interaction U for a three-leg NLM
with tws = 0.1 (circles) and tws = 2 (diamonds), as well as for a
seven-leg NLM with tws = 0.1 (squares) and tws = 2 (triangles). The
solid line indicates the Mott gap of the 1D Hubbard chain with a
hopping tw = 3. The horizontal dashed lines indicate the effective
substrate band gaps �s(Nleg = 3) ≈ 10 and �s(Nleg = 7) ≈ 5.5 of
the noninteracting NLMs.

substrate model and the NLM are Mott insulators if U > 0
and tws = 0.

Figure 2 shows the charge gap Ec of half-filled three-leg and
seven-leg correlated NLMs as a function of the interaction U

for Lx = 128 and tws > 0. Finite-size effects are considerable
for small charge gaps (i.e., small U ), but our finite-size analysis
show that Ec is finite in the thermodynamic limit at least
for U � 4, see Fig. 1. For weaker interactions, we could not
determine if the charge gap remains finite for Lx → ∞. At
stronger interactions, finite-size effects are smaller than the
symbol size in Fig. 2. For weak hybridizations 0 < tws �
0.5, Ec increases with U almost exactly as the Mott gap
of a Hubbard chain [2] up to Uc ≈ 20, before saturating
abruptly at a value close to the effective substrate band gap
for the three-leg NLM [�s(Nleg = 3) ≈ 10]. For stronger
wire-substrate hybridization, such as tws = 2 in Fig. 2, the
charge gap becomes smaller than the Mott gap of the Hubbard
chain but its dependence on U remains qualitatively the same,
with saturation occurring at a slightly larger gap value Ec and
thus at a larger Uc. A finite charge gap in the thermodynamic
limit and a saturation effect can be observed for hybridizations
up to tws = 4. Finally, Fig. 2 shows that the behavior of the gap
is qualitatively similar for the three-leg and the seven-leg NLM
but that the critical coupling Uc decreases with increasing Nleg.
The single-particle gap behaves essentially like the charge gap.

Figure 3 shows that the spin gap vanishes linearly with 1/Lx

in the three-leg NLM, as expected for a 1D Mott-Hubbard
insulator or a spin-1/2 Heisenberg chain. This scaling is
observed both above and below the charge gap saturation value
Uc. The slopes (i.e., spin velocities) decrease with increasing
tws, suggesting that the effective exchange coupling between
spin degrees of freedom becomes weaker. This behavior
remains qualitatively similar for larger Nleg.
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FIG. 3. DMRG results for the spin gap [Eq. (7)] of the half-filled
three-leg NLM as a function of the inverse ladder length for
U = 4 (open symbols) and U = 24 (filled symbols) and various
hybridization strengths tws.

The charge and spin distributions (9) and (10) of the
half-filled ground state are featureless. Figure 4 shows that
the variations of these quantities for the lowest excitations
provide much more information. The variations of C(n) for
one or two added electrons reveal that the lowest charge
excitations are mostly situated on the wire leg for U < Uc

but on the noninteracting substrate legs for U > Uc. The
variations of S(n) for a triplet excitation shows that the
lowest spin excitations are localized on the wire leg for any
U � 4. In contrast, for a single-particle excitation (i.e., one
added electron), the excess spin goes on the wire leg for
U < Uc but on the substrate legs for U > Uc. These uneven
distributions are more pronounced for weaker hybridizations
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half-filled three-leg NLM as a function of the Hubbard interaction
U . Here, tws = 0.5. The different symbols correspond to the lowest
charge (squares), spin (pentagons), and single-particle (circles and
triangles, respectively) excitations.
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FIG. 5. CT-INT results for the spectral functions Aw(ω,kx)
[(a),(b)] and As(ω,kx) [(c),(d)] for U = 8, tws = 0.5, β = 15, and
Lx = 42. The chemical potential was μ = 0, corresponding to half-
filling. Panels (a) and (c) show results for the three-leg NLM, panels
(b) and (d) for the 3D wire-substrate model (Ly = 42, Lz = 10).

tws. We have verified that they remain qualitatively similar for
larger numbers of legs up to Nleg = 7.

The CT-INT single-particle spectral functions are shown in
Fig. 5 for the three-leg NLM and the 3D wire-substrate model
with tws = 0.5 and U = 8. First, we see that the wire spectral
functions Aw(ω,kx) in Figs. 5(a) and 5(b) are very similar,
despite the significant differences in the substrate spectral
functions As(ω,kx) shown in Figs. 5(c) and 5(d). This confirms
that the three-leg NLM can provide a good approximation of
the wire properties in the full 3D wire-substrate model. The
wire spectral functions closely resemble those of 1D Mott
insulators [45,50–52]. A gap is clearly visible in Figs. 5(a) and
5(b), and its size agrees with the DMRG results of Fig. 2 within
the numerical accuracy. The substrate band gap is also clearly
seen in the substrate spectral functions As(ω,kx) in Figs. 5(c)
and 5(d). The gap in the wire spectral function is smaller than
the effective substrate gap �s(Nleg = 3) ≈ 10 of the three-leg
NLM but quite close to the true band gap �s ≈ 2 of the 3D
substrate. Finally, Figs. 5(a) and 5(c) reveal that the spectral
weight for the lowest single-particle excitations (i.e., for small
|ω|) of the three-leg NLM is concentrated exclusively in the
wire. This confirms that these excitations are localized in the
wire in this model for U < Uc, as suggested by the spin and
charge densities of the single-particle excitations in Fig. 4.

Figure 6 shows the charge and spin structure factors of the
wire for the same parameters as in Fig. 5. These spectra are very
similar for the three-leg NLM and the 3D wire-substrate model,
which again supports the validity of the NLM approximation
for the 1D physics occurring in the 3D wire-substrate model.
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FIG. 6. CT-INT results for the dynamic charge structure factor
Sρ(ω,kx) (a, b) and the dynamic spin structure factor Sσ (ω,kx) (c, d)
on the wire for the same parameters as in Fig. 5. Panels (a) and (c)
show results for the three-leg NLM, panels (b) and (d) for the 3D
wire-substrate model.

The low-energy features seen in Sρ(ω,kx) and Sσ (ω,kx)
resemble the ones found in 1D Mott insulators with gapless
spin excitations [45,48,52,53]. The slope of the main feature
in the spin structure factor for kx → 0 agrees with our DMRG
results for the velocity of spin excitations.

The spectral properties obtained with the CT-INT method
are rather similar for other values of U . However, for weaker
interactions U (not shown), we find that the spectral weight
of the lowest single-particle excitations is concentrated mostly
on the wire not only for the NLM but also for the 3D wire-
substrate model. This indicates that the localization of the low-
energy single-particle excitations on the 1D wire subsystem is
not an artifact of the NLM but a feature of the 3D wire-substrate
model in this parameter regime.

Figures 7 and 8 show the spectral functions and dynamic
structure factors for U = 12 (above the estimated critical
coupling for the charge gap saturation Uc ≈ 9 of the full 3D
wire-substrate model at tws = 0.5, see below). We again see
that the spectral properties of the wire are very similar in the
three-leg NLM and the 3D wire-substrate model. In contrast
to U = 8, Figs. 7(b) and 7(d) reveal that the gap in the single-
particle spectral function for the wire (�ω ≈ 4, comparable to
the Mott gap of the 1D Hubbard chain) is significantly larger
than the substrate band gap of the 3D wire-substrate model
(�s ≈ 2). Thus low-energy single-particle excitations now
involve the valence and conduction bands and are delocalized
in the substrate. This agrees qualitatively with our DMRG
results for the three-leg NLM above its critical coupling
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FIG. 7. CT-INT results for the spectral functions Aw(ω,kx) (a,
b) and As(ω,kx) (c, d) for U = 12, tws = 0.5, β = 10, and Lx = 42.
The chemical potential was set to μ = 0, corresponding to half-filling.
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Uc ≈ 20, i.e., the charge gap saturation in Fig. 2 as well as
the spin and charge densities of single-particle excitations in
Fig. 4.

Figure 8(b) shows that the dynamic charge structure factor
of the wire has no spectral weight at energies between the
substrate band gap at ω ≈ 2 and the single-particle gap of
the wire at ω ≈ 4. This suggests that the system still has
charge excitations localized on the wire but only at high
energy, i.e., above the Mott gap. Finally, the spin structure
factor of the 3D wire-substrate model in Fig. 8(d) confirms the
existence of gapless spin excitations localized on the wire, even
though the lowest single-particle excitations seem to be in the
band-insulating substrate. This again agrees qualitatively with
the DMRG results for the three-leg NLM above its critical
coupling Uc ≈ 20, in particular, the vanishing of the spin
gap illustrated in Fig. 3 and the density distribution for spin
excitations shown in Fig. 4.

We conclude that the three-leg NLM describes a quasi-1D
Mott insulator with gapless spin excitations for weak Hubbard
interaction U < Uc, at least for tws � 4 and U � 4. Increasing
tws reduces the charge gap and thus the effective repulsion
between charges, but also reduces the spin velocity and thus
the effective spin exchange coupling compared to an isolated
Hubbard chain. Thus, we cannot explain the properties of
this phase by a 1D model with an effective on-site Hubbard
interaction only because, in the latter, the effective exchange
coupling decreases as the charge gap increases [2].

For strong Hubbard interactions U > Uc we find a transi-
tion to a band insulator. The lowest charge and single-particle
excitations are then transitions between the valence and
conduction bands of the NLM representations, as shown by
their energy in Fig. 2 and their density variations in Fig. 4. In
addition, the spins of the electrons localized on the wire leg
represent magnetic impurities embedded in the band insulator.
They form an effective Heisenberg chain with the gapless
excitations seen in Fig. 3. Unfortunately, the spectral properties
in this regime are not accessible by the CT-INT method
because of the large expansion orders for U > Uc ≈ 20.

The mechanism of the transition can be understood for
weak hybridization tws starting from the noninteracting limit
discussed in [1]. The effective electron-electron interaction in
the wire opens a Mott gap in the middle of the wire band as
seen in Figs. 5(a) and 5(b). This gap grows with increasing U

until it reaches the effective gap between the substrate bands.
For even larger U , the band gap is smaller than the Mott gap,
and the nature of the elementary excitations changes from
holons and spinons in a quasi-1D Mott insulator to electrons
and holes in a band insulator. Indeed, for weak hybridization
tws, the effective Mott gap is almost equal to the gap of the
1D Hubbard chain and the transition occurs exactly when this
gap equals the effective band gap of the noninteracting NLM,
�s(Nleg = 3) ≈ 10 or �s(Nleg = 7) ≈ 5.5, see Fig. 2. It is
remarkable that this scenario remains qualitatively unchanged
up to at least tws = 4.

As discussed above, the effective substrate gap �s(Nleg) is
considerably reduced upon increasing Nleg until it reaches the
value of the true substrate band gap. Accordingly, Uc decreases
for higher numbers of legs, as seen in Fig. 2. Although we
cannot simulate large enough correlated NLMs to observe the
convergence of Uc with Nleg, we expect that it remains finite

in the full 3D wire-substrate system with a finite band gap.
Using the criterion discussed above for weak hybridization
tws (i.e., the 1D Hubbard gap equals the substrate band gap
�s = 2), we can estimate from Fig. 2 that Uc ≈ 9 in the full
3D wire-substrate system for small tws and that Uc becomes
larger for stronger hybridization. This interpretation agrees
perfectly with the spectral properties computed with the CT-
INT method for the 3D wire-substrate model. In particular,
the single-particle spectral functions in Figs. 7(b) and 7(d)
demonstrate that this system is a band insulator for U = 12,
while the corresponding structure factors in Figs. 8(b) and
8(d) confirm that a 1D subsystem with high-energy charge
excitations (�ω � 4) but gapless spin excitations (like a spin-
1/2 Heisenberg chain) is embedded in that band insulator.
Therefore, we think that the transition from the quasi-1D Mott
insulator to a band insulator is not an artifact of the three-leg
NLM but a feature of the correlated 3D wire-substrate model
that is qualitatively reproduced by the approximate NLM.

It is known [2] that the half-filled 1D Hubbard model
undergoes a phase transition from a metallic Fermi gas at
U = 0 to a Mott insulator for U > 0. Although we cannot
distinguish these phases numerically for very weak U , we
expect that a similar transition occurs in the NLM and hence
in the 3D wire-substrate model. However, this should be
confirmed by methods that are better suited for the weakly
interacting regime, such as field-theoretical approaches [9–
11,29,39] for the three-leg NLM.

B. Metallic wire

We now turn to the discussion of doped systems. For
DMRG calculations we focused on the case of Lx/8 added
electrons, corresponding to a wire doping of yw = 12.5%. This
choice is convenient for finite-size scaling at fixed doping and
commonly used to study doped Hubbard ladders. Removing
electrons gives similar results due to electron-hole symmetry.
Similarly, in the QMC simulations, the chemical potential was
tuned to obtain yw ≈ 12.5%. Due to the different size of the
substrate band gap, different chemical potentials were required
for the three-leg NLM and the 3D wire-substrate model. The
corresponding values of μ are given in the figure captions.

For tws = 0 (and U < �s), the wire corresponds to a doped
Hubbard chain. The ground state in this case is a 1D conductor
[2] with the low-energy properties of a Luttinger liquid [10].
We expect these systems to be quasi-1D conductors also for
tws �= 0 and to yield information that could be relevant for
understanding the numerous metallic atomic wires studied
experimentally [15–25].

Figure 9 shows the variations of the charge distributions
C(n) relative to half-filling as a function of the interaction U .
For weak U , most of the added charges go on the wire leg
(yav ≈ yw), while for strong U they go on the substrate legs
(yav � yw). The crossover—which seems to be continuous
but abrupt—occurs close to the critical Uc ≈ 20 found at
half-filling and the charge distribution is consistent with
the transition from a Mott to a band insulator observed at
half-filling. The added electrons occupy states corresponding
to the lowest excited states, i.e., in the upper Hubbard band
localized on the wire for U � Uc but in the conduction band
localized on the substrate legs for U � Uc.
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FIG. 9. DMRG results for the difference between the total charge
away from half-filling C(n) and at half-filling C(n) = Lx in the wire
leg (squares) as well as in the first (circles) and second (triangles)
substrate legs as a function of the interaction U . The data are for a
three-leg NLM with length Lx = 128, tws = 0.5 and a wire doping
yw = 12.5%.

Away from half-filling, the charge, spin, and single-particle
gaps vanish in the thermodynamic limit for any U � 0.
However, the doped Mott and doped band-insulating phases
exhibit significantly different finite-size effects, as illustrated
in Fig. 10 for U = 16 and U = 24. For U � Uc, the finite-size
gaps vanish linearly with 1/Lx . The velocities defined by
Eq. (13) (i.e., the fitted slopes in Fig. 10) are larger for charge
excitations (vc) than for spin excitations (vs) and about the
average of vc and vs for single-particle excitations (vp). For
U � Uc, the charge, spin, and single-particle gaps are equal
(within the DMRG errors) and much smaller than for weak
interactions. The relative DMRG errors for these gaps are too
large to accurately determine their scaling with 1/Lx .
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FIG. 10. DMRG results for the charge (Ec), spin (Es), and single-
particle (Ep) gaps of the three-leg NLM away from half-filling (yw =
12.5%). Here, tws = 0.5 and U = 16 (filled symbols) and U = 24
(open symbols), respectively. Slanting lines correspond to linear fits.
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FIG. 11. DMRG results for (a) charge and (b) spin velocities of
the doped three-leg NLM (yw = 12.5%) as a function of the wire-
substrate hybridization strength tws for three values of the Hubbard
interaction U . The results were obtained from the finite-size scaling
of the corresponding excitation gaps [cf. Eq. (13)].

We systematically investigated the velocities of elementary
excitations in the weak-coupling phase (U � Uc) of the
three-leg NLM. As expected, the results approach those for the
1D Hubbard model when tws becomes very small. Although
fitting the finite-size DMRG gaps introduces uncertainties,
we can recognize two trends in Fig. 11. First, the velocities
decrease with increasing wire-substrate hybridization tws.
Second, as observed in the 1D Hubbard model, spin velocities
are significantly reduced upon increasing U whereas charge
velocities are only weakly affected. Similar to half-filling,
these velocities do not differ significantly in wider NLMs with
up to Nleg = 7. The different charge and spin velocities are
a signature of dynamic spin-charge separation typical of the
Luttinger liquid state obtained by doping a 1D Mott insulator.
However, for tws > 0.5, the dependence of the velocities on U

is different from a doped 1D Hubbard model and thus cannot
be captured by an effective on-site interaction only.

Additionally, we investigated the location of the lowest
charge and spin excitations in the doped three-leg NLM.
Figure 12 shows the variations of charge and spin distributions
between excited states and the ground state, similar to Fig. 4
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FIG. 12. DMRG results for the variations of charge [�C(0)] and
spin [�S(0) = S(0)] on the wire leg as a function of U for the doped
three-leg NLM (yw = 12.5%). The different symbols correspond to
the lowest charge (squares), spin (pentagons), and single-particle
(circles and triangles, respectively) excitations.

for half-filling. In the weak-coupling regime U � Uc, charge,
spin, and single-particle excitations are almost entirely local-
ized on the wire leg for moderate wire-substrate hybridization
strengths (e.g., tws = 0.5), similar to the half-filled case. (For
larger tws, charge and spin excitations can be partially localized
on both wire and substrate legs and the dependence on U � Uc

is more complex.) In contrast, in the strong-coupling regime
U � Uc, low-energy excitations are predominantly localized
on the substrate legs. Again, we have checked that these uneven
distributions persist in wider NLMs with up to Nleg = 7 legs.

Finally, it should be noted that in the strong-coupling phase
the wire is still present as a quasi-1D correlated chain of
impurities embedded in the substrate, similar to half-filling.
This is clearly visible from the behavior of charge and spin
density correlations along the wire. The charge correlation
function for the wire is defined by

Fc(x − x ′) =
〈 ∑

σ

nwxσ

∑
σ ′

nwx ′σ ′

〉

−
〈 ∑

σ

nwxσ

〉〈∑
σ ′

nwx ′σ ′

〉
(16)

while the spin correlation function is

Fs(x − x ′) =
〈∑

σ

σ nwxσ

∑
σ ′

σ ′ nwx ′σ ′

〉
, (17)

with nwxσ = c
†
wxσ cwxσ = g

†
x0σ gx0σ . Here, expectation values

are with respect to the ground state |ψGS〉. These correlation
functions are shown in Fig. 13 for U = 24 in the strong-
coupling phase (tws = 0.5, Uc ≈ 20) and in the weak-coupling
phase (tws = 2.0, Uc ≈ 32). In the former case, doped particles
populate the substrate, as discussed above, whereas the wire
sites are still occupied by one electron on average—as in the
half-filled Hubbard model—despite the doping of the three-leg
NLM. Accordingly, Fig. 13(a) shows that charge density
correlations in the wire decay exponentially for short distances
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FIG. 13. DMRG results for the absolute values of the (a) charge
and (b) spin correlation functions on the wire leg for the doped three-
leg NLM (yw = 12.5%). Here, tws = 0.5 (filled squares) and tws =
2 (filled circles), respectively. Also shown are results for the 1D
Hubbard model with tw = 3 at half-filling (open squares) and at 12.5%
doping (open circles). All results are for U = 24.

x, in quantitative agreement with the half-filled Hubbard model
with the same U . [The saturation of Fc(x) at long distances
is due to DMRG errors and additional interference from
the power-law correlations in the substrate legs.] Similarly,
Fig. 13(b) shows that spin correlations in the wire decay with
a power law with an exponent close to −1, in quantitative
agreement with the half-filled Hubbard model. In contrast, in
the weak-coupling phase, doped particles populate the wire,
resulting in an average density different from one electron
per wire site. Correspondingly, the NLM exhibits a power-law
decay of charge and spin density correlations, in qualitative
agreement with the behavior of these correlation functions in
a Hubbard chain with a similar doping ∼12.5% (also shown
in Fig. 13).

Additional evidence for two distinct phases comes from
the spectral properties calculated with the CT-INT method.
Figure 14 shows the single-particle spectral functions of
the three-leg NLM and the 3D wire-substrate model for a
finite wire doping. The model parameters are the same as in
Fig. 5 for half-filling. A Hubbard parameter U = 8 puts the
system in the Luttinger liquid region according to the DMRG
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FIG. 14. CT-INT results for the spectral functions Aw(ω,kx) (a,
b) and As(ω,kx) (c, d) for U = 8, tws = 0.5, β = 15, and Lx = 42.
Panels (a) and (c) show results for the three-leg NLM, panels (b)
and (d) for the 3D wire-substrate model (Ly = 42, Lz = 10). The
chemical potential was μ = 2.1375 for the NLM and μ = 0.99 for
the 3D model, corresponding to a doping of yw ≈ 12.5%.

results. The wire spectral functions are almost identical for
the three-leg NLM [Fig. 14(a)] and the 3D wire-substrate
model [Fig. 14(b)]. They are qualitatively similar to those
of the doped 1D Hubbard model [44,46,54] and compatible
with the field-theoretical predictions for Luttinger liquids
[55,56]. In particular, they clearly show the presence of gapless
single-particle excitations. In contrast, Fig. 14(c) does not
reveal any low-energy excitations in the substrate spectral
function of the three-leg NLM. In Fig. 14(d) the Fermi energy
(i.e., ω = μ) still lies in the substrate band gap but very close to
the bottom of the conduction band and the little spectral weight
at ω = μ is due to the finite temperature β−1 used in the QMC
simulations. Therefore, the CT-INT single-particle spectral
functions corroborate the existence of gapless low-energy
excitations localized in the wire predicted by the DMRG
results. Moreover, they confirm that the three-leg NLM can
describe such excitations as well as the 3D wire-substrate
model.

The corresponding dynamic charge and spin structure
factors of the wire are shown in Fig. 15. Again we see that
the spectra are similar for the three-leg NLM and the 3D
wire-substrate model. The structure factors resemble those of
the 1D doped Hubbard model [54] and exhibit the features that
are expected for electronic Luttinger liquids. Spin and charge
excitations are gapless, with linear dispersions ω = vc,skx at
long wavelengths. The charge and spin velocities deduced from
the CT-INT spectra are compatible with those obtained with
the DMRG (see Fig. 11).
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FIG. 15. CT-INT results for the dynamic charge structure factor
Sρ(ω,kx) (a, b) and the dynamic spin structure factor Sσ (ω,kx) (c, d)
on the wire for the same parameters as in Fig. 14. Panels (a) and (c)
show results for the three-leg NLM, panels (b) and (d) for the 3D
wire-substrate model.

The DMRG results for the three-leg NLM revealed a
crossover between two conducting phases upon increasing
U at fixed doping yw. This crossover was not investigated
directly with the CT-INT method because the critical coupling
Uc ≈ 20 is too large. On the other hand, the critical coupling
Uc ≈ 9 in the 3D wire-substrate model is small enough to carry
out CT-INT simulations. In that case, however, the chemical
potential μ must be just above the lower edge of the conduction
band (or, equivalently, just below the upper edge of the valence
band) to achieve a finite wire doping yw but a vanishing dopant
density in the wire yav, i.e., |μ| � �s/2 for U = 0. Finding the
correct value of μ for U > 0 turned out to be rather delicate.

As an example, Fig. 16 shows the single-particle spectral
functions of the three-leg NLM and the 3D wire-substrate
model away from half-filling for U = 12. This interaction
is below the critical value Uc ≈ 20 of the three-leg NLM
determined with DMRG but above the estimated critical value
Uc ≈ 9 for the 3D wire-substrate model. (The other parameters
are equal to those used in Fig. 7 for half-filling.) Accordingly,
we see that the spectral functions of the three-leg NLM are
qualitatively similar to those for U = 8 in Fig. 14. For the
3D wire-substrate model, however, Fig. 16(b) shows that
the wire spectral function resembles that for half-filling in
Fig. 7. The Fermi energy still lies within the Hubbard gap,
close to the bottom of the upper Hubbard band. In addition,
Fig. 16(d) confirms that the Fermi energy lies at the edge of the
conduction band. This corresponds to a doped band insulator
with gapless single-particle excitations delocalized in the full
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FIG. 16. CT-INT results for the spectral functions Aw(ω,kx) (a,
b) and As(ω,kx) (c, d) for U = 12, β = 10, and Lx = 42. Panels
(a) and (c) show results for the three-leg NLM, panels (b) and (d)
for the 3D wire-substrate model (Ly = 42, Lz = 10). The chemical
potential was μ = 3.08 for the NLM and μ = 1.205 for the 3D model,
corresponding to a doping of yw ≈ 12.5%.

substrate. The density of charge carriers is yw/Nleg in the NLM
and thus vanishingly small in the 3D wire-substrate model.

Figure 17 shows the dynamic charge and spin structure
factors of the wire for the same parameters as in Fig. 16.
Figures 17(a) and 17(b) confirm that charge excitations in the
wire are gapless for the three-leg NLM but have a gap equal
to the Mott gap at half-filling [cf. Fig. 8(b)] for the 3D wire-
substrate model. The spin excitations are gapless and the spin
structure factors are very similar in both models [Figs. 17(c)
and 17(d)]. These results confirm that the wire is a Luttinger
liquid in the three-leg NLM but a half-filled Hubbard chain
in the 3D wire-substrate model in this particular parameter
regime.

The differences between the three-leg NLM and the 3D
wire-substrate model in Figs. 16 and 17 can also be seen as
an illustration of the failure of the NLM approximation for
the metallic substrates found in [1]. We see here that not only
the substrate properties but also the wire properties are not
reproduced correctly by the NLM. Note, however, that the
discrepancies are essentially due to the strong dependence
of the effective substrate band gap �s(Nleg), and thus of the
critical coupling Uc, on the number of legs in the NLM. So a
possible remedy could be to rescale �s(Nleg) [i.e., to change
the rung hoppings t

rung
n for n � 2 in the Hamiltonian (4)].

We conclude that in the doped three-leg NLM a transition
occurs from a correlated quasi-1D gapless phase (Luttinger
liquid) for U � Uc to a doped band insulator for U � Uc. The
DMRG results for Nleg > 3 and the QMC spectra suggest that

0

5

10

15

0 π/2 π

ω

kx

Sρ(ω, kx)

0

5

10

15

0 π/2 π

ω

kx

Sρ(ω, kx)

0

5

10

15

0 π/2 π
ω

kx

Sσ(ω, kx)

0

5

10

15

0 π/2 π

ω

kx

Sσ(ω, kx)

0.01 0.1 1

(a)

0.01 0.1 1

(b)

0.01 0.1 1

(c)

0.01 0.1 1

(d)

FIG. 17. CT-INT results for the dynamic charge structure factor
Sρ(ω,kx) (a, b) and the dynamic spin structure factor Sσ (ω,kx) (c, d)
on the wire for the same parameters as in Fig. 16. Panels (a) and (c)
show results for the three-leg NLM, panels (b) and (d) for the 3D
wire-substrate model.

this transition is not an artifact of the NLM but a feature of the
3D wire-substrate model that is qualitatively reproduced by
the NLM. This transition between 1D and 3D metallic phases
is consistent with the transition from a quasi-1D Mott insulator
to a 3D band insulator found at Uc for half-filling.

Isolated correlated 1D conductors are Luttinger liquids [9–
11]. As the NLM with a finite number of legs is a quasi-1D
system, it is not surprising that we find a gapless Luttinger
liquid phase. However, it is far from obvious that another
metallic phase would occur. On the one hand, the existence of
the Luttinger liquid phase for U � Uc is fully supported by the
confinement of low-energy excitations to the wire (Figs. 12 and
14) and their clear quasi-1D finite-size scaling (Fig. 10) with
distinct charge and spin velocities (Figs. 11 and 15). On the
other hand, the existence of the uncorrelated metallic substrate
phase for U � Uc is inferred from the disappearance of these
features, in particular, the delocalization of excitations on the
noninteracting substrate legs and the equality of finite-size
charge, spin, and single-particle gaps. While we could also
interpret the metallic substrate phase of few-leg NLMs as a
Luttinger liquid with very weak effective interactions, such an
interpretation breaks down in the limit Nleg � 1 and hence in
the 3D wire-substrate model.

Finally, we note that the differences between spin and
charge velocities in the Luttinger liquid phase become smaller
with increasing tws (see Fig. 11), and thus the distinction
between a weakly-coupled Luttinger liquid and a quasi-1D
Fermi gas becomes moot in the limit tws → ∞. In contrast,
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any local measurement on the wire in the doped band insulator,
such as the local DOS measured by scanning tunneling
spectroscopy, could reveal a 1D Mott insulator, as correla-
tion functions (see Fig. 13) suggest that this state subsists
as a correlated chain impurity embedded in the substrate
for U � Uc.

V. CONCLUSIONS

We investigated a correlated wire with a Hubbard inter-
action deposited on an insulating substrate using the NLM
approach developed in [1]. Using the DMRG method, we
were able to determine the ground-state properties and gaps
of NLMs with different numbers of legs. The CT-INT QMC
method was used to obtain the spectral properties of both the
three-leg NLM and the 3D wire-substrate model. We found
that a three-leg NLM already yields a qualitative description of
the low-energy physics of the full 3D wire-substrate system. A
quantitative description (e.g., for the charge and spin velocities
of the Luttinger liquids) is possible when the low-energy
excitations are localized on the wire and DMRG calculations
can be carried out for several numbers of legs. It would
certainly be useful to obtain additional information from
field-theoretical methods.

We found that Mott-insulating and Luttinger liquid phases,
which are possibly relevant for atomic wires on semicon-
ducting substrates, can be observed in the 3D wire-substrate
system and are well captured by the NLM. Transitions from 1D
low-energy excitations to low-energy excitations delocalized
in the substrate can also be observed in the NLM but, by
nature, the results depend quantitatively on the number of
legs. While the spectral properties calculated with the CT-INT
method confirm that these transitions also occur in the 3D

wire-substrate system, we have not yet obtained accurate
results for, e.g., the critical values of the interaction U and
the hybridization tws.

It may be surprising at first to find transitions from 1D corre-
lated phases (Mott insulator, Luttinger liquid) to uncorrelated
phases (band insulator, metal) upon increasing the interaction
U between electrons or decreasing the hybridization tws

between wire and substrate. However, it should be realized
that we consider only the low-energy excitations and that the
latter are not always associated with the strongest coupling in
a system. This is easily seen in the limits U � tws or tws � U .

In conclusion, the 3D wire-substrate model with a Hubbard-
type wire and the corresponding effective narrow ladder
models provide us with a promising approach to investigate
correlation effects in atomic wires on semiconducting sub-
strates. This approach can be easily generalized to extended
Hubbard Hamiltonians and electron-phonon models. The
model properties can be determined using the CT-INT and
DMRG methods, and additional information could be obtained
using other methods for 1D strongly correlated systems.
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