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Semiclassics for matrix Hamiltonians: The Gutzwiller trace
formula with applications to graphene-type systems
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We present a tractable and physically transparent semiclassical theory of matrix-valued Hamiltonians, i.e., those
that describe quantum systems with internal degrees of freedoms, based on a generalization of the Gutzwiller trace
formula for a n × n dimensional Hamiltonian H (p̂,q̂). The classical dynamics is governed by n Hamilton-Jacobi
(HJ) equations that act in a phase space endowed with a classical Berry curvature encoding anholonomy in the
parallel transport of the eigenvectors of H (p,q); these vectors describe the internal structure of the semiclassical
particles. At theO(h̄1) level and for nondegenerate HJ systems, this curvature results in an additional semiclassical
phase composed of (i) a Berry phase and (ii) a dynamical phase resulting from the classical particles “moving
through the Berry curvature”. We show that the dynamical part of this semiclassical phase will, generally, be
zero only for the case in which the Berry phase is topological (i.e., depends only on the winding number). We
illustrate the method by calculating the Landau spectrum for monolayer graphene, the four-band model of AB
bilayer graphene, and for a more complicated matrix Hamiltonian describing the silicene band structure. Finally,
we apply our method to an inhomogeneous system consisting of a strain engineered one-dimensional moiré in
bilayer graphene, finding localized states near the Dirac point that arise from electron trapping in a semiclassical
moiré potential. The semiclassical density of states of these localized states we show to be in perfect agreement
with an exact quantum mechanical calculation of the density of states.
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I. INTRODUCTION

In the h̄ → 0 limit, the behavior of quantum systems can
be expressed in terms of the classical phase space trajectories.
For one-dimensional scalar problems, the Wentzel–Kramers–
Brillouin (WKB) method [1–3] yields semiclassical wave
functions and energy levels, an approach that can be general-
ized to both integrable multidimensional systems (Einstein–
Brillouin–Keller (EBK) torus quantization [4]), as well as
to systems with multicomponent wave functions [5–16]. In
the latter case, however, the multicomponent wave function
matching inherent in the WKB approach rapidly becomes
prohibitively cumbersome as the number of components
increases.

The Gutzwiller trace formula circumvents this matching
problem by giving a direct expression for the semiclassi-
cal density of states. Furthermore, it is valid for systems
with a nonintegrable (i.e., chaotic) classical limit. While
generalizations of the trace formula for the multicomponent
case have been presented for specific matrix Hamiltonians
such as the relativistic Dirac Hamiltonian [17–22] and the
Dirac-Weyl Hamiltonian of graphene [23,24], a general
multicomponent version of the trace formula has not been
considered. In the solid-state theory context, however, a semi-
classical method applicable to arbitrary matrix Hamiltonians
would be extremely useful. This is so for two reasons.
First, in many systems, for instance, few-layer graphenes,
topological insulators, and semiconductors, one encounters
multiband effective Hamiltonians and hence multicomponent
wave functions. Second, and perhaps most important, in the
emerging class of low-dimensional materials one very often
encounters structural deformations occurring on length scales

*Present address: Department of Physics, The University of Texas
at Austin, Austin, TX 78712, USA.

far in excess of the lattice constant. Such deformations are
very difficult to treat fully quantum mechanically (due to
the huge unit cell sizes involved) while at the same time
present a natural case for a semiclassical treatment (due to the
slowly varying spatial deformation). Examples include flexural
ripples in graphene [25], rotational stacking faults in few-layer
graphene systems [26–29], the recently discovered partial
dislocation networks in few-layer graphenes [30–32], and
graphene nanostructures for which interesting semiclassical
work already exists [33]. A general semiclassical approach for
treating such systems thus has the potential of providing a very
useful investigative tool.

The purpose of the present paper is therefore twofold: (i) to
generalize the Gutzwiller trace formula to the case of arbitrary
matrix-valued Hamiltonians and (ii) to demonstrate that the
semiclassical approach yields an accurate and tractable
scheme for the treatment of deformations in graphene-based
systems. To that end, we will first focus on fundamental
theory and some simple applications and in the final part of
the paper consider application of the theory to a realistically
complex example of a deformation in bilayer graphene, a
one-dimensional strain moiré.

Let us briefly outline the differences between the matrix-
valued case and the scalar case within a semiclassical
treatment. At O(h̄0), a scalar Schrödinger equation reduces
to the Hamilton-Jacobi equation of classical mechanics. For
a n × n Hamiltonian, however, there are two important
differences in the O(h̄0) classical structures. First, we obtain n

Hamilton-Jacobi equations, some of which may be identical.
This situation arises, for instance, in the h̄ → 0 limit of the
Dirac equation [17], where each of the two Hamilton-Jacobi
equations (for particles and antiparticles) is twice degenerate;
in the limit h̄ → 0 there is no spin and hence one obtains
two pairs of degenerate equations. As for the case of ordinary
perturbation theory, such degenerate cases require a special
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treatment. Second, in contrast to the scalar case, for multiband
quantum Hamiltonians the semiclassical particle types have
internal structure (pseudospin structure in the case of graphene,
for example) which is carried by the classical eigenvectors
of H (p,q). Anholonomy in the parallel transport of these
eigenvectors then endows the corresponding Hamiltonian
phase spaces with a classical O(h̄0) Berry curvature.

At O(h̄) we obtain an equation for the amplitude that
is transported along the classical orbits described by the
Hamilton-Jacobi equations of motion. In contrast to the scalar
case, for a matrix Hamiltonian this amplitude acquires an
addition phase structure [6–9,34,35] from the O(h̄0) Berry
curvature which for the nondegenerate case consists of (i) a
geometrical phase and (ii) a dynamical phase that represents a
record of the semiclassical particle moving through the Berry
curvature, expressed via a (weighted) line integral over the
particle orbit of a contraction between the Berry curvature
and the symplectic matrix. The degenerate case does not
permit this intuitive interpretation (however, see Ref. [34] for
a geometric interpretation). In this case, one has a U (N ) rather
than scalar Berry curvature, and the concomitant different time
noncommutation precludes the expression of the semiclassical
phase as a simple time integral.

Our approach differs from that taken by Carmier and
Ullmo [23] in their semiclassical study of graphene and
two-band bilayer graphene in that their description begins with
the energy-dependent Green’s function, which then enforces
a complex matching procedure for the initial condition of
this function; as in the case of the WKB method, this
becomes prohibitively cumbersome for a general matrix -
valued Hamiltonian. Following Bolte and Keppeler [17], we
implement the initial conditions for the Green’s functions at the
level of the time-dependent Green’s functions, which allows
for an elegant solution that entirely circumvents the initial
matching problem.

The procedure leading from an arbitrary matrix-valued
Hamiltonian to the density of states is presented as an explicit
set of steps, and we apply it to a number of cases where
the exact solution is known: the Landau spectra of graphene,
a four-band model of bilayer graphene, and silicene. As
one would expect, the agreement between the exact and
the semiclassical results becomes considerably degraded at
low energies, and in particular for bilayer graphene the zero
mode found in the exact solution is not captured within
the semiclassical approximation (and is, of course, also not
captured in the two-band approximation to this problem [23]).
It is therefore by no means obvious that a semiclassical
approach is suitable for graphene-based systems with slowly
spatial deformations, as one is always interested in the low-
energy behavior.

To explore this situation more closely, we consider a
realistic example of such a deformation: a one-dimensional
strain moiré in bilayer graphene, which serves as an instructive
analog of the graphene twist bilayer [36], two mutually rotated
layers of graphene. The twist bilayer displays extraordinarily
rich electronic structure in small angle limit [26–29,37,38]
(i.e., as the moiré length becomes large), and in particular
a strong electron localization on the AA stacked regions of
the lattice. We present an analytical semiclassical analysis
of the strain moiré, finding that (i) at the Dirac point the

action is orders of magnitude larger than h̄ when the moiré
length becomes large compared to the lattice constant—
thus validating the semiclassical approach—and (ii) that
the electron localization is driven by the existence of a
semiclassical potential well centered at the AA spots that
arises from the stacking potential in the quantum Hamiltonian.
We should stress that this “potential well” picture, which
provides a very natural description of charge localization,
is fundamentally semiclassical: No such potential well could
localize quantum mechanically due to the Klein paradox which
prevents localization of electrons in graphene by a scalar
potential. We furthermore find an analytical form for the
semiclassical density of states arising from electrons trapped
in this potential well, which we show to be in almost perfect
agreement with exact quantum mechanical calculations. This
demonstrates both that the semiclassical approach provides
a valid tool for investigating slow deformations in few-layer
systems, as well as the insight it can bring into the physics
of these rather complex systems. It should be stressed that
treating such a system on the basis of either the standard
WKB approach (in principle possible as we have an effective
one-dimensional system) or that of Ref. [23] could not be
contemplated due to the extraordinarily complexity of the
matching procedure that would be involved.

II. SEMICLASSICS FOR MATRIX-VALUED
HAMILTONIANS

We consider Schrödinger’s equation for the Green’s func-
tion G(r,r′,t) with a matrix-valued Hamiltonian Ĥ

ih̄∂tG(r,r′,t) = Ĥ (−ih̄∂i,xi)G(r,r′,t) (1)

and the initial condition

G(r,r′,0) = 1nδ(r − r′). (2)

We will assume that the elements of H (p,q) are smooth
functions and introduce the following convention: The primed
coordinates are initial coordinates with the nonprimed ones
the final coordinates on a classical trajectory.

Let us first derive an expression for the time-dependent
Green’s function using a generalization of the ansatz provided
by Bolte and Keppeler [17]. If Ĥ is a n × n matrix, we search
for the time-dependent Green’s function of the form

G(r,r′,t) = 1

(2πh̄)d

∫
ddp′ ∑

α

V̂α(t,r,p′)

× f̂α(t,r,r′,p′)V̂ †
α (0,r′,p′)e

i
h̄
�α (r,r′,p′,t). (3)

This ansatz is completely general and could describe the exact
solution to Eq. (1); however, the e

i
h̄
�α(r,r′,p′,t) term allows a

WKB-like expansion in orders of h̄ and, due to the integral
in Eq. (3), one can implement the initial condition Eq. (2) by
requiring

f̂α(t = 0) = 1,

�α(t = 0) = p′(r − r′), (4)∑
α

V̂α(0,r′,p′)V †
α (0,r′,p′) = 1n.

We now assume that V̂α = V̂ (0)
α + h̄V̂ (1)

α + · · · is analytical in
h̄ (a similar h̄ expansion will hold for the fα) and insert Eq. (3)
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into the Schrödinger equation Eq. (1) and collect terms of
O(h̄0). This procedure leads to the zero eigenvalue condition

[H (∂μ�α,xi) + ∂t�α]V̂ (0)
α = 0. (5)

[We may drop the sum and integral in Eq. (3) as the equation
is linear.] There are evidently n solutions to this equation
which occur when the V̂ (0)

α are equal to the n orthonormal
eigenvectors of H (∂μ�α,xi). Denoting the corresponding
eigenvalue by Hα , we find that the zero eigenvalue equation
implies the existence of n Hamilton-Jacobi equations

Hα = −∂t�α, (6)

from which we then immediately identify for system α the
following objects: Hα is a classical scalar Hamiltonian, the
real scalar function �α(r,r′,p′,t) is a classical action, and
pα

μ = ∂μ�α is the corresponding canonical momentum. Thus,
a general n × n quantum Hamiltonian leads to n separate
classical systems at orderO(h̄0). The full classical information
is contained in the n Hamilton-Jacobi equations (6) and the n

vectors V̂ (0)
α .

The situation becomes more complicated if the matrix
H (pi,xi) has degenerate eigenvalues. In this circumstance,
recourse to degenerate perturbation theory may be circum-
vented following the scheme of Bolte and Keppeler, in
which the mα orthogonalized eigenvectors corresponding
to the degenerate eigenfunction Hα are combined into an
mα × n full degenerate eigenvector that evidently satisfies
V̂ (0)†

α H (pi,xi)V̂ (0)
α = Hα1mα

. With the initial conditions

f̂α(t = 0) = 1m,

�α(t = 0) = p′(r − r′), (7)∑
α

V̂α(0,r′,p′)V̂ †
α (0,r′,p′) = 1n,

the initial condition of the Green’s function equation is satisfied
and the calculations thereafter proceed in a formally identical
way for both the degenerate and nondegenerate cases, with the
difference of course that the rank of the various objects in the
theory differs between the two cases.

We now consider the O(h̄) corrections to the n Hamilton-
Jacobi equations, sewing “quantum flesh on classical bones”,
to use the evocative phrase of Berry and Mount [39]. The
derivative operators −ih̄∂i in ĤD are substituted by the
canonical momenta pα

μ upon acting on e
i
h̄
�α . To generate

the O(h̄) terms from ĤD we should allow every matrix
element [ĤD]ij to act on the exponential until only first-order
operator terms remain. For example, the term ih̄3∂i∂j ∂k would
generate −ih̄piαpj,α∂k + (k ↔ j ) + (k ↔ i). The resulting
matrix operator −ih̄H 1

D is therefore linear in first-order
derivatives. Considering −ih̄H 1

D as a perturbation, we obtain
in first-order perturbation theory the O(h̄) equation

V̂ (0)†
α

[
H 1

D + ∂t

]
V̂ (0)

α f̂α(r) = 0, (8)

which, as we shall now show, is a transport equation for
fα(r) along the classical trajectories governed by the Hα

Hamiltonian. [Note that substitution of Eq. (3) into the
Schrödinger equation Eq. (1), collecting terms of O(h̄), and
premultiplying by V (0)†

α also leads to Eq. (8).] In the case of

degenerate Hamilton-Jacobi systems fα(r) will be an mα × mα

matrix; in the nondegenerate case fα(r) is a scalar function.
To simplify the notation, we now define

Hcl(pi,xi) := H (pi,xi) + ∂t�α,
(9)

λα = ∂t�α + Hα,

such that Eqs. (5) and (6) take the form HclV̂α = 0 and λα = 0
respectively.

We now demonstrate that Eq. (8) may be written in the form
of a transport equation familiar from the scalar case. We first
note a rather obvious relation connecting H 1

D and Hcl, namely,

[
H 1

D

]
lm

=
d∑

k=1

∂pk
[Hcl]lm∂k. (10)

This identity follows from deployment of the Leibnitz rule on
the right-hand side that generates all terms from H (pi,xi) with
one momentum variable removed and replaced by the operator
∂k , exactly the definition of H 1

D on the left-hand side. The
identity Eq. (11) generalizes a similar relation used by Carmier
and Ullmo [23] in their semiclassical treatment of single-layer
graphene and the two-band model of bilayer graphene. In
accordance with convention, we set ∂t = ∂0, ∂E = ∂p0 and
make use of the sum convention, letting the sum run from
μ = 0, . . . ,d, where d is the space dimension. We may then
compactly write

H 1
D + ∂t = ∂pμ

Hcl∂μ (11)

and using this result can write Eq. (8) as[
V̂ (0)†

α

[
∂pμ

Hcl

]
∂μV̂ (0)

α + V̂ (0)†
α

[
∂pμ

Hcl

]
V̂ (0)

α ∂μ

]
f̂α(r) = 0.

(12)

Since we do not intend to calculate the higher order corrections
to V̂ (0)

α from now on we shall drop the index (0) at all vectors
Vα .

We now we split V̂ †
α ∂pμ

Hcl∂μV̂α into a Hermitian and an
anti-Hermitian part. We denote the anti-Hermitian part iMα:

iMα = Antiherm
(
V̂ †

α ∂pμ
Hcl∂μV̂α

)
. (13)

(Note that in the case of an mα-fold degeneracy Mα is a
mα × mα matrix.) This term, as we will subsequently discuss
in detail, results in an additional phase structure involving both
a semiclassical analog of the Berry phase and a dynamical
semiclassical phase that can be expressed in terms of the
underlying Berry curvature.

By repeatedly applying the Leibnitz rule and using the fact
that ∂pμ

Hcl is Hermitian, we see that the Hermitian part of
V̂ †

α ∂pμ
Hcl∂μV̂α takes the following simple form:

Herm
(
V̂ †

α

[
∂pμ

Hcl

]
∂μV̂α

) = 1
2∂μ

(
∂pα

μ
λα

) − �̂α, (14)

where we have also used the Hellmann-Feynman theorem
V̂ †

α ∂γ HclVα = ∂γ λα and the term

�̂α = 1
2 V̂ †

α ∂μ∂pα
μ
V̂α (15)

arises only in the case that the Hamiltonian has derivatives
with position-dependent coefficients (for all the examples we
consider here this will not be the case, although it will arise,
for example, in the case of minimal coupling of a gauge field
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to quadratic momentum orders in the Hamiltonian). Applying
the Hellmann-Feynman theorem to the second part of Eq. (12),
we find that the equation simplifies to[

1

2
∂μ

(
∂pα

μ
λα

) + (
∂pα

μ
λα

)
∂μ + iMα − �̂α

]
f̂α(r) = 0.

(16)

From Hamilton’s equations, we have (∂pα
μ
λα) = ẋμ with ẋ0 =

1 and so Eq. (16) reduces to the transport equation[
1

2
∂μ

(
∂pα

μ
λα

) + d

dt
+ iMα − �̂α

]
f̂α(r) = 0, (17)

which is similar to the scalar case but with the additional
matrices Mα and �̂. It should be stressed that Mα and �̂ appear
only for matrix-valued Hamiltonians. All terms in Eq. (17) are
expressed in terms of the classical orbits obtained from the
order O(h̄0) approximation.

Equation (17) must now be integrated along the classical
orbits such that fα(r) is “transported” along these orbits. The
first two terms of this expression are scalars, and hence the
ansatz f̂α = gα(r)ĥα(r), where gα is a scalar function that
solves an auxiliary equation [ 1

2∂μ(∂pα
μ
λα) + d

dt
]gα(r) = 0, is

sensible. The term ĥα(r) is an mα × mα matrix in the case of
an mα-fold degeneracy for Hα . The expression for gα(r) with
initial condition gα(r)|t=0 = 1 is known from the scalar case
(see, for example, Refs. [40,41]):

gα(r) =
√

det

(
∂(pα,t)

∂(p′,t)

)
. (18)

Inserting f̂α = gα(r)ĥα(r) into Eq. (17) yields[
d

dt
+ iMα − �̂α

]
ĥα(r) = 0, (19)

which is then solved by a time-ordered exponential (matrices
Mα at different times will in general not commute).

We now have all ingredients required to calculate the
time-dependent Green’s function, Eq. (3). The remaining steps
of the derivation now follow closely the scalar case, and we
will, therefore, be brief in the presentation. From the initial
condition Eq. (4) for the classical actions �α it follows that
�α = φα(r,p′,t) − p′r′ [17], where φα are as yet unknown
functions. We evaluate Eq. (3) with the stationary phase
approximation to find

G(r,r′,t) ≈ 1

(2πih̄)
d
2

∑
α,γt

gα,γt
V̂α,γt

(r,t)

× ĥα,γt
(r,r′,t)V̂ †

α,γt
(r′,0)e

i
h̄
Sα,γt (r,r′,t)−i π

2 να,γt (20)

with

gα,γt
=
√∣∣∣∣−det

(
∂(pα,γt

,t)

∂(r′,t)

)∣∣∣∣. (21)

Here the stationary phase applied to the p′ integral has enforced
the sum over γt to be over all classical paths leading from r′
to r within the time interval t . The actions Sα,γt

(r,r′,t) are
the classical actions that solve the Hamilton-Jacobi equations
with this requirement. Additionally, να,γt

is the path-specific

time-dependent Maslov index (or Morse index) that arises from
taking the absolute value in the expression for gα,γt

. The Morse
index accounts for the sign changes of the determinant under
the square root, which occurs when the Lagrangian manifold
corresponding to the dynamics of the Hamiltonian Hα develops
a fold (see, for example, the book of Cvitanovic [42]). In a one-
dimensional problem, this simply corresponds to the turning
points of the classical path at which the Green’s function picks
up a phase π

2 .
We now determine the retarded energy-dependent Green’s

function

G(r,r′,E) = lim
ε→0

1

ih̄

∫ ∞

0
dt G(r,r′,t)e

i
h̄

(E+iε)t (22)

within the stationary phase approximation. The calculation is
again almost identical to the scalar case and we thus, for brevity
of presentation, refer the reader to the standard literature for
the scalar Gutzwiller formula (see, for example, Ref. [42]) and
quote the result of the stationary phase approximation for the
matrix valued case:

G(r,r′,E) ≈ 1

ih̄(2πih̄)(d−1)/2

∑
α,γE

gα,γE

× V̂α,γE
(r)ĥα,γE

(r,r′)V̂ †
α,γE

(r′)

× e
i
h̄
Sα,γE

(r,r′,E)−i π
2 να,γE , (23)

where

gα,γE
=
√√√√∣∣∣∣∣− 1

ṙ
‖
α,γE

,ṙ
‖′
α,γE

det

(
∂2S(r,r′,E)

∂r⊥∂r⊥′

)∣∣∣∣∣, (24)

and where the stationary phase condition now sets the sum-
mation to be on the classical energy shell. In this expression
S(r,r′,E) is now the energy-dependent action, and γE are
all classical paths connecting r and r′ at energy E. As is
customary within a semiclassical formulation, we have chosen
a coordinate system with one axis parallel (‖) to the trajectory
and the other coordinates perpendicular (⊥) to the trajectory.
Similar to Eq. (22), να,γE

is the Maslov index and counts the
sign changes of the expression under the absolute value in
gα,γE

.
We can now calculate the density of states simply by taking

a trace over positions and over the matrix structure

d(E) = − 1

π
lim

ε→+0
Im{tr[G(r,r′,E + iε)]}. (25)

The calculation of the position trace is, once again, identical
to the scalar case which, following the standard procedure,
evaluated in a stationary phase approximation for perpendicu-
lar coordinates and without any approximation (but assuming
isolated orbits) for the parallel coordinates. This yields for the
density of states

dosc(E) =
∑
α,γ ◦

E

Im

⎡
⎣ iT

p

α,γ ◦
E

h̄π
tr(ĥα,γ ◦

E
)

e
i
h̄
Sα,γ ◦

E
−i π

2 να,γ ◦
E√∣∣det

(
Jα,γ ◦

E
− 12(d−1)

)∣∣
⎤
⎦,

(26)

where the position trace restricts the summation to the closed
orbits, the stationary phase condition picks up only periodic
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orbits γ ◦
E , and the monodromy matrix J is given as

Jα,γ ◦
E

=
∂
(
p⊥

α,γ ◦
E
,x⊥

α,γ ◦
E

)
∂
(
p⊥′

α,γ ◦
E
,x⊥′)

∣∣∣∣
(x⊥

α,γ ◦
E

,p⊥
α,γ ◦

E
)∈γ ◦

E

, (27)

which describes the stability of an orbit with respect to
small deviations of the initial positions and momenta. It is
evaluated for the orbit γ ◦

E and is independent of the point
on the orbit which we choose for its evaluation [42]. The
Maslov index is να,γ ◦

E
and it is important to note that, in

general, it is not the same as the Maslov index in Eq. (24).
For one-dimensional systems, however, these indices coincide.
Lastly T

p

α,γ ◦
E

is the time needed to traverse the primitive orbit
(primitive means traversing the orbit only once). Note that this
result is valid only for the extended orbit contributions. For the
short orbits, the exponential is not a fast oscillating function
and the stationary phase approximation is inadmissible. Equa-
tion (26) provides the so-called oscillatory part of the density
of states.

For the nondegenerate case, the M phase is a scalar, and
thus Eq. (19) may be immediately solved to yield hαγ ◦

E
=

e− ∫ Tα,γ ◦
E

0 dt �α ei
∫ Tα,γ ◦

E
0 dt Mα , leading to a simpler Gutzwiller

formula

dosc(E) =
∑
α,γ ◦

E

[
T

p

α,γ ◦
E

h̄π
e− ∫ Tα,γ ◦

E
0 dt �α

× cos
(

1
h̄
Sα,γ ◦

E
− π

2 να,γ ◦
E

+ ∫ Tα,γ ◦
E

0 dtMα

)
√∣∣det

(
Jα,γ ◦

E
− 12(d−1)

)∣∣
⎤
⎦, (28)

an expression that, in fact, differs from the scalar formula only
by the addition of the Mα phase and the exponential term
involving �α that serves as an orbit weight function.

A. Relation between the semiclassical phase
and the Berry phase

The existence of new phase structures associated with the
short wavelength limit of multicomponent wave equations has
a long history [5–9,34,35,43,44], including a curious anticipa-
tion of the geometric phase [43,44]. The phase structure of the
semiclassical limit of multiband quantum Hamiltonians was
first systematically addressed by Littlejohn and Flynn [7,8],
following early work by Wilkinson and others [5,6,9], with
the finding that the Mα phase consists of both a geometric as
well as a dynamical part, with the latter phase more obscure
in origin (described as the “no-name term” by Littlejohn and
Flynn [8]).

Here we wish to show that the entire semiclassical phase can
be understood in terms of an underlying Berry curvature, with,
for the nondegenerate case, the second phase representing a
dynamical record of the particle moving through the Berry
curvature, expressed through an integral over the HJ orbit of a
contraction between the curvature and the symplectic matrix
(see, for example, Ref. [45] for the definition of the symplectic
matrix). The existence of a dynamical phase associated with
the Berry curvature is somewhat unusual and is a reflection of
the fact that in the semiclassical theory we have a transport
equation for the amplitude function fα [Eq. (17)] and not

the vectors Vα (which would simply be V̇ †
α Vα = 0 for parallel

transport). For the degenerate case, this intuitive formulation of
the semiclassical phase in terms of a geometric and dynamical
part is not possible, due to the different time noncommutation
of the corresponding U (N ) Berry curvature (see Ref. [34] for
a geometric interpretation).

For the simpler nondegenerate case introducing the Berry
curvature in this way lends, as we will show, considerable
insight into the discussion of the semiclassical phase. For
example, in the context of graphene-type systems, Carmier
and Ullmo [23] have concluded that for Hamiltonians with
no mass term, but arbitrary field V (r), then the semiclassical
phase is exactly the classical analog of the adiabatic Berry
phase. This can be understood as a special case of the more
general statement that if the Berry phase is topological (i.e.,
depends only on the winding number of the orbit) then the
second semiclassical phase is zero. As we will show below, this
more general statement follows very easily from consideration
of the underlying Berry curvature.

The full form of this phase for the α HJ system is given by

∫ T

0
dt Mα =

∫ T

0
dt �V †

α

[
∂pμ

Hcl

]
∂μVα, (29)

where for simplicity of notation we consider the case of
nondegenerate Hamilton-Jacobi equations (the generalization
is straightforward). Switching from four-vector notation to
separate space and time derivatives we have for Mα

V †
α

[
∂pμ

Hcl

]
∂μVα = V †

α

[
∂pi

H
]
∂iVα + V †

α ∂tVα. (30)

If we insert into the right-hand side of this equation H =∑
β HβVβV

†
β we then find for the integrand

�
⎧⎨
⎩ẋμV †

α ∂iVα + V †
α ∂tVα +

∑
β

HβV †
α ∂pi

(VβV
†
β )∂iVα

⎫⎬
⎭,

(31)

the first two terms of which are evidently the total time
derivative �V †

α dtVα , i.e., represent a Berry phase that depends
only on the geometry of the classical path. Using the
notation R = (x1,x2, . . . ,xd,p1,p2, . . . ,pd ) for a vector in a
2d-dimensional phase space we write this as∫

�

1

2
FαμνdRμ ∧ dRν, (32)

where Fαμν = ∂μAαν − ∂νAαμ is the Berry curvature tensor,
Aαμ = iV †

α ∂μVα is the Berry connection for the α Hamilton-
Jacobi system, and � is a hypersurface in the 2d Hamiltonian
phase space. Note that the Greek indices μ, ν now run over
the 2d dimensions of phase space in the vector R.

What is the third term of Eq. (31)? Evaluation of the
derivative ∂pi

(VβV
†
β ) and insertion of the identity operator

yields

Im
∑

β

(Hβ − Hα)
(
V †

α ∂pi
Vβ

)
(V †

β ∂iVα) (33)
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(note that the α = β term is identically zero in this sum). Using
ImX = −i(X − X∗)/2 we may write this as

− i

2

∑
β

(Hβ − Hα)
[(

V †
α ∂pi

Vβ

)
(V †

β ∂iVα)

− (V †
α ∂iVβ)

(
V

†
β ∂pi

Vα

)]
, (34)

which has some resemblance to the antisymmetric structure of
the Berry curvature tensor,

Fαμν = i
∑

β

[(V †
α ∂νVβ)(V †

β ∂μVα) − (V †
α ∂μVβ)(V †

β ∂νVα)].

(35)

Equation (34), however, contains only terms diagonal in
dimension and that have mixed p and x derivatives, while the
curvature tensor contains all possible combinations of these
indices. However, by contracting the curvature tensor with the
symplectic matrix � we find

1

4
�μνFαμν = i

2

∑
β

[(
V †

α ∂pi
Vβ

)
(V †

β ∂iVα)

− (V †
α ∂iVβ)

(
V

†
β ∂pi

Vα

)]
,

(36)

which is, apart from the weight factor (Hβ − Hα), identical to
Eq. (34).

We may therefore express the semiclassical phase as∫
dt Mα =

∫
�

1

2
FαμνdRμ ∧ dRν

− 1

4

∫
dt

∑
β

{Hβ[R(t)) − E]�μνFαβμν(R(t)},

(37)

where we have introduced the β state part of the curvature
tensor:

Fαβμν = [(V †
α ∂μVβ)(V †

β ∂νVα) − (V †
α ∂νVβ)(V †

β ∂μVα)] (38)

and used the fact that on the α orbit we have Hα = E.
Equation (37) has a simple interpretation. The first term is

the geometric Berry phase while the second term is clearly
dynamical and represents the time integral of the classical
particle moving through a Hamiltonian phase space endowed
with a Berry curvature. Contraction of the Berry curvature
with the symplectic matrix yields a scalar, and in the line
integral this is, for each semiclassical vector β, weighted by
the energy separation of the β manifold and the α-particle
orbit: (Hβ − E).

1. Structure of the dynamical semiclassical phase

The structure of the Berry curvature depends, as usual,
on the degeneracy structure, in this case of the semiclassical
energy manifolds. It is worthwhile exploring this point, and
to that end we follow the standard argument and insert
the formula for the matrix element of the derivative of an

eigenvector to find

Fαβμν = −V †
α (∂μH )VβV

†
β (∂νH )Vα

(Hβ − Hα)2

+ V †
α (∂νH )VβV

†
β (∂μH )Vα

(Hβ − Hα)2
. (39)

The structure of Fαβμν is thus dominated by degeneracies
amongst the classical eigenvalues. The geometric part of the
semiclassical phase, of course, depends on the global structure
of the Berry curvature Fαμν = ∑

β Fαβμν . This structure is,
however, equally important for understanding the dynamical
phase (which is local). In particular, if the Berry curvature
is a δ function—the case for which the Berry phase is
topological, i.e., depends only on the winding number around
the pole—then any classical trajectory that does not pass
through such a source will have zero for the line integral in
Eq. (37). In other words, if the semiclassical Berry phase is
topological then the semiclassical dynamical phase is zero. A
special case of this is the graphene Dirac-Weyl Hamiltonian in
the presence of arbitrary V (r) but with no mass term σzφ(r). In
such a situation, the degeneracy at the Dirac point is preserved,
the curvature retains the δ function structure, and hence the
semiclassical phase will coincide with the Berry phase, as
stated by Carmier and Ullmo [23].

2. Generalization to the degenerate case

We wish here to sketch the appropriate generalization to
the case of global degeneracies. In this circumstance the
semiclassical phase is matrix valued and will in general not
commute at different times. Following the usual approach,
this requires the U (1)-invariant Berry curvature be replaced
by the appropriate U (N )-covariant curvature Fαμν = ∂μAαν −
∂νAαμ + i[Aαμ,Aαν]. Insertion of the identity operator then
yields

Fαμν = i
∑
α �=β

[(V †
α ∂νVβ)(V †

β ∂μVα) − (V †
α ∂μVβ)(V †

β ∂νVα)],

(40)

which is, except for the additional condition of α �= β in the
sum, identical to Eq. (35). Note that in this expression the
Vα are now mα × n matrices, with mα being the order of
the αth degeneracy and n being the dimension of the matrix
Hamiltonian.

This similarity between the Berry curvature expressed in
the form given by Eqs. (35) and (40) renders the analysis
formally similar for the Abelian and non-Abelian cases at
any instant in time. At any given time, the Mα phase may
be decomposed into a part that is a Berry connection and a
part that is the curvature of the connection. However, the fact
that the time-ordered exponential must be evaluated excludes
the possibility of writing the time integral of Mα , i.e., the
semiclassical phase, as such a decomposition.

B. Treating the case of orbit degeneracies

If the Hamiltonian has one or more cyclic coordinates,
then the stationary phase approximation for these coordinates
cannot be applied. Furthermore, if orbits are not isolated, the
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trace over starting positions is not given by the integral
∮ dx‖

ẋ‖
=

T p as this clearly assumes a single closed orbit (here T p, as
before, denotes the time period of a primitive orbit, i.e., the time
to travel once around a closed orbit). We consider here the case
where only one coordinate xn is noncyclic and indicate how
this result may be (straightforwardly) generalized. The method
presented here differs from that of Carmier and Ullmo [23] in
that we derive a solution constructively, beginning at the level
of the transport equation, whereas in Ref. [23] the treatment
of orbit degeneracies is performed subsequent to a general
solution of the transport equation. The two methods are,
however, equivalent.

For the case of a single noncyclic coordinate, the transport
equation takes on the much simpler form(

1

2
∂n∂pn

+ d

dt
+ iMα

)
f̂α = 0 (41)

with the solution

f̂α =

√√√√√
( ∂pα

n

∂x ′
n

)
( ∂pα′

n

∂x ′
n

) ĥα (42)

and this result for fα gives a new expression for the time-
dependent Green’s function:

G(r,r′,t) ≈
∫

dp1...dpn−1

i1/2(2πh̄)d−1/2

∑
α,γt

gα,γt
V̂α,γt

(r,r′)

× ĥα,γt
(r,r′)V̂ †

α,γt
(r,r′)e

i
h̄
Sα,γt (r,r′,t)−i π

2 να,γt , (43)

where

gα,γt
=
√∣∣∣∣−∂(pα,γt

,t)

∂(x ′
n,t)

∣∣∣∣, (44)

while similarly for the energy-dependent Green’s function we
find

G(r,r′,E) ≈
∫

dp1...dpn−1

ih̄(2πh̄)d−1

∑
α,γE

gα,γE

× V̂α,γE
(r,r′)ĥα,γE

(r,r′)V̂ †
α,γE

(r′,r′)

× e
i
h̄
Sα,γE

(r,r′,E)−i π
2 να,γE , (45)

where

gα,γE
=
√√√√∣∣∣∣∣− 1

ẋα
nα,γE

ẋα′
nα,γE

∣∣∣∣∣. (46)

From the energy-dependent Green’s function may then be
found the oscillatory part of the density of states:

dosc(E) = 2
∫ ∑

α,γ ◦
E

ddxdp1,α,γ ◦
E
...dpn−1,α,γ ◦

E

(2h̄π )d
1∣∣ẋα,γ ◦

E
n

∣∣
× Im

[
ie

i
h̄
Sα,γ ◦

E
−i π

2 να,γ ◦
E tr(ĥα,γ ◦

E
)
]
. (47)

For problems with only one noncyclic coordinate, the 0-length
orbit contribution to the density of states has a very similar

form:

d0(E) =
∫

ddxddpα

(2πh̄)d
δ(E − Hα)

=
∑
γ ◦

E

∫
ddxddpα

(2πh̄)d
δ

[
∂Hα

∂pn

∣∣∣∣
γ ◦

E

(
pn − pnγ ◦

E

)

+ ∂Hα

∂xn

∣∣∣∣
γ ◦

E

(
xn − xn,γ ◦

E

)]

≈
∑
γ ◦

E

∫
ddxdp1,α,γ ◦

E
. . . dpn−1,α,γ ◦

E

(2πh̄)d
1∣∣ẋn,α,γ ◦

E

∣∣ , (48)

where objects with the index γ ◦
E label different solutions to

the Hamilton-Jacobi equations. Consistent with the notion
that we are treating very small action orbits, we have
expanded the argument of the Dirac δ function about zero
position and momentum, deployed a 0-length approximation
(xn − xn,γ ◦

E
) ≈ 0, and subsequently used Hamilton’s equation

to arrive at the final result.
It is straightforward to generalize the procedure to problems

with arbitrary combinations of cyclic and noncyclic coor-
dinates with the only change for more than one noncyclic
coordinate is the reappearance of a monodromy matrix in the
density of states which is, however, then restricted to the space
of the noncyclic coordinates.

C. Density of states for 1D problems: A generalized
Bohr-Sommerfeld quantization condition

The modification of the Bohr-Sommerfeld quantization
condition for the case of multicomponent WKB as been
considered by a number of authors [6–10]. In the general
formalism we espouse here, a Bohr-Sommerfeld condition
follows straightforwardly, providing that the following as-
sumptions hold: (i) there is no global degeneracy, (ii) the
action, the semiclassical phase, and the Maslov index are
all independent of initial positions, and (iii) there are no
position-dependent prefactors of the momentum terms. Under
these conditions d0(E) and dosc(E) may be combined and the
Dirac comb identity used to yield a compact expression for
density of states:

d(E) = d0(E) + dosc(E)

=
∫ ∑

α,γ ◦
E,p,n

ddxdp1,α,γ ◦
E,p

. . . dpn−1,α,γ ◦
E,p

(2h̄π )d
1∣∣ẋα,γ ◦

E,p

n

∣∣
× δ

(
Sα,γ ◦

E,p

2πh̄
− να,γ ◦

E,p

4
+ 1

2π

∫ Tα,γ ◦
E,p

0
dtMα − n

)
,

(49)

where γ ◦
E,p denotes once more a primitive orbit. From the δ

function one can then read off a generalization of the Bohr-
Sommerfeld quantization condition:

Sα,γ ◦
E,p

2πh̄
− να,γ ◦

E,p

4
+ 1

2π

∫ Tα,γ ◦
E,p

0
dtMα − n = 0. (50)

035442-7



M. VOGL, O. PANKRATOV, AND S. SHALLCROSS PHYSICAL REVIEW B 96, 035442 (2017)

D. Summary of semiclassical steps towards the density of states

We briefly present a summary of the steps required to
obtain the oscillatory density of states for a generic matrix
Hamiltonian Ĥ (−ih̄∂i,xi):

1. Reverse quantization

In the Hamiltonian Ĥ (−ih̄∂i,xi) replace −ih̄∂i → pi =
∂iS. One thus finds the matrix H (pi,xi).

2. Introducing a set of classical particle types

Determine the eigenvalues Hα of H (pi,xi) and correspond-
ing normalized eigenvectors V̂α for EV̂ = Ĥ (pi,xi)V̂ . In
the case of degenerate eigenvalues Hα , orthonormalize the
corresponding eigenvectors and write them next to each other
as columns giving the “full eigenvector” V̂α (an mα × n matrix
with mα the degeneracy number of the αth set of distinct
eigenvalues).

3. Solving the classical problems

The eigenvalues Hα correspond to Hamilton-Jacobi equa-
tions E = Hα , which must be solved for the actions Sα,γ ◦

E
of

all periodic orbits γ ◦
E at energy E.

4. Determining the Maslov indices

Calculate the Maslov index να,γ ◦
E

for each orbit, which is

given by the sum of all sign changes of (i) ṙ
‖
α,γ ◦

E
(the velocity

along the orbit) and (ii) det(12(d−1) − Jα,γ ◦
E
) [see Eq. (26)

for the definition of Jα,γ ◦
E
]. In the case of a one-dimensional

problem, the Maslov index is just the number of classical wall
reflections (i.e., sign changes of ∂p

∂x
) along the orbit in phase

space.

5. Evaluation of �̂

For the case in which there are coordinate function
prefactors to derivatives in the Hamilton operator, one also
has to calculate �̂ using Eq. (15).

6. Calculating the semiclassical phase

Express the Vα,γ ◦
E

in terms of xi and use Eq. (29) to calculate
Mα .

7. The density of states

The expressions resulting from the previous steps must then
be entered into Eq. (26) or, in the case of nonisolated orbits
and cyclic coordinates, into Eq. (47) and the integrals over the
cyclic coordinates performed.

The procedure for obtaining the semiclassical Green’s
functions is almost the same; however, it includes nonclosed
orbits and, as is well known (see, for example, Ref. [42]),
classification of all possible such orbits is a difficult problem,
and this procedure is rarely used to explicitly evaluate the
Green’s function.

The above steps present a systematic recipe for calculating
the semiclassical density of states of an arbitrary matrix-valued
Hamiltonian. In the next two sections, we will apply this
procedure first to a number of systems for which the exact

quantum mechanical result is known (Sec. III), as well as
subsequently (Sec. IV) to a problem, the one-dimension strain
moiré in bilayer graphene, for which the quantum result
may only be obtained numerically (the semiclassical result,
however, remains of simple analytical form).

III. SEMICLASSICS FOR EXACTLY SOLVABLE SYSTEMS

As a first test of the semiclassical procedure outlined in the
previous sections, we consider a number of cases for which
the exact analytical solution is known.

A. Single-layer graphene

We first consider a single layer of graphene in a uniform
out-of-plane magnetic field. The Hamiltonian is thus simply
the Dirac-Weyl operator with minimal substitution:

Ĥg = vF �̂σ ; �1 = h̄k1 + eBx2; �2 = −ih̄∂2, (51)

and where we have employed the Landau gauge so that k1 is a
good quantum number of the problem. This system has been
treated by Carmier and Ullmo [23], and we thus omit details
of the derivation. The final result, which agrees with that given
in Ref. [23], is given by

d(E) =
∞∑

n=−∞

A|E|
h̄2v2

F

δ

(
E2

2v2
F eBh̄

− n

)

= eBA

2πh̄

∞∑
n=−∞

δ(E − En). (52)

B. Four-band model of bilayer graphene

A much more difficult system to treat in any method that
employs a matching procedure is the full four-band model of
AB stacked bilayer graphene (in Ref. [23] only the two band
down-folded version of the full Hamiltonian was treated). We
take the simplest model of this material in which the interlayer
coupling matrix T is independent of momentum (although
lifting this condition would not significantly complicate the
analysis),

ĤABbi =
(

Ĥg T

T † Ĥg

)
; T =

(
0 τ

0 0

)
, (53)

where τ describes the interlayer hopping. With the method
outlined in the previous section, this system yields straight-
forwardly to a semiclassical analysis as we now show. We
first send −ih̄∂i → pi = ∂iS and diagonalize the resulting
Hamiltonian to find the eigenvalues

E = s1

(τ

2

)
+ s2

[(τ

2

)2
+ (vF �)2

](1/2)

, (54)

where �2 = [(h̄k1 + eBx2)2 + p2
2] and s1,2 = ±1 label the

four bands; the low-energy chiral bands have s1s2 = −1 and
the high-energy bonding and antibonding bands s1s2 = +1.
The corresponding eigenvectors are

Vs1s2 =

⎛
⎜⎜⎝

E

vF �s2e
iθ

s1s2E

s1vF �e−iθ

⎞
⎟⎟⎠, (55)
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where θ = tan−1 �1/p2 and where �1 = h̄k1 + eBx2. These
are, of course, are formally identical to the standard eigenval-
ues and eigenvectors of the Bernal bilayer. Equation (54) may
be straightforwardly solved for p2 and then the action found
from S = ∫

p2dx2, giving

S = πE(E − s1τ )

eBv2
F

. (56)

From the eigenvectors, the semiclassical Mα phase is im-
mediately found to be zero (the Berry phase is also zero in
this system). Note this contrasts with the case of single-layer
graphene where the Berry phase is π , and the semiclassical
phase equals the Berry phase; i.e., the dynamical phase is
zero. This is a consequence of the δ-function structure of the
Berry curvature for single-layer graphene. The Maslov index is
ναγ ◦

E
= 2 since there are only two turning points independent

of the initial position of the classical orbits, we can deploy
Eq. (50) to immediately find the semiclassical spectrum

ε(ε − s1)

C
= n − 1

2
, (57)

where C = 2h̄eB
τ 2 and ε = E

τ
. The exact quantum solution is

given as

ε2 =
[
C

(
n + 1

2

)
+ 1

2

]

±
√[

C

(
n + 1

2

)
+ 1

2

]2

− C2n(n + 1). (58)

For large n, the limit in which the semiclassical approximation
must hold, we find

ε = s1

√
Cn + σ2

1

2
+ σ1

1 + 2C

8
√

Cn
+ O(n− 3

2 ) (59)

for our approximation, while from the exact result we find

ε = s1

√
Cn + σ2

1

2
+ σ1

1 + 2C

8
√

Cn
+ σ2

C

16n
+ O(n− 3

2 ). (60)

Thus, the semiclassical result agrees up to O(n− 1
2 ) with the

exact result, and the agreement for smaller magnetic fields is
better as can be seen by the fact that the higher order terms
depend on C, which is essentially the magnetic field.

For both of these example problems, (i) the Hamilton-
Jacobi equations were nondegenerate and (ii) the dynamical
part of the semiclassical phase vanished (and thus the semi-
classical phase was identical to the Berry phase). We now turn
to a problem which is both nondegenerate and, as we shall see,
one in which the dynamical phase is nonzero.

C. Silicene

Silicene is two-dimensional allotrope of silicon with a
hexagonal honeycomb structure similar to that of graphene.
Spin-orbit coupling is more important in this material than in
graphene (where it can generally be neglected), and therefore
in the treatment that follows the spin-orbit coupling term is

included. The Hamiltonian for this system is given as [46]

H = v2(σ1 ⊗ 12p̂1 + σ ∗
2 ⊗ 12p̂2)

− v1

(
σ3 ⊗ σ1p̂2 + σ3 ⊗ σ2p̂1 + σ3 ⊗ σ3m

v2

v1

)
, (61)

where ⊗ is the tensor product for matrices and we use the basis
{|A〉,|B〉} ⊗ {| ↑〉,| ↓〉} (see Ref. [46] for details of this model
Hamiltonian). The term proportional to the Fermi velocity, v1,
is just the graphene Hamiltonian with a mass term m, while
the term proportional to v2 describes spin-orbit coupling.

We will consider silicene in an uniform out-of-plane mag-
netic field and therefore introduce into Eq. (61) the minimal
substitution p̂1 → �̂1 = p̂1 + eBx2. Replacing momentum
operators by momentum functions p̂i → pi in the resulting
Hamiltonian yields the matrix H (pi,xi), diagonalization of
which results in two pairs of twice-degenerate eigenvalues
and thus twice-degenerate Hamilton-Jacobi equations. These
are given as

E = ±
√

m2v4 + v2
(
p2

1 + p2
2

) =: ±h (62)

and evidently describe a relativistic particle with a speed of
light v =

√
v2

1 + v2
2 and mass energy mv2. The corresponding

full eigenvectors are

−V+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − v(ip2+p1)√
2
√

h(h−mv2)
v2(ip2+p1)√
2
√

h(h+mv2)

i(mv2−h)v1√
2
√

h(h−mv2)v

v1(p2−ip1)√
2
√

h(h+mv2)

(mv2−h)v2√
2
√

h(h−mv2)v√
h(h+mv2)√

2h
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(63)

and

V− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − v(ip2+p1)√
2
√

h(h+mv2)
v2(ip2+p1)√
2
√

h(h−mv2)

i(h+mv2)v1√
2
√

h(h+mv2)v

v1(p2−ip1)√
2
√

h(h−mv2)

(h+mv2)v2√
2
√

h(h+mv2)v√
h(h−mv2)√

2h
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (64)

The action is easily found from these Hamilton-Jacobi equa-
tions, Eq. (62), to be Sα,r = rπ E2−m2v4

2eBv2 , and the Maslov index
to be 2r with r the number of circuits of one primitive
orbit. From the full eigenvectors we find the (matrix-valued)
semiclassical phase to be∫ T

0
dtM± = −iπ

√
E2 − m2v4

E
12

= −iπ12 − 1

2

m2v4

E2
12 + O

(
m4v8

E4

)
. (65)

The expression for M± itself is diagonal (yet this is generally
not the case; see, for example Ref. [17]). On the other hand,
the Berry phase can also be calculated directly from the full
eigenvectors and is found to be∫ T

0
dtM1

± = −iπ12 − i
mv2

E
σ3, (66)
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FIG. 1. Plot of the exact (red) and semiclassical (blue) silicene
density of states for different values of γ = 2eBv2

m2v4 .

which clearly does not coincide with the full semiclassical
phase, Eq. (65). It is interesting to note that both phases
coincide in the limit E � mv2, where they limit to the
energy-independent constant iπ12, but the next order of the
semiclassical phase is quadratic in 1/E while it is linear for
the Berry phase.

As both the semiclassical phase and the Maslov index do not
depend on initial positions, we may use directly the generalized
Bohr-Sommerfeld quantization condition, Eq. (50). To this
end, we require the maximum initial momentum in the
cyclic direction and this provides the bounds for the cyclic
momentum integral, which can straightforwardly be found
from the Hamilton-Jacobi equations as � =

√
E2−m2v4

v
. We

hence encounter the integral
∫ dp′

1
|ẋ2| = ∫ 2π

0
�dθ

v
= 2�π

v
and

hence the density of states is given by

d(E) =
∑

n=−∞

2A
√

E2 − m2v4

(h̄v)2

× δ

(
E2 − m2v4

2eBh̄v2
−

√
E2 − m2v4

2E
− 1

2
− n

)
. (67)

The exact energy levels are given as E
mv2 = ε = ±√

1 + nγ ,

where γ = 2eBv2

m2v4 , and we thus see that in the E � mv2 limit of
the semiclassical phase we obtain the exact result. This implies
that, as the semiclassical phase isO(1/E2) and the Berry phase
O(1/E), the extra dynamical term in the semiclassical phase
is important. In Fig. 1, we present a graphical comparison
of the exact and semiclassical energy levels and, as may be
seen, while the disagreement is pronounced at low energies,
for higher energies the agreement is, as expected, very good.

IV. THE STRAIN MOIRÉ

We now consider the semiclassical analysis of a complex
graphene system that is an analog of the well-studied graphene
twist bilayer, the one-dimensional strain moiré. As may be

FIG. 2. The graphene strain moiré: Uniform strain is applied in
the armchair direction to one layer of an initially AB stacked bilayer.

seen in Fig. 2, this consists of a uniform strain applied to
(without loss of generality) layer 1 of an initially AB stacked
bilayer that leads to a moiré lattice in which (as in the
case of the twist bilayer) all possible stacking types occur
over one moiré period. We choose to apply the strain in the
armchair direction (x2 in the coordinate system displayed in
Fig. 2) as this makes the semiclassical analysis somewhat
more tractable. The deformation field of the problem is
therefore, using the coordinate system indicated in Fig. 2,
given by �u(x2) = [0,a(x2)], and it is convenient to express
this as a(x2) = √

3 γ (x2)
2π

+ 1√
3

with γ (x2) being some function
encoding the particular strain and the constant shift term
introduced for a more symmetrical Hamiltonian. With these
definitions, the interlayer potential S(γ ) can be obtained via
the general theory outlined in Ref. [47] with the result

S(γ ) = t

(
1 − cos γ − √

3 sin γ 1 + 2 cos γ

1 + 2 cos γ 1 − cos γ + √
3 sin γ

)
,

(68)

where t = τ/3 with τ = 0.4 eV being the interlayer hopping.
The Hamiltonian of the strain moiré system is then given by

H =
(

σp S(γ )
S(γ )† σ ∗p

)
. (69)

Note that this interlayer field is rather similar to that deployed
for the one-dimensional moiré treated in Ref. [36]; however,
in that work the moiré was created by shear and not by
strain. The system we consider here was, however, recently
treated in Ref. [48] and we will comment on the agreement
between our semiclassical theory and this work at the end
of this section. Uniform strain requires γ (x2) = 2π x2

L
, with

L the moiré period as may be deduced from Eq. (68). In
particular, we have AA stacking at 2πn, AB stacking at
2πn + 2π/3, and AC stacking at 2πn + 4π/3, as may readily
be seen by substitution of these γ values into Eq. (68). Solving
the classical O(h̄0) problem, we find four nondegenerate
Hamilton-Jacobi systems. Evidently p1 is a good quantum
number of the effectively one-dimensional problem, and for
simplicity we will consider here the case p1 = 0; this is not a
singular limit and as such the small p1 behavior is very similar
to p1 = 0. For larger p1, the system develops a much richer
and interesting structure, which we will not investigate here.
The four distinct Hamilton-Jacobi equations have four distinct
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FIG. 3. Structure of the classical orbits for for a strain moiré
(L = 1000 nm). The effective potentials of particle types 1 and 2 are
shown as the blue and green lines, respectively, with the shaded areas
illustrating the classically allowed regions; note that this is inverted
for particle type 2 due to the negative effective mass of that particle
type; see Eq. (71). For an energy of E = 0.067 eV, the two orbits
of the two particle types are indicated, along with the corresponding
local density of states. This latter quantity displays, as expected,
pronounced peaks at the turning points of the classical particle. The
AA spots of the moiré correspond to γ = 2πn with γ = 2πx2/L.

momenta, of which two differ only by a minus sign:

p
1,2,±
2 = ±

√
2m∗

1,2(E)[E + V1,2(γ )], (70)

where the index ± indicates the sign in front of the square
root. For simplicity of discussion, we will now adopt the habit
of referring to the solution with indexes 1 and 2 as particles 1
and 2. In Eq. (70), we have expressed the momenta in terms
of an effective mass m∗ given by

m∗
1,2(E) = E ± 3t

2
, (71)

which is energy dependent, and an effective potential V1,2(γ )
that takes the form

V1,2 = ±t(1 + 2 cos γ ). (72)

The cosine form of this potential reveals immediately that we
have a quantum well structure to the problem with the maxima
(particle type 1) or minima (particle type 2) centered at the
AA spots γ = 2πn. For particle type 1, the effective mass is
negative at all E where V (γ ) is defined, the usual regions of
classically allowed and forbidden motion are inverted, and thus
a maxima of the effective potential at the AA spot indicates
bound orbits centered on this region of the moiré. Particle type
2 with a minimum of the potential well on the AA spot and a
positive mass well evidently also describes orbits centered at
the AA spot. This is illustrated in Fig. 3 in which the shaded
areas represent the regions of allowed particle motion and one
can see that the situation is symmetric if we send particle type
1 to 2 and E → −E provided the sign of the mass changes as
well.

To examine this situation more closely, we determine the
turning points of the orbits which for particle type 1 are given
by

x1
i = 2πn − cos−1

(
E − t

2t

)
, (73)

x1
f = 2πn + cos−1

(
E − t

2t

)
, (74)

and for particle type 2 by

x2
i = 2πn − cos−1

(−E − t

2t

)
, (75)

x2
f = 2πn + cos−1

(−E − t

2t

)
. (76)

The orbit length for particle 2 is given by l1 = 2 cos−1 (E−t
2t

)
and (as may also be seen from Fig. 3) decreases with increasing
E until we find a zero-length orbit at the band edge E = 3t =
τ , after which the particle trajectory abruptly jumps from a
zero-length orbit to nonlocalized behavior. In contrast, there
are no bound states of this particle type at the other band
edge of E = −3t = −τ as at E = −t the bound orbits merge
together, and the behavior for energies lower than this is again
nonlocalized. For particle type 1, the situation is the same
but with E → −E. Interestingly, and contrary to what one
might expect given the results of the previous section, the
semiclassical approximation for the strain moiré is therefore
better for lower energies than for large energies, in particular
close to band edges where the approximation is guaranteed to
fail as the orbit length approaches zero. On the other hand, one
should stress that for slowly varying structural perturbations—
such as considered here—the semiclassical approximation is
expected to be good. To calculate the semiclassical spectrum
via the Gutzwiller formula, we require the semiclassical phase,
the actions S, and the orbit times T . We now proceed to
calculate each of these in turn.

A. The semiclassical phase

The integral of the M phase Iα = ∮
dtMα may be conve-

niently found by the change of variables∮
dtMα(t) =

∮
dtV̂ †

α ∂pμ
Hcl

d

dx2
V̂α

=
∮

dt
dγ

dx
V̂ †

α ∂pμ
Hcl

d

dγ
V̂α

=:
∮

dγ

ẋ(γ )
M̃α(γ ) (77)

and is found to be

I1 =
⎧⎨
⎩

−2π ; −t < E < 0
−π ; E = 0
0; 3t > E > 0

, (78)

where we also find, as we must, that I2 = I1(E → −E).
In fact, only the result for E = 0 could be obtained fully
analytically; for E > 0 and E < 0 the integral was taken
numerically with the values −2π and 0 obtained to 10−8

accuracy.
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FIG. 4. Plot of the action for particle type 2 in a strain moiré with
L = 1000 nm, vF = 0.003c, and τ = 0.4 eV.

B. The action S

The actions may be obtained analytically from the
Hamilton-Jacobi equations with the result that

S1 = 4L(3t − E)E
[

1
2 sec−1

(
2t

E−t

)
, 4t

3t−E

]
πvF

(79)

for particle type 1, where E(a,b) is the elliptic integral of the
second kind. For particle type 2, we simply have S2 = S1(E →
−E). The action for particle type 2 is shown in Fig. 4, and
evidently is larger for smaller energies and large compared
to h̄, thus justifying the semiclassical approximation at low
energies.

C. Orbit times

The time for an orbit Tα can be found as Tα = ∫
dt =

2
∫ xα

f

xα
i

dx2
1
ẋ2

, where

ẋ
1,2
2 = ±vF

√
(E − 3t)(E − 2t cos γ − t)

E − t cos γ − 2t
, (80)

ẋ
3,4
2 = ẋ

1,2
2 (E → −E), (81)

which follows from the Hamilton’s equations and which
we calculated using the Hellman-Feynman theorem ∂pα

2
Hα =

∂p2 V̂
†
αH (p2,x2)V̂α = V̂ †

α ∂p2H (p2,x2)V̂α . We thus arrive at the
following expression for the period Tα:

T1 = 2L

πvF

{
F
[

1

2
sec−1

(
2t

E − t

)
,

4t

3t − E

]

+ E
[

1

2
sec−1

(
2t

E − t

)
,

4t

3t − E

]}
, (82)

T2 = T1(E → −E), (83)

where F(a,b) is the elliptic integral of the first kind and E(a,b)
is the elliptic integral of the second kind.

We now have all the ingredients required to obtain the
semiclassical spectrum via the Gutzwiller trace formula. As
all of these quantities evidently do not depend on the initial
position of the orbit, we may use the generalized Bohr-
Sommerfeld quantization condition, Eq. (50). We note that
in a sample of length LL the orbits are, evidently, LL/L-times

degenerate and the resulting density of states is then

d(E) = LL

L

∞∑
n=−∞

[
T1

h̄π
δ

(
S1

2πh̄
+ IM

1

2π
− n − 1

2

)

+ T2

h̄π
δ

(
S2

2πh̄
+ IM

2

2π
− n − 1

2

)]
. (84)

FIG. 5. Plot of the Gaussian smoothed density of states for
both the semiclassical approximation (red), Eq. (84), compared to
the exact quantum result obtained by diagonalization of Eq. (69)
(black). Shown are strain moiré systems with moiré lengths of
L = 10 nm (a), L = 100 nm (b), and L = 500 nm (c) showing
the increasingly good agreement at low energies between the exact
result and semiclassical approximation. Note that by construction the
semiclassical approximation only treats bounds orbits, and hence it
is only near the Dirac point where bound orbits exist in the strain
moiré (but at which the DOS is zero for pristine graphene) that the
agreement between the semiclassical and exact solution is very good.
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In Fig. 5 we plot this semiclassical density of states against the
exact result, obtained simply by solving the quantum problem
of Eq. (69) in a basis of single-layer graphene states, for three
moiré lengths, L = 10, L = 100, and L = 500 nm. As the
moiré length increases, an increasing number of bound states
are trapped in the AA centered quantum wells. Interestingly,
even for a rather small moiré length of L = 10 nm, the four
bound states that are trapped in the well are reasonably well
described in the semiclassical approximation. As the moiré
length increases, the agreement between the semiclassical and
exact results becomes increasingly good, with at L = 500 nm
the low-energy agreement between the two results almost
perfect.

We may also calculate the local density of states (LDOS),
obtained simply by leaving out the position trace

∫
dx2

1
ẋ2

in
the general formula Eq. (47):

dL(E,x2) = LL

L

∞∑
n=−∞

[
1

h̄πẋ1
δ

(
S1

2πh̄
+ IM

1

2π
− n − 1

2

)

+ 1

h̄πẋ2
δ

(
S2

2πh̄
+ IM

2

2π
− n − 1

2

)]
. (85)

The LDOS at an energy of E = 0.067 eV is shown in Fig. 3
along with the classically allowed orbits indicated by the
arrowed lines. Evidently the LDOS shows a pronounced
intensity peak at the turning points of the classical orbit, exactly
as one would expect. This can also be seen in a density plot
of the LDOS as a function of energy and γ , shown in Fig. 6,
where we have smoothed the result via a Gaussian convolution
for ease of plotting (each eigenvalue is weighted by a Gaussian
function with half width 13 meV). The bright high-intensity
regions of LDOS follow the turning point structure of the
classical orbits and result in regions of high LDOS surrounding
the AA spots of the strain moiré. This trapping in the AA

FIG. 6. Plot of the smoothed local density of states for a strain
moiré with moiré length L = 1000 nm, plotted in the energy position
plane. The AA stacked regions of the moiré are at γ = 2πn/3 with n

integer, and thus close to E = 0 we see clear localization on the AA
regions of the lattice. As described in the text, this can be understood
as trapping by a semiclassical moiré potential. The high-intensity
regions in the LDOS mark the turning points of the classical orbits
described by Eqs. (73)–(76).

regions of the lattice for the case of a strain moiré has recently
been described in Ref. [48]. The strain moiré thus represents
a one-dimensional analogy of the much more complex twist
bilayer system [29], for which trapping in the AA regions is
also observed.

V. CONCLUSION

For a general n × n matrix Hamiltonian H (p̂,q̂), we have
presented a transparent and physically motivated semiclassical
theory and demonstrated its tractability even for realisti-
cally complex systems such as the strain moiré in bilayer
graphene. We find that the classical dynamics is governed
by n Hamilton-Jacobi equations, corresponding to m � n

semiclassical particle types, in a Hamiltonian phase space
endowed with a Berry curvature encoding anholonomy in the
transport of the eigenvectors of H (p,q) around the classical
orbits. While for some systems the semiclassical particle types
have an intuitive interpretation, e.g., in the case of the Dirac
equation these correspond to electrons and positrons [17],
in a more general solid state context these simply represent
the emergence of the internal semiclassical structure of
the underlying quasiparticles. In particular, the number of
semiclassical particle types may be less than n, as was the case
for the strain moiré treated in Sec. IV. For each particle type
α, we find at O(h̄1) a transport equation for the wave-function
amplitude, which differs from a similar equation found in the
case of a scalar Hamiltonian only by the presence of (i) the
semiclassical phase Mα described above and (ii) a real-valued
weighting function �α that arises if the Hamiltonian contains
momentum operators with position-dependent prefactors (this
will arise, for example, in the case of a minimal coupling
[p + A(q)]2 term).

For the case of nondegenerate Hamilton-Jacobi (HJ)
equations, we have shown that Mα can be understood in
terms of a U (1) Berry curvature that underpins both the
geometric and dynamical phases that Mα can be decomposed
into. The latter phase represents, via an integral along the
particle orbit of a contraction between the curvature and
the symplectic matrix, a dynamical memory of the particle
moving through the Berry curvature. In the case of global
degeneracies among the HJ systems, Mα becomes matrix
valued and the U (1) gauge-invariant Berry curvature goes over
to the U (N ) gauge-covariant Berry curvature and, although the
theory at any instant of time remains formally very similar to
the nondegenerate case, noncommutation at different times
then precludes the interpretation in terms geometrical and
dynamical manifestations of an underlying Berry curvature.

This scheme leads to expressions for the semiclassical
Green’s functions and the semiclassical density of states, and
we have provided such expressions for both the degenerate and
nondegenerate cases, as well as for further more specialized
situations such as the presence of cyclic coordinates. In
particular, for effectively one degree of freedom systems
(n − 1 cyclic coordinates) we have presented a generalization
of the Bohr-Sommerfeld quantization rule for closed orbits.

We have applied this formalism to a number of low-
dimensional systems: graphene, Bernal stacked bilayer
graphene, silicene, and a one-dimension strain moiré in bilayer
graphene. In the latter case we find almost perfect agreement
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between the exact and semiclassical density of states arising
from localized states that the moiré induces near the Dirac
point, while for the former cases good agreement is observed
between the exact and semiclassical Landau spectra at high
energies. Using the formalism here, even the strain moiré
yielded rather easily to a semiclassical treatment which, we
stress, would be almost impossibly complex to treat with the
WKB method, or indeed any approach utilizing a matching
condition between wave functions or Green’s functions [23].

The semiclassical treatment of the strain moiré reveals the
existence of two particle types (that dominate the negative-
and positive-energy regions) that for energies near the Dirac
point are trapped in a semiclassical potential well centered
on the AA stacked regions of the moiré lattice. It should be
stressed that such physics is in an essential way semiclassical:
At the quantum level a potential well in graphene will
not form bound states due to the Klein tunneling effect.
The existence of such moiré potential wells has been dis-
cussed on the basis of numerical tight-binding calculations in
which localization seen on the AA regions of the graphene
twist bilayer [36,49,50], a two-dimensional analog of the
one-dimensional system considered in this work, but
never rigorously shown to exist. Our work shows that

this moiré potential well concept is in fact most nat-
urally a semiclassical concept. This illustrates the con-
ceptual usefulness of the semiclassical approach in
providing insight into the physics of these complex
systems.

As much of the structural complexity of low-dimensional
systems is due to deformations that are spatially slow on the
scale of the lattice constant, for example, partial dislocation
networks in Bernal stacked bilayer graphene [30–32], the
formalism presented in this work may provide not only a
numerically tractable scheme for such complex systems, but
also one which may yield transparent access to the underlying
physics of this new class of materials. In addition, the results of
this paper may facilitate a treatment of a semiclassical transport
in systems with internal degrees of freedom where, in analogy
to the scalar case [51], one should be able to find semiclassical
expressions for the Kubo conductivity formula.
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