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Correlated atomic wires on substrates. I. Mapping to quasi-one-dimensional models
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We present a theoretical study of correlated atomic wires deposited on substrates in two parts. In this first part,
we propose lattice models for a one-dimensional quantum wire on a three-dimensional substrate and map them
onto effective two-dimensional lattices using the Lanczos algorithm. We then discuss the approximation of these
two-dimensional lattices by narrow ladder models that can be investigated with well-established methods for
one-dimensional correlated quantum systems, such as the density-matrix renormalization group or bosonization.
The validity of this approach is studied first for noninteracting electrons and then for a correlated wire with a
Hubbard electron-electron repulsion using quantum Monte Carlo simulations. While narrow ladders cannot be
used to represent wires on metallic substrates, they capture the physics of wires on insulating substrates if at least
three legs are used. In the second part [Abdelwahab et al., following paper, Phys. Rev. B 96, 035446 (2017)],
we use this approach for a detailed numerical investigation of a wire with a Hubbard interaction on an insulating
substrate.
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I. INTRODUCTION

The fascinating properties of one-dimensional (1D) elec-
tron systems have been studied theoretically for more than
60 years [1–6]. Experimentally, quasi-1D electron systems
can now be realized in linear atomic wires deposited on
a semiconducting substrate [7–9]. For instance, a Peierls
metal-insulator transition occurs in indium chains on a Si(111)
surface [9,10], Luttinger liquid behavior is found in gold chains
on Ge(100) [11] as well as in Bi chains on InSb(100) [12], and
it is believed that linear chains of spin-polarized and localized
electrons are formed at step edges of Si(hhk) surfaces [13].
Yet, the interpretation of experimental results often remains
controversial. A fundamental issue is our poor theoretical
understanding of the effects of the coupling between an atomic
wire and its three-dimensional (3D) substrate on hallmark
features of 1D systems such as the Peierls instability or
Luttinger liquid behavior.

The theory of 1D electronic systems is mostly based on
effective models for the low-energy degrees of freedom. The
goal of this approach is to understand some generic physical
phenomena within a simplified model rather than to achieve
a full description of a specific material. Various quantum
lattice models have become de facto standards for describing
correlated electrons in quantum wires. One example is the
1D Hubbard model [5], which can describe several aspects
of these systems such as Luttinger liquid physics, Mott-
insulating behavior, and antiferromagnetic spin-density-wave
correlations. Obviously, we must generalize these models to
include the effects of the wire-substrate coupling.

As investigations of interacting electrons on 3D lattices
with complex geometries are extremely difficult, the modeling
of wire-substrate systems by much simpler effective models
appears to be a very promising route. Asymmetric two-leg
ladder systems provide a minimal model for such systems
[7,14–16]. One leg represents the atomic wire, while the
second leg mimics those degrees of freedom of the substrate

that couple to the wire. For instance, this approach was used
to study the stability of Luttinger liquids [14,15] and Peierls
insulators [7] coupled to an environment. The main advantage
of these ladder models is that one can study them with
well-established methods for 1D correlated systems such as
the numerical density-matrix renormalization group (DMRG)
[17–20] or field-theoretical techniques (e.g., bosonization
and the renormalization group) [1,6,21–23]. A significant
drawback is that a single leg may be insufficient to represent
the role of the 3D substrate [16]. Until now, this approach has
not been pursued systematically.

In this paper, we show how to systematically construct
effective quasi-1D ladder models for wire-substrate systems.
Our method generalizes an approach recently proposed to map
multiorbital, multisite quantum impurity problems onto ladder
systems [24,25]. We show that if the wire-substrate system is
translationally invariant in the wire direction, it can be mapped
exactly onto a wide ladderlike lattice [i.e., an anisotropic
(semi-infinite) two-dimensional (2D) lattice]. This mapping
is illustrated in Fig. 1.

The key idea is to decompose the full system into inde-
pendent single-impurity systems using the momentum-space
representation in the wire direction, then to perform the usual
transformation of each impurity system into a long chain
[26,27], which finally becomes one rung of a wide ladder
after transforming back to real space in the wire direction.
The main difference between Refs. [24] and [25] and our
method is that in the former the number of impurity sites and
orbitals determines the ladder width and the number of coupled
single-particle host states sets the ladder length. In contrast,
in our approach, the wire length determines the ladder length
and the number of coupled single-particle substrate states sets
the ladder width. If the substrate is noninteracting, most of its
degrees of freedom do not couple to the wire and can hence be
considered separately. Consequently, shells of increasing sizes
can be represented by a single leg, as shown in Fig. 1.
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(a)

(b)

FIG. 1. (a) Sketch of an atomic wire (red spheres) on a 3D
substrate with four numbered shells. (b) Ladder representation of
the same system, with the leftmost leg corresponding to the atomic
wire (red circles) and the other legs (in blue) representing shells 1 to 4.

If the number of ladder legs (i.e., the number of shells in
the substrate) is small, we obtain a quasi-1D problem that can
be treated efficiently by methods for 1D correlated electron
systems. Thus, we investigate the approximation of the full
wire-substrate system in its ladder representation by narrow
effective ladders. We find the approximation to be valid for
an insulating substrate if at least three legs are kept, but
never for a metallic substrate. To illustrate our procedure,
we introduce an electronic 3D lattice model describing an
interacting wire on a noninteracting substrate. The procedure
is demonstrated explicitly first for a noninteracting wire and
then for a correlated Hubbard wire using quantum Monte Carlo
(QMC) simulations [28,29]. In [30], we use DMRG and QMC
methods to investigate in detail the case of a wire with a
Hubbard-type interaction on an insulating substrate.

This paper is structured as follows. In Sec. II, we introduce
3D lattice models for wire-substrate systems. The exact
mapping of these models onto wide ladders is presented in
Sec. III. In Sec. IV, we discuss their approximation by effective
narrow ladders. Finally, Sec. V contains our conclusions.

II. WIRE-SUBSTRATE MODEL

In this section, we introduce a model for a single correlated
wire on the surface of a noninteracting 3D substrate, which we
will use in Sec. III to illustrate the mapping to ladder systems.
Interactions with other wires are assumed to be negligible for
the low-energy physics. While this is not justified for phases
with long-range order, such as Peierls, spin-density-wave, and
charge-density-wave states, it is a reasonable approximation
for Luttinger liquid phases or paramagnetic Mott insulators,
which are our main concern here. The system Hamiltonian can
be decomposed into three terms,

H = Hs + Hw + Hws , (1)

where Hs describes the substrate degrees of freedom, Hw the
wire degrees of freedom, and Hws the coupling between wire
and substrate. Although the present approach can be applied to
models that also include lattice degrees of freedom (phonons),
we focus on purely electronic models and discuss possible
extensions at the end of this section. We set h̄ = 1 and do not
distinguish between momentum and wave number.

A. Substrate

The substrate is represented by a cubic lattice with lattice
constants a = b = c = 1. The coordinate axes are set by the
lattice primitive vectors. Thus the lattice sites have positions
r = (x,y,z) with x,y,z ∈ Z. The substrate extends over
Lx,Ly , and Lz sites in the x,y, and z directions, respectively.
We use periodic boundary conditions in the x and y directions
but open boundary conditions in the z direction. The substrate
surface lies in the xy plane and the surface layer corresponds
to z = 1. Thus, objects on the surface have a coordinate z = 0.

We first introduce the simpler Hamiltonian for a metallic
substrate and then generalize it to the case of an insulating
substrate. (There is at least a theoretical interest in 1D atomic
structures on metallic substrates [31].) A simple model for the
electronic degrees of freedom of a metallic substrate is given
by a tight-binding Hamiltonian with on-site potential εs and
nearest-neighbor hopping ts,

Hs = εs

∑
r,σ

nsrσ − ts
∑
〈rq〉

∑
σ

(c†srσ csqσ + H.c.) . (2)

The first sum runs over all lattice sites and the second one
over all pairs 〈rq〉 of nearest-neighbor sites. The operator c

†
srσ

creates an electron with spin σ on the site with coordinates
r = (x,y,z), and the density operator for electrons with spin
σ is nsrσ = c

†
srσ csrσ . The Hamiltonian (2) can be diagonalized

by the usual canonical transformation to momentum space,

d
†
skσ =

∑
r

ψk(r) c†srσ , (3)

with the single-particle eigenstates

ψk(r) = 1√
Lx

eikxx
1√
Ly

eikyy

√
2

Lz + 1
sin(kzz) . (4)

The inverse transformation is then given by

c†srσ =
∑

k

ψ∗
k (r) d

†
skσ , (5)

where the sum is over all sites k of the reciprocal lattice. Here,
k = (kx,ky,kz), with

kx = 2π

Lx

nx, nx ∈ Z, − Lx

2
< nx � Lx

2
, (6a)

ky = 2π

Ly

ny, ny ∈ Z, − Ly

2
< ny � Ly

2
, (6b)

kz = π

Lz + 1
nz, nz ∈ Z, 1 � nz � Lz . (6c)

The differences between the z component and the other
two components in Eqs. (4) and (6) reflect the different
boundary conditions. In the momentum-space representation
Hamiltonian (2) becomes diagonal,

Hs =
∑
k,σ

εs(k)d†
skσ dskσ , (7)

with a single-electron dispersion

εs(k) = εs − 2ts[cos(kx) + cos(ky) + cos(kz)]. (8)

035445-2



CORRELATED ATOMIC . . . . I. MAPPING TO QUASI- . . . PHYSICAL REVIEW B 96, 035445 (2017)

In reality, most substrates for atomic wires are not metallic
but insulating or semiconducting [7–9]. A simple model for an
insulating substrate consists of a valence band and a conduction
band separated by a gap. It can be constructed using the same
lattice as above but with two orbitals per site with different
on-site energies εv and εc. The Hamiltonian then takes the
form

Hs = Hv + Hc , (9)

where the valence-band Hamiltonian

Hv = εv

∑
r,σ

nvrσ − tv
∑
〈rq〉

∑
σ

(c†vrσ cvqσ + H.c.) (10)

and the conduction-band Hamiltonian

Hc = εc

∑
r,σ

ncrσ − tc
∑
〈rq〉

∑
σ

(c†crσ ccqσ + H.c.) (11)

are tight-binding Hamiltonians with nearest-neighbor hopping
terms tv and tc, respectively. Accordingly, c

†
vrσ and c

†
crσ create

electrons with spin σ on site r in the localized orbitals
corresponding to the valence and conduction bands, while
nvrσ and ncrσ denote the corresponding density operators. A
generalization of the canonical transformation (3) from real to
momentum space gives

Hv =
∑
k,σ

εv(k) d
†
vkσ dvkσ (12)

and

Hc =
∑
k,σ

εc(k) d
†
ckσ dckσ , (13)

with single-electron dispersions εv(k) and εc(k) of the form (8)
but with {εs,ts} replaced by {εv,tv} and {εc,tc}, respectively. The
(possibly indirect) gap between the bottom of the conduction
band and the top of the valence band is �s = εc − εv −
6(|tv| + |tc|), and the condition �s � 0 restricts the range of
allowed model parameters.

B. Wire

The atomic wire is represented by a 1D chain aligned
with the x direction on the substrate surface. To simplify the
problem as much as possible, we assume that the wire extends
over the full length of the substrate, that the lattice constants
of wire and substrate are equal, and that every site of the wire
lies exactly above the corresponding substrate site. Thus the
Lx wire sites have positions r = (x,y0,0) with x = 1, . . . ,Lx

and a fixed y0 ∈ {1, . . . ,Ly}.
The 1D Hubbard model [5] describes the effects of

electronic correlations on the low-energy properties of 1D
lattice systems. It is integrable and has been solved using the
Bethe ansatz method. Its ground state for repulsive interactions
is a Mott insulator at half-filling but a paramagnetic 1D metal
with the low-energy properties of a Luttinger liquid away from
half-filling [6]. Here, we use it to model the atomic wire. The
Hamiltonian is

Hw = εw

∑
x,σ

nwxσ − tw
∑
x,σ

(c†wxσ cw,x+1,σ + H.c.)

+U
∑

x

nwx↑nwx↓ , (14)

where x runs over all wire sites, c
†
wxσ creates an electron

with spin σ on the wire site at r = (x,y0,0), and the density
operator for electrons with spin σ is nwxσ = c

†
wxσ cwxσ . The

Hubbard term of strength U describes the repulsion between
two electrons on the same site, tw is the usual hopping term
between nearest-neighbor sites, and εw is the on-site potential.

The momentum-space representation of Eq. (14) is

Hw =
∑
k,σ

εw(k)d†
wkσ dwkσ

+ U

Lx

∑
k,p,k′,p′

d
†
wk↑dwp↑d

†
wk′↓dwp′↓δk−p,p′−k′ (15)

with the single-electron dispersion

εw(k) = εw − 2tw cos(k). (16)

The canonical transformation between real and momentum
space is given by

d
†
wkσ = 1√

Lx

∑
x

eikx c†wxσ . (17)

The operator d
†
wkσ creates an electron with spin σ in an orbital

with momentum k in the x direction and at position (y0,0)
in the yz plane. In the above equations the indices k,p,k′,
and p′ denote momenta in the x direction, see Eq. 6(a).
It is important to understand that in the framework of the
3D wire-substrate model the above form of the Hubbard
Hamiltonian corresponds to a mixed real-space/momentum-
space representation.

C. Wire-substrate hybridization

The simplest coupling between the wire and the substrate
consists of a hybridization of the electronic orbitals. This can
be realized with a hopping term between nearest-neighbor
pairs of sites located in the wire and the substrate, respectively.

For a metallic substrate we define

Hws = −tws

∑
x,σ

(c†srσ cwxσ + H.c.) (18)

with r = (x,y0,1). In the momentum-space representation this
yields

Hws =
∑
kσ

[
�ws(k) d

†
skσ dwkxσ

+ H.c.
]

(19)

with a kx-independent hybridization function

�ws(k) = −tws

√
2

Ly(Lz + 1)
exp(−ikyy0) sin(kz) . (20)

For an insulating substrate with two orbitals per site the
hybridization strengths can be different for the valence and
conduction bands, and we define

Hws = Hwv + Hwc (21)

with the hybridization between wire and valence band

Hwv = −twv

∑
x,σ

(c†vrσ cwxσ + H.c.) (22)
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and the hybridization between wire and conduction band

Hwc = −twc

∑
x,σ

(c†crσ cwxσ + H.c.). (23)

In the momentum-space representation, Hwv and Hwc are given
by expressions similar to Eq. (19),

Hwv =
∑
kσ

[
�wv(k) d

†
vkσ dwkxσ

+ H.c.
]
, (24)

Hwc =
∑
kσ

[
�wc(k) d

†
ckσ dwkxσ

+ H.c.
]
, (25)

with �wv(k) and �wc(k) identical to Eq. (20) except for the
replacement of tws by twv and twc, respectively.

D. Generalizations

Our wire-substrate model may be extended in several ways.
For instance, the substrate properties and the wire-substrate
coupling can be changed without difficulty in the momentum-
space representation. For the substrate band structure we can
consider general single-particle dispersions εb(k) (b = s,v,c)
beyond the simple cosine form (8). For the wire-substrate
coupling we can define hybridization functions �wb(k) (b =
s,v,c) with a more general k dependence than in Eq. (20).
Other possible generalizations are the modification of the wire
dispersion (16), or the inclusion of intersite electron-electron
interactions in the wire Hamiltonian (14).

Even more complicated generalizations include multiple
electronic bands for the substrate or the wire and changes
of the lattice geometry or the unit cell. Furthermore, we can
also include phonon degrees of freedom in the model, with an
electron-phonon coupling in the wire and a hybridization of
wire and substrate phonon modes.

III. EXACT LADDER REPRESENTATION

In this section, we explain how the wire-substrate system
can be mapped onto a wide ladder or anisotropic 2D lattice.
First, the system is cut into slices perpendicular to the wire
direction in momentum space to obtain independent impurity
problems with 2D hosts. In a second step, the impurity
problems are mapped onto 1D chains. Finally, the full system
is transformed back to a ladder lattice in real space.

A. Impurity subsystems

We first analyze Hamiltonian (1) for a noninteracting wire
(U = 0). In momentum space, it can be written as a sum of
independent terms,

H =
∑
kx ,σ

Hkxσ , (26)

with

Hkxσ = εw(kx) d
†
wkxσ

dwkxσ
+

∑
ky ,kz

εs(k) d
†
skσ dskσ

+
∑
ky ,kz

[
�ws(k) d

†
skσ dwkxσ

+ H.c.
]

(27)

for a metallic substrate, or

Hkxσ = εw(kx) d
†
wkxσ

dwkxσ

+
∑
ky ,kz

εc(k) d
†
ckσ dckσ +

∑
ky ,kz

εv(k) d
†
vkσ dvkσ

+
∑
ky ,kz

[
�wc(k) d

†
ckσ dwkxσ

+ H.c.
]

+
∑
ky ,kz

[
�wv(k) d

†
vkσ dwkxσ

+ H.c.
]

(28)

for an insulating substrate.
In either case we have [Hkxσ ,Hk′

xσ
′] = 0 ∀kx,k

′
x,σ,σ ′.

Therefore, each Hamiltonian Hkxσ can be diagonalized and
discussed separately. In the absence of electron-electron
interactions, it corresponds to a single-particle Hamiltonian
acting on Nimp sites, with Nimp = LyLz + 1 for a metallic
substrate and Nimp = 2LyLz + 1 for an insulating substrate.
Each Hkxσ describes a nonmagnetic impurity (the wire site with
momentum kx) coupled to a two-dimensional homogeneous
host [the (ky,kz)-slice of the substrate for a given kx]. The
impurity energy level is εw(kx). For a given kx the host energies
lie in a band between the minimum and maximum of εs(k) for
a metallic substrate, and in a band between the extrema of εc(k)
and εv(k) for an insulating substrate. For each kx the coupling
between impurity and host is described by the hybridization
functions �wb(k).

The Hamiltonian H can also be written in a mixed
representation combining momentum space in one direction
(kx) and real space in the other two directions (y,z). In
this representation, each Hkxσ acts on a (y,z) slice of the
wire-substrate system for the given wave vector in the x

direction, as illustrated in Fig. 2.
If the substrate slice (host) is infinitely large (Nimp → ∞),

the single-particle eigenenergies of each Hkxσ form one
(metallic substrate) or two (insulating substrate) continua.
It is well known [32] that an eigenenergy either lies in a
continuum and the corresponding eigenstate is delocalized in

 0

 1

 2

 3

 4

 5

 6 -4 -2  0  2  4

z

y

FIG. 2. Sketch of the impurity subsystem in the mixed representa-
tion with Ly = 9 and Lz = 5. The wire site (impurity) is represented
by the red circle at (y0 = 0,z = 0), while the substrate sites (host)
correspond to the blue squares. Black lines indicate the first, second,
third, and fourth shells (from top to bottom) around the impurity.
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the impurity-host system, or the eigenenergy lies outside any
continuum and the eigenstate is localized around the impurity.
In the 3D wire-substrate system the former case corresponds to
states delocalized in the substrate while the latter corresponds
to states localized in or around the wire.

B. Chain representation

Each impurity Hamiltonian Hkxσ can be mapped onto a 1D
tight-binding chain with diagonal terms and nearest-neighbor
hoppings only using the usual procedure [26,27] based on
the Lanczos tridiagonalization algorithm. The procedure is
initialized with the single-electron states |kx,−1,σ 〉 = 0 and
|kx,0,σ 〉 = d

†
wkxσ

|∅〉, where |∅〉 is the vacuum state. The or-
thogonal one-particle states |kx,n,σ 〉 for n = 1, . . . ,Nimp − 1
are then generated iteratively using

|kx,n + 1,σ 〉 = Hkxσ |kx,n,σ 〉 − An(kx)|kx,n,σ 〉
−B2

n(kx)|kx,n − 1,σ 〉 , (29)

where the coefficients are given by

An(kx) = 〈kx,n,σ |Hkxσ |kx,n,σ 〉
〈kx,n,σ |kx,n,σ 〉 (30)

for n = 0, . . . ,Nimp − 1 and by

B2
n(kx) = 〈kx,n,σ |kx,n,σ 〉

〈kx,n − 1,σ |kx,n − 1,σ 〉 (31)

for n = 1, . . . ,Nimp − 1 with B0(kx) = 0. In the Lanczos (or
chain) representation, the Hamiltonian takes the form

Hkxσ =
Nimp−1∑

n=0

An(kx)f †
kxnσ fkxnσ

+
Nimp−2∑

n=0

[
Bn+1(kx)f †

kxnσ fkx,n+1,σ +H.c.
]
, (32)

where the new fermion operators f
†
kxnσ create electrons in the

states |kx,n,σ 〉. Since the wire-substrate model is invariant
under spin rotation, the transformation from the old to the new
fermion operators as well as the coefficients An and Bn do not
depend on spin.

This canonical transformation can be carried out
numerically even when Nimp is as large as 104. We note
that the wire states are not modified by the transformation,
i.e., f

†
kx ,n=0,σ = d

†
wkxσ

. Moreover, one can easily show that
A0(kx) = εw(kx) and

B2
1 (kx) =

∑
ky ,kz

|�ws(k)|2 (33)

for the metallic substrate, while

B2
1 (kx) =

∑
ky ,kz

[|�wc(k)|2 + |�wv(k)|2] (34)

for the insulating substrate.
If we take the dispersion (8) and the hybridization (20) for

the metallic substrate, the impurity system is relatively simple
in the mixed representation of Fig. 2. The impurity on-site
potential is εw(kx) while it is εs − ts cos(kx) for the host sites.
A hopping tws between the impurity and the nearest host site
is the only coupling between impurity and host. Moreover, the

host sites are coupled by nearest-neighbor hopping terms ts.
The state |kx,n,σ 〉 is entirely localized in a shell, including the
host sites that are mth nearest neighbors of the impurity with
m � n. These shells are shown in Fig. 2. In addition, we can
show that An(kx) = εs − 2ts cos(kx) for n � 1. The first few
off-diagonal coefficients can be computed analytically:

B2
1 (kx) = t2

ws, (35a)

B2
2 (kx) = 3t2

s , (35b)

B2
3 (kx) = 11

3
t2
s , (35c)

B2
4 (kx) = 125

33
t2
s . (35d)

Similarly, we obtain for the insulating substrate

A1(kx) = t2
wc[εc − 2tc cos(kx)] + t2

wv[εv − 2tv cos(kx)]

t2
wc + t2

wv

and

B2
1 (kx) = �2(kx) = t2

wc + t2
wv.

If we assume that the valence and conduction bands are
similar, i.e., tv = tc = ts and t2

wc = t2
wv = t2

ws, we can show
that An(kx) = εc+εv

2 − 2ts cos(kx) for n � 1 and

B2
1 (kx) = 2t2

ws, (36a)

B2
2 (kx) = 3t2

s +
(

εc − εv

2

)2

. (36b)

C. Real-space representation

The full Hamiltonian (1) can now be written using Eq. (26)
and the chain representations of Hkxσ , then transformed
back into the real-space representation in the x direction.
As the wire states have not been modified by the mapping
of the impurity subsystem to the chain representation, the
wire Hamiltonian Hw remains unchanged. The hybridization
Hamiltonian becomes

Hws =
∑

x,x ′,σ

[�(x − x ′)g†
x,n=1,σ cwx ′σ + H.c.] (37)

where we defined new fermion operators

g†
xnσ = 1√

Lx

∑
kx

e−ikxxf
†
kxnσ (38)

that create electrons with spin σ at position x in the nth shell,
and with the hopping amplitudes

�(x) = 1

Lx

∑
q

B1(kx) exp(ikxx) (39)

between wire sites and sites in the first shell in the substrate.
The substrate Hamiltonian becomes

Hs =
Nimp−1∑

n=1

∑
xx ′σ

An(x − x ′)g†
xnσ gx ′nσ

+
Nimp−2∑

n=1

∑
xx ′σ

[Bn+1(x − x ′)g†
xnσ gx ′,n+1,σ + H.c.] (40)
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with the hopping amplitudes

An(x) = 1

Lx

∑
kx

An(kx) exp(ikxx) (41)

in the wire direction within the same shell n (or the on-site
potential for x = 0) and the hopping amplitudes

Bn+1(x) = 1

Lx

∑
kx

Bn+1(kx) exp(ikxx) (42)

between sites in shells n and n + 1. Therefore, we have
obtained a new representation of the Hamiltonian H with
long-range hoppings on a 2D lattice of size Lx × Nimp.

This complex system can be simplified considerably if we
assume that the hybridization functions are independent of the
x component of the wave vector k,

�wb(k) = �wb(ky,kz) (b=s,c,v), (43)

and that the dispersions have the additive form

εb(k) = ν(kx) + εb(ky,kz) (b = s, c, v) . (44)

[These conditions are fulfilled for the tight-binding Hamilto-
nians defined in Sec. II, see, e.g., Eqs. (8) and (20), but tc =
tv = ts is required for the insulating substrate.] In that case,
the impurity Hamiltonians Hkxσ depend on the momentum
kx only through the impurity on-site potential εw(kx) and a
constant energy shift ν(kx) in the substrate. Therefore, the
chain representations of the substrate are identical for all wave
vectors kx up to energy shifts. It follows that the hybridization
between wire and substrate is

�(x) = �δx,0 (45)

with � = B1(kx) and that the hopping terms between nearest-
neighbor shells are

Bn(x) = −t rung
n δx,0 (n � 2) (46)

with t
rung
n = −Bn(kx). In addition, one finds that

An(x) = −t leg
x + μnδx,0 (n � 1) (47)

with

t leg
x = − 1

Lx

∑
kx

ν(kx) exp(ikxx) (48)

and μn = An(kx) − ν(kx).
At this point, we have obtained a representation of the

wire-substrate Hamiltonian H in the form of a ladder system
with Lx rungs and Nimp legs, as sketched in Fig. 1. The leg
with n = 0 is the wire, in particular, g

†
x,n=0,σ = c

†
wxσ , while

legs with n = 1, . . . ,Nimp − 1 correspond to the successive
shells and represent the substrate. The full Hamiltonian (1)
consists of the unchanged wire Hamiltonian Hw, a hopping
term � (hybridization) between sites at the same position x

in the wire and the first leg, a nearest-neighbor rung hopping
t

rung
n between substrate legs n − 1 and n, an on-site potential
μn − t

leg
0 constant within each substrate leg, and the same

intraleg hopping terms t
leg
x in every substrate leg; the latter

are identical to the hopping terms in the original substrate
Hamiltonian Hs.

Equations (43) and (44) are the main conditions on the
wire-substrate system to make the mapping possible, in
addition to translation symmetry in the x direction. Although
we have derived the mapping for a noninteracting wire only,
it is clear that the wire sites and their Hamiltonian Hw are
not modified by the transformation of the substrate. Therefore,
the mapping remains valid even if Hw includes a Hubbard
repulsion, more general electron-electron interactions, or
electron-phonon coupling.

For substrates with dispersions of the form (8) we have
ν(kx) = −2ts cos(kx), so that hopping within substrate legs
takes place between nearest neighbors only,

t leg
x =

{
ts if |x| = 1 ,

0 otherwise .
(49)

The explicit form of the full Hamiltonian is then

H = Hw +
∑
x,σ

(� g
†
x,n=1,σ cwxσ + H.c.)

+
Nimp−1∑

n=1

∑
x,σ

μn g†
xnσ gxnσ

− ts

Nimp−1∑
n=1

∑
x,σ

(g†
xnσ gx+1,nσ + H.c.)

−
Nimp−2∑

n=1

∑
x,σ

(
t

rung
n+1 g†

xnσ gx,n+1,σ + H.c.
)
. (50)

For the metallic substrate, μn = εs, � = −tws, and the first
few hoppings t

rung
n = −Bn(kx) are given by Eq. (35). For the

insulating substrate with tc = tv = ts and t2
wc = t2

wv = t2
ws, we

have μn = (εc + εv)/2, � = −B1(kx), and t
rung
2 = −B2(kx)

as given by Eq. (36). The hopping terms t
rung
n for larger n

can be computed numerically with the Lanczos algorithm, as
described in Sec. III B. Figure 3 shows the hopping terms
calculated for a metallic and an insulating substrate. We see
that for large n they converge to about 2ts in the metallic case.

 0
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 0  10  20  30  40  50

t n
ru

ng

n

Metallic substrate
Insulating substrate

FIG. 3. Hopping integrals t
rung
n between legs n − 1 and n calcu-

lated numerically with the Lanczos algorithm for a metallic substrate
(circles, ts = 1, t2

ws = 0.25, Ly = 32, Lz = 16) and an insulating
substrate (diamonds, tc = tv = 1, t2

wc = t2
wv = 0.25, εc = −εv = 7,

Ly = 32, Lz = 8).
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The feature near n = 32 is due to the finite substrate size used
in the calculation (Ly = 32 and Lz = 16). In the insulating
case, the hopping amplitudes oscillate between 3ts and about
7ts, as required to generate the gap ≈ εc − εv between valence
and conduction bands at a fixed kx in this representation of the
substrate. Equation (36) shows the different dependence of the
first two hopping terms on εc − εv explicitly.

D. Alternative representations

The condition (44) is inconvenient for the insulating
substrate because it imposes the same dispersion ν(kx) in
the kx direction in the valence and conduction bands to
obtain a ladderlike Hamiltonian. However, it is possible to
overcome this restriction by using an alternative mapping.
Since the electronic states of the conduction and valence
bands interact only through the impurity site, we can use
a two-chain representation of the impurity problem where
one chain represents the valence-band sites and the other the
conduction-band sites. (A similar two-chain representation is
used for the lower and upper Hubbard bands in Mott-Hubbard
insulators [33].) Each chain can be generated separately using
the Lanczos algorithm as described in Sec. III B. This yields a
ladderlike Hamiltonian if condition (44) is satisfied separately
by the conduction and valence bands, i.e., the dispersions
νc(kx) and νv(kx) can be different. The wire is then the
middle leg of the ladder, and the legs representing valence
and conduction bands extend on either side. The Hamiltonian
parameters An(kx) and Bn(kx) are given by equations similar
to those obtained for the metallic substrate, e.g., by Eq. (35)
with {εs,ts} replaced by {εv,tv} and {εc,tc}, respectively.

The condition of a translationally invariant wire may be
relaxed by performing the mapping first for a substrate decou-
pled from the wire and then connecting the two subsystems
via the hybridization term. Such a generalization allows us to
consider wires with disorder, a periodic potential modulation,
or a nonuniform hybridization with the substrate. In addition,
it should be possible to apply the mapping to systems with
an electron-electron interaction between the wire and the
adjacent substrate chain. We illustrate this procedure for a
substrate dispersion of the form (8), written in a mixed
(kx,y,z) representation. We can then perform the Lanczos
iteration starting from the site (kx,y0,z = 1) to obtain a chain
representation. For a metallic substrate this gives An(kx) =
εs − 2ts cos(kx) for n � 0, and

B2
1 (kx) = 3t2

s , (51a)

B2
2 (kx) = 11

3
t2
s , (51b)

B2
3 (kx) = 125

33
t2
s . (51c)

Hence, similar to the translation-invariant case, we obtain
a ladder representation for the substrate by transforming back
to real space along the x direction. A general wire-substrate
hybridization can then be introduced in the form of an x-
dependent hopping between the wire and the adjacent leg of
the effective ladder model.

IV. EFFECTIVE NARROW LADDER MODELS

The above mapping of the wire-substrate model is exact.
However, the resulting ladder representation corresponds to an
anisotropic 2D system rather than a quasi-1D system because
the number of legs is proportional to the number Nimp of
single-particle states in a (yz) slice of the system and thus is
generally very large. Nevertheless, we have at least two reasons
to believe that quasi-1D effective systems on narrow ladders
can be sufficient to accurately represent the wire-substrate
system.

First, intuitively, 1D physics (such as Luttinger liquid
behavior) should occur in the wire or in a region of the substrate
around the wire. This corresponds to legs that are close to the
wire in the ladder representation, see Fig. 1. Thus, the legs
that are distant from the wire should not be essential for a
qualitative description of 1D properties. Second, it can be
shown [34] that the size of an effective representation for the
environment of a quantum subsystem does not need to be
larger than the size of the subsystem itself. In our problem,
this implies that, in principle, the substrate can be represented
by an effective lattice that is not larger than the wire, i.e., by a
single leg. Unfortunately, in that case the effective Hamiltonian
depends on the specific quantum state considered, and the only
known method for determining it exactly is to solve the full
wire-substrate model.

Therefore, in this section, we explore the applicability
of effective narrow ladder models (NLMs) with Nleg legs,
obtained by considering only the legs closest to the wire in
the ladder representation (50). The focus will be on the single-
particle densities of states and the kx-resolved single-particle
spectral functions. The spectral function for the wire is defined
in the momentum-space representation (17) by

Aw(ω,kx) =
∑

α

∣∣〈α|d†
wkxσ

|0 〉∣∣2
δ(ω − Eα + E0)

+
∑

α

∣∣〈α|dwkxσ
|0 〉∣∣2

δ(ω + Eα − E0), (52)

where |α〉 and Eα denote the many-body eigenstates and
eigenvalues of H in its representation (50) with Nleg substituted
for Nimp, while |0〉 and E0 indicate the ground state and its
energy.

In the real-space ladder representation (Sec. III C), the
kx-resolved spectral functions A(ω,kx,n) are defined for each
leg n � 0 by the same expression (52), with f

†
kxnσ and

fkxnσ substituted for d
†
wkxσ

and dwkxσ
. Obviously, A(ω,kx,n =

0) = Aw(ω,kx), while A(ω,kx,n � 1) relates to single-particle
excitations in the substrate, and the overall spectral function
for the substrate As(ω,kx) is obtained by averaging over all
n � 1.

Similarly, in the mixed representation (kx,y,z) (see
Sec. III A), the spectral function As(ω,kx,y,z) is obtained
through substitution of h

†
bkxyzσ and hbkxyzσ for d

†
wkxσ

and

dwkxσ
in the definition of Aw(ω,kx), where b = s for

a metallic substrate while we average over both bands
(b = v,c) for an insulating substrate. Here we introduced a
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mixed-representation fermion operator

h
†
bkxyzσ = 1√

Lx

∑
x

eikxxc
†
brσ (53)

that creates an electron with spin σ and momentum kx in the
wire direction and coordinates (y,z) in the other directions.
Hence, As(ω,kx,y,z) is the kx-resolved spectral function for
a substrate chain parallel to the atomic wire at position (y,z).
Finally, the overall spectral function for the substrate As(ω,kx)
is obtained by averaging As(ω,kx,y,z) over all coordinates y

and z.
The densities of states (DOSs) in the wire (b = w) and the

substrate (b = s) are

Db(ω) = 1

Lx

∑
kx

Ab(ω,kx) . (54)

With these definitions, both DOSs are normalized, i.e., their
integral over all frequencies ω equals 1. Thus, we have
defined the spectral functions and DOSs of the NLM (50)
for any Nleg � Nimp. For Nleg = Nimp, we recover the spectral
functions and DOSs of the full wire-substrate system. The
normalized total DOS of the NLM is D(ω) = [Dw(ω) +
(Nleg − 1)Ds(ω)]/Nleg, so that the spectral weight of the wire
becomes negligible compared to that of the substrate for
Nleg � 1. In the remainder of this section, we assess the quality
of the NLM approximation first for a noninteracting wire and
then for a correlated wire by comparing spectral functions.

A. Noninteracting wire

For noninteracting systems [i.e., U = 0 in Eq. (14)], we
focus on comparing spectral properties of the full system with
those of the NLM with various numbers of legs Nleg. The
electron spin will be omitted in this section as it just gives an
overall factor of 2. To compute spectral properties, we used the
Hamiltonians Hkx

in their tridiagonal Lanczos representations
(32), projected onto the subspace given by the first Nleg

Lanczos vectors, i.e., substituting Nleg � Nimp for Nimp in
Eq. (32). Let ψλkx

(n) and ελkx
(λ = 1, . . . ,Nleg) denote the one-

particle eigenstates and eigenvalues of these Hamiltonians.
The spectral function in this chain representation is given by

A(ω,kx,n) =
Nleg∑
λ=1

∣∣ψλkx
(n)

∣∣2
δ
(
ω − ελkx

)
(55)

and can be easily calculated for any 1 � Nleg � Nimp. As
discussed above, the kx-resolved spectral function for the wire
is given by

Aw(ω,kx) = A(ω,kx,0) , (56)

whereas for the substrate we have

As(ω,kx) = 1

Nleg − 1

Nleg−1∑
n=1

A(ω,kx,n) . (57)

For insulating substrates, we can find model parameters
such that some single-particle eigenenergies lie in the substrate
band gap. The corresponding eigenstates are then localized on
or around the wire, i.e., the density |ψλkx

(n)|2 remains finite
on the wire sites (n = 0) or the neighboring substrate sites
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FIG. 4. Spectral properties of a noninteracting wire on an insulat-
ing 3D substrate with Nleg = Nimp = 513. The other parameters are
given in the text. (a) Spectral functions in the wire [Aw(ω,kx), top]
and the substrate [As(ω,kx), bottom]. (b) DOS in the wire [Dw(ω),
dotted black line] and in the substrate [Ds(ω), solid red line].

(small n) for Nimp → ∞. These states form a band in the kx

direction within the substrate band gap. A wave packet built
from such states remains in or around the wire but can travel
freely in the wire direction. Hence, the states represent a 1D
electronic subsystem in the 3D wire-substrate system and will
be our focus. (Other cases, such as all single-particle energies
inside the valence or conduction bands, are not relevant for
real wire-substrate materials.)

Figure 4 shows spectral functions and DOSs for a nonin-
teracting wire on an insulating substrate. The wire hopping is
tw = 3 while the hybridization between wire and substrate is
chosen to be tws = 0.5. (For all examples discussed in Sec. IV,
we will only use a symmetric wire-substrate hybridization
twc = twv; in the following this parameter will be denoted as
tws.) The substrate parameters are tc = tv = 1 and εc = −εv =
7. The system sizes are Lx = 256,Ly = 32, and Lz = 8.
Half-filling corresponds to the Fermi energy εF = 0. These
model parameters correspond to an indirect gap �s = 2 and
a constant direct gap �(kx) = 6 for all kx in the substrate
single-particle spectrum in the absence of a wire, or for a
vanishing wire-substrate coupling (i.e., tws = 0).

These gaps remain visible for a nonzero wire-substrate
hybridization, as illustrated for tws = 0.5 in Fig. 4. The wire
spectral weight is concentrated in a single band within the
substrate band gap and crosses the Fermi energy εF ≈ 0 if
the system is at or close to half-filling. This band resembles
the cosine dispersion (16) of the uncoupled wire but has a
small intrinsic width due to the wire-substrate hybridization
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tws. Only the wire band edges at kx ≈ ±π and kx ≈ 0 overlap
with the substrate conduction and valence bands in the spectral
functions shown in Fig. 4(a). As we can see in Fig. 4(b), the
DOS Dw(ω) of the wire retains the typical profile of a 1D
tight-binding system with square-root singularities at the band
edges close to ±2tw. In the substrate, Ds(ω) exhibits the overall
shape of a 3D tight-binding system, despite the fact that the
DOSs overlap over a broad energy range. This confirms that an
effective quasi-1D electron system subsists in the wire despite
the non-negligible wire-substrate hybridization tws. Note that
the continuous but jagged DOS curves arise from finite-size
effects and a broadening of δ peaks into Lorentzians of width
η = 0.1.

For a stronger hybridization tws (not shown), we observe
three bands situated symmetrically around the middle of the
substrate band gap in the wire spectral functions. The distance
between these bands grows with tws, and for strong enough
hybridization (e.g., tws = 8), the lower and upper bands are
located below the valence band and above the conduction band,
respectively. The dispersive central band is similar to the single
band found at smaller tws and shown in the upper panel of
Fig. 4(a). This feature can be understood in the limit of strong
hybridization εc − εv,tws � tw � ts. In first approximation,
each wire site forms a trimer with the two orbitals on its first
nearest-neighbor substrate site because of their strong effective
rung hoppings, see Eq. (36). The wire hopping tw then leads to
the formation of a strong-rung three-leg ladder made of these
same sites. The single-particle eigenenergies of this system
form three bands of width ∝ tw, which are finally slightly
hybridized with the rest of the substrate by a weak effective
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FIG. 5. As in Fig. 4 but for an effective ladder model with Nleg =
51 legs.

coupling ∝ ts. The eigenstates of the central band that are
within the substrate band gap are localized on the wire and
its first nearest-neighbor substrate sites but delocalized in the
wire direction. Thus they form a quasi-1D electron system on
and around the wire, like the eigenstates of the single band
found at weaker hybridization.

The wire-substrate system can be mapped exactly to a 2D
ladderlike system with Nimp = 2LyLz + 1 = 513 legs (see
Sec. III). Here, we examine NLMs with Nleg < Nimp. Figures 5
and 6 show results for the spectral functions and the DOS for
Nleg = 51 and Nleg = 3, respectively. The other parameters are
the same as for the case of the full system shown in Fig. 4.
Overall, we find that the NLM can describe the full system
correctly if two conditions are fulfilled. First, the number of
legs must be an odd number. This condition can be easily
interpreted: the NLM must include an even number of legs
representing the substrate (besides the leg representing the
wire) to keep an equal number of degrees of freedom for the
valence and conduction bands. Accordingly, an NLM must
have at least three legs to describe a wire on an insulating
substrate. Second, the number of substrate legs must be large
enough to represent the energy range of the valence and
conduction bands correctly, e.g., the band gap. This condition
can be achieved, however, using many fewer legs than in the
full system, i.e., for Nleg � Nimp.

For instance, the energy range of the substrate bands
is already well represented for Nleg = 51 � Nimp = 513 in
Fig. 5, although the spectral weight distribution deviates
visibly from that of the full system shown in Fig. 4. In
contrast, Fig. 6 shows that the spectral functions and DOS
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FIG. 6. As in Fig. 4 but for a narrow ladder model with Nleg = 3
legs.
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of the substrate are poorly represented by the NLM with
Nleg = 3, as the spectral weight remains concentrated in two
narrow bands. In particular, the effective substrate band gap is
�s(Nleg = 3) ≈ 10 and thus 5 times larger than the true gap
�s = 2, while the DOS exhibits van Hove singularities typical
of two-leg ladders.

Nevertheless, the wire spectral properties in the NLM
with Nleg � 3 agree quantitatively with those of the 3D
wire-substrate system close to the middle of the spectrum
(ω ≈ 0). Comparing with Fig. 4(b), we see that the wire
DOS in Fig. 5(b) is reproduced correctly for Nleg = 51,
while for Nleg = 3 [Fig. 6(b)] it is substantially modified
only where it overlaps with the substrate DOS (|ω| � 4).
Therefore, our analysis suggests that a three-leg NLM close to
half-filling can be used to describe the low-energy properties
of a weakly interacting wire on an insulating substrate, at
least qualitatively, as the degrees of freedom close to the
Fermi energy (εF ≈ 0) are correctly represented. For instance,
one could study the stability of Luttinger liquid features in
a 1D conductor deposited on an insulating substrate beyond
the minimal models used previously [14–16]. However, for
strong interactions or for a quantitative description of the 3D
wire-substrate system by an effective NLM, we expect wider
ladders and an analysis of the convergence with Nleg to be
necessary. Still, our results for noninteracting wires suggest
that the required Nleg can be significantly smaller than the
substrate size Nimp, making the NLMs amenable to standard
methods for quasi-1D correlated systems. The same holds true
for interacting systems, as demonstrated in Sec. IV B.

Finally, for a metallic substrate, we unsurprisingly find
all single-electron eigenstates to be delocalized over the
entire wire-substrate system. Of course there exist localized
single-particle states in the wire for energies above or below
the metallic band, but theses states are not relevant for real
materials. Therefore, we do not observe any 1D features in a
noninteracting wire coupled to a metallic substrate, but this
could be modified by interactions. More decisively, we find
that the spectral properties at the Fermi energy vary strongly
with the number of legs in the NLM (50) even when Nleg is as
large as 51. Therefore, we conclude that the full wire-substrate
system cannot be represented even qualitatively by a quasi-1D
NLM if the substrate is metallic.

B. Interacting wire

Having established the usefulness of NLMs in the nonin-
teracting case, we briefly consider a correlated wire with a
repulsive Hubbard interaction U � 0 [cf. Eq. (14)]. A detailed
investigation of this problem, including the Mott-insulating
and Luttinger-liquid phases, can be found in [30] where we
also discuss the physics of the 1D Hubbard model. Here, we
compare spectral functions for the 3D wire-substrate problem
to those of the NLM (50) with Nleg = 3. The on-site potential
in the wire is εw = −U/2, so that the Hubbard bands are
situated symmetrically around the middle of the substrate
band gap. The other parameters are taken to be the same as in
Figs. 4–6. We focus on a single set of parameters in the metallic
(Luttinger liquid) phase that exists away from half-filling.
The interacting problem is solved by the continuous-time
interaction expansion (CT-INT) quantum Monte Carlo method

[28], which can be used to simulate the 3D wire-substrate
system and NLMs with the same numerical effort. For details
see [30].

At half-filling, the full wire-substrate model contains Np =
NimpLx electrons, whereas Np = NlegLx for the NLM. If the
system is doped away from half-filling with a finite bulk doping
y ∈ (−1,1) [i.e., Np = (1 + y)NimpLx electrons in the full
wire-substrate system or Np = (1 + y)NlegLx in the NLM],
the chemical potential will lie in one of the substrate bands.
This situation corresponds to a metallic substrate, which is
neither relevant for atomic wires deposited on semiconducting
substrates nor expected to be well represented by an NLM.
A more interesting and relevant case is that of a finite
wire doping yw ∈ (−1,1) (Np = NimpLx + ywLx for the full
wire-substrate model, or Np = NlegLx + ywLx for the NLM)
but a vanishing bulk doping [y ≈ 0 and Np/(NimpLx) ≈ 1]. In
the latter, our wire-substrate model can describe a quasi-1D
conductor embedded in an insulating 3D bulk system, as
relevant for metallic wires on semiconducting substrates.
Besides In/Si(111) [9] above its critical temperature as well
as the Au/Ge(100) [11,35–38] and Bi/InSb(100) [12] systems
mentioned in Sec. I, Pt/Ge(100) [39,40], Pb/Si(557) [41], and
dysprosium silicide nanowires on Si(001) surfaces [42] are
also known to be metallic.

We calculated the finite-temperature analogs of the
single-particle spectral functions Aw(ω,kx), A(ω,kx,n), and
As(ω,kx,y,z) defined at the beginning of Sec. IV. For example,
the wire spectral function is given by

Aw(ω,kx) = 1

Z

∑
ij

∣∣〈i|dwkxσ |j 〉∣∣2
(e−βEi + e−βEj )δ(�ji − ω)

(58)

and can be obtained from the single-particle Green function
G(k,τ ) = 〈d†

wkσ (τ )dwkσ (0)〉 by analytic continuation [43]. In
Eq. (58), Z is the grand-canonical partition function, |i〉 is
an eigenstate with energy Ei , and �ji = Ej − Ei . Similarly,
we can obtain A(ω,kx,n) in the NLM and As(ω,kx,y,z)
for specific chains in the substrate of the 3D wire-substrate
model. Because a full substrate average is expensive with
the CT-INT method, substrate properties were averaged over
the chains at the minimal (y = y0,z = 1) and maximal (y =
y0 + Ly/2,z = Lz) distance from the wire.

For sufficiently weak coupling U , we find that a metallic
wire is realized in both the 3D wire-substrate model and in the
NLM at low wire doping. As an example, Fig. 7 compares the
spectral functions Aw(ω,kx) and As(ω,kx,y = y0,z = 1) of the
3D wire-substrate model with the spectral functions Aw(ω,kx)
and As(ω,kx) of the three-leg NLM at U = 4. The chemical
potential was set to μ = 1.58 for the NLM and to μ = 0.60
for the full model, corresponding to a total doping of 5.25(1)
electrons (or yw ≈ 12.5% for Lx = 42). A comparison of
Figs. 7(a) and 7(b) reveals that the wire spectral functions of the
two models agree close to the Fermi energy, and that there exist
gapless excitations predominantly localized in the wire. In
contrast, the substrate spectral functions in Figs. 7(c) and 7(d)
differ significantly, as already observed for the noninteracting
case. Nevertheless, both models exhibit a vanishingly small
weight at the Fermi energy.
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FIG. 7. Spectral functions for an interacting wire (U = 4) as
obtained from CT-INT QMC simulations with β = 15. The chemical
potential was tuned to obtain a wire doping yw ≈ 12.5%. Top: wire
spectral function Aw(ω,kx) for (a) the three-leg NLM and (b) the
3D wire-substrate model. Bottom: (c) substrate spectral function
As(ω,kx) for the three-leg NLM, (d) substrate spectral function
As(ω,kx) of the full model averaged over the chains at the minimal
and the maximal distance from the wire. In all cases, Lx = 42, and for
the 3D substrate lattice Ly = 42 and Lz = 10. All other parameters
as in Figs. 4–6. Red symbols illustrate the noninteracting energy
levels.

These QMC results confirm that—similar to the non-
interacting case—the low-energy excitations of a metallic
interacting wire in the 3D wire-substrate model are well
represented, at least qualitatively, by the three-leg NLM for
moderate couplings U . For strong interactions, however, the
low-energy excitations can be delocalized in the substrate and
the NLM approximation becomes less accurate. This regime
is discussed in detail in [30].

V. CONCLUSIONS

We introduced lattice models for correlated atomic wires
on noninteracting metallic or insulating substrates and showed
that they can be mapped exactly onto ladderlike 2D lat-
tices. The first leg corresponds to the atomic wire, while
the other legs represent successive shells of substrate sites
with increasing distance from the wire. We investigated the
approximation of narrow ladder models that take only a
few shells around the wire into account. Our results suggest
that the low-energy physics of (weakly interacting) wires
on insulating substrates can be described by ladder models
with three or more legs. These models can be studied with
well-established methods for 1D correlated systems such
as the DMRG [17–20] or field-theoretical techniques (e.g.,
bosonization and the renormalization group) [1,6,21–23]. We
believe that the approach developed here can shed new light
on the quasi-1D physics and correlation effects to be found in
atomic wires deposited on semiconducting substrates. As a first
application, we investigate Mott and Luttinger liquid phases of
a Hubbard-type wire on an insulating substrate using DMRG
and QMC methods in [30].

In the future, we plan to apply this approach to real metallic
wire-substrate systems. The wire-substrate model defined in
Sec. II can easily be generalized to achieve a more realistic
description of specific experiments. In particular, one can
use first-principles band structures and hybridizations [44–47]
for the noninteracting part of the Hamiltonian. However,
determining the interaction parameters from first-principles
simulations remains an open problem [48].
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